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Abstract

We consider two three-dimensional situations when a polytime algorithm for approximating
a shortest path can be constructed. The main part of the paper treats a well-known problem of
constructing a shortest path touching lines in R3: given a list of straight lines L = (L1; : : : ; Ln) in
R3 and two points s and t, 0nd a shortest path that, starting from s, touches the lines Li in the
given order and ends at t. We remark that such a shortest path is unique. We show that it can be
length–position �-approximated (i.e. both its length and its position can be found approximately)
in time (Rn=d̃
̃)16 +O(n2 log log 1=�), where d̃ is the minimal distance between consecutive lines
of L, 
̃ is the minimum of sines of angles between consecutive lines, and R is the radius of a
ball where the initial approximation can be placed (such a radius can be easily computed from
the initial data).
As computational model we take real RAM extended by square and cubic roots extraction.

This problem of constructing a shortest path touching lines is known for quite some time to be
a challenging problem. The existing methods for approximating shortest paths based on adding
Steiner points which form a grid and subsequently applying Dijkstra’s algorithm for 0nding
a shortest path in the grid, provide a complexity bound which depends polynomially on 1=�,
while our algorithm for the problem under consideration has complexity linear in log log 1=�.
Our algorithm is motivated by the observation that the shortest path in question is a geodesic in
a certain length space of non-positive curvature (in the sense of A.D. Alexandrov), and it relies
on the (elementary) theory of CAT(0)-spaces.
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In the second part of the paper we analyze very simple grid approximations. We assume
that a parameter a¿ 0 describing separability of obstacles is given and the part of a grid with
mesh size a outside the obstacles is built (for semi-algebraic obstacles all these pre-calculations
are polytime). We show that there is an algorithm of time complexity O((1=a)6) which, given
a-separated obstacles in a unit cube, 0nds a path (between given vertices s and t of the grid)
whose length is bounded from above by (84
∗+96a), where 
∗ is the length of a shortest path.
On the other hand, as we show by an example, one cannot approximate the length of a shortest
path better than 7
∗ if one uses only grid polygons (constructed only from grid edges). For semi-
algebraic obstacles our computational model is bitwise. For a general type of obstacles the model
is bitwise modulo constructing the part of the grid admissible for our paths. Observe that the
existing methods for approximating shortest paths are not directly applicable for semi-algebraic
obstacles since they usually place the Steiner points forming a grid on the edges of polyhedral
obstacles.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

We consider two three-dimensional situations when a polytime algorithm for approx-
imating shortest path can be constructed. The main part of the paper concerns a known
problem of constructing a shortest path touching lines in R3 in a speci<ed order: given
a list of straight lines L=(L1; : : : ; Ln) in three-dimensional space and two points s and
t, 0nd a shortest path that starts from s, touches the lines Li in the given order and
ends at t. We will call this problem the skew lines problem (cf. [22]). The second
situation is, in a way, more simple: we look for a length approximation of a shortest
path (i.e. for a path such that its length, but not necessarily its position, is close to the
length of shortest paths) amidst obstacles that are separated.

1.1. Related results

The general problem of constructing a shortest path or even a ‘suIciently good ap-
proximation’ for such a path is well known [18]. It was shown to be NP-hard even for
convex polyhedral obstacles [9] (by “polyhedral obstacles” we mean unions of poly-
hedra). The skew lines problem in R3 is also well known. This problem is mentioned
in [22] as, presumably, representing the basic diIculties in constructing shortest paths
in three-dimensional Euclidean space. The paper [22] states “For example, there is no
eIcient algorithm known for 0nding the shortest path touching several such lines in
a speci0ed order”, where “such lines” means “skew lines in three-dimensional space”.
The same problem of 0nding a shortest path touching straight lines was mentioned in
a survey [23] as presumably diIcult, though a possibility of using numerical methods
was mentioned without any elaboration.
In the problem of approximation of shortest paths we distinguish two types of ap-

proximations: length approximation and length–position approximation.
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Length approximation means that, given an �, we look for a path whose length
is �-close to the length of shortest path (�-close may mean either additive or multi-
plicative error). Position approximation presumes that a path we wish to construct
is in a given neighborhood of a shortest path. An �-neighborhood of a path � is a
union of balls of radius � centered at points of �. To construct a length–position ap-
proximation means that, given an �, we look for a path that is in an �-neighborhood
of a shortest path and whose length is �-close to the length of shortest
path.
In [9] one can 0nd the following result that can be related to the complexity of

position approximation: for the case of polyhedral obstacles, 0nding the sequence of
edges touched by a shortest path is NP-hard. In the same article [9] it is proven that
for polyhedral obstacles with the size of description N , determining O(

√
N ) bits of the

length of a shortest path is also NP-hard.
Concerning weaker approximations, for the case of polyhedral obstacles, paper [22]

describes an algorithm that 0nds a path which is of length at most (1+ �) times of the
length of shortest path, and whose running time is polynomial in the size of the input
data and 1=�. Considerable gaps in this paper have been 0xed in [11] and the complexity
of the algorithm [11] is roughly O(n4N=�), where n is the total number of edges in
the polyhedra. Further, another method was exhibited in [12] with complexity bound
depending on n and on � as O(n2=�4). An algorithm with complexity bound O(n4=�6)
is designed in [15] which in addition, constructs for a 0xed source s a preprocessed
data structure allowing one to compute subsequently an approximation for any target
t with the complexity bound O(log(n=�)).
For the easier problem of constructing a shortest path on a given polyhedral surface

one can 0nd a shortest path exactly. First, an algorithm with complexity O(n3 log n)
was exhibited in [24] in case of a convex surface, thereupon it was generalized in [19]
to arbitrary polyhedral surfaces, and its complexity is O(n2 log n). Finally, the latter al-
gorithm was improved in [10] providing a complexity O(n2). To improve the quadratic
complexity, several algorithms which give �-approximations of a shortest path were pro-
duced: in [1] with complexity bound O(n+1=�3) in case of a convex surface, then in [3]
with complexity roughly O(n=�) in case of a simple polyhedral surface. In [15] for a
0xed s, a preprocessed data structure is constructed with complexity O(n=�3) in case
of a convex surface and with complexity O(n2 +n=�) in case of an arbitrary polyhedral
surface, respectively, which allows one for any target t to output an approximation
within complexity O(log(n=�)).
All the mentioned approximation results use an approach that places Steiner points

on the edges of the polyhedral obstacles to form a grid and after that to 0nd a shortest
path in this grid applying the algorithm of Dijkstra [2]. Since the number of the placed
Steiner points depends polynomially on n and on 1=�, the complexity of this approach
should depend on n and on 1=� as well.
The approach of [20] to solve the weighted region problem gives an algorithm whose

running time depends polynomially on log 1=�. Combining the binary search with the
local optimization as in [20] one may probably 0nd an approximation for the skew
lines problem; however, in any case, our algorithm is exponentially faster in 1=� (and
our text is shorter than that of [20]).
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1.2. On computational models

In the present paper we also study the problem of approximating shortest paths in
R3 trying to improve the computational complexity in some aspect. Even in simple
two-dimensional situations, exact constructions of shortest paths involve substantial
extensions of the computational model by operations like square root extraction or
more powerful ones, see e.g. [13,14,17]. Note that a shortest path in R3 between two
rational points, with even one cylindrical obstacle, may have transcendental length
and necessitate using transcendental points in its construction [16]. The algorithm we
propose for length–position approximation of the shortest path touching lines is based
on methods of steepest descent. Each iteration of such a method involves measuring
distances between points and other algebraic but not rational operations. If one uses
a bitwise computational model, the error analysis becomes diIcult and demands an
extra considerable work. So to give a solution to the skew lines problem we exploit
here an “extended” computational model over reals, which we make precise below.
As it was mentioned above, in this paper we present two results: the 0rst one treats

the skew lines problem, where we give a length–position approximation. The second
result is an analysis of the complexity of a length approximation of a simple grid
method to 0nd a path amidst separated semi-algebraic obstacles. Though the obtained
estimation shows that the quality of approximation is rather low, the simplicity of the
method makes it worthy of analysis.
For our main result, concerning a length–position approximation of the shortest path

touching lines in R3 our computational model is real RAMs [6] with square and cubic
roots extraction. This model extends (by allowing also extracting cubic roots) the com-
mon model used (implicitly) in [1,3,10,12,15,19,20] which admits rational operations
and extracting square roots. We mention also that in [11,22] a bitwise model was used
which takes into account the bit complexity.
Our second result uses the bitwise model modulo constructing a grid; the latter can

be done in polytime for semi-algebraic obstacles.

1.3. Our results and methods we use

We start with a remark that the shortest path �∗ that we seek, is unique. We
show that this path �∗ can be length–position �-approximated in time (Rn=d̃
̃)16 +
O(n2 log log 1=�), where d̃ is the minimal distance between consecutive lines of L, 
̃
is the minimum of sines of angles between consecutive lines, and R is the radius of
a ball where the initial approximation can be placed (we have this formula under the
condition that d̃61; it does not diminish the generality; without this condition one
must take maximum of (35) and (39)). Such a satisfactory radius R can be easily

computed from the initial data: R∈ [√n|�∗|; 2n 32 |�∗|], where |�∗| is the length of �∗

(estimate (3) in Section 2). Observe that when 
̃=0 or d̃=0 it could happen that
the gradient descent and Newton’s method which are invoked in our algorithm, do not
converge. (There are considerations how to treat these particular cases but they need
another, geometrically more ‘invariant’ approach.)



D. Burago et al. / Theoretical Computer Science 315 (2004) 371–404 375

The algorithm is based on the following geometric idea, which shows that there is
a unique minimum for the problem in question, and it is a strict minimum (the latter
is quanti0ed by means of a convexity estimate). Given a sequence of lines, one can
consider a sequence of copies of Euclidean space, and glue them into a “chain” by
attaching “neighboring” spaces along the corresponding line. The resulting (singular)
space happens to be of non-positive curvature (see [4,5] and the Section 2.1 below).
Now a shortest path we want to construct is a geodesic in this new space, and this im-
mediately implies its uniqueness (by the Cartan–Hadamard Theorem [4]). Furthermore,
convexity comparisons for the distance functions in nonnegatively curved spaces allow
us to estimate the rate of convergence in gradient descent methods. This approach is
somewhat similar to applications of Alexandrov geometry to certain problems concern-
ing hard ball gas models and other semi-dispersing billiard systems, see [7,8]. To avoid
excessive use of Alexandrov geometry, we formulate the mentioned convexity property
in terms of the Hessian of the distance function and prove it by direct computation.
The exposed geometric idea helps us to achieve the principal feature of our algorithm,

namely that its complexity depends linearly on log log(1=�) rather than polynomially
on 1=� as in the existing algorithms from [1,3,11,12,15,22] based on the grid method
(at the expense of a worse dependency on n and on other geometric parameters).
It would be interesting to describe more situations when a better dependency of the
complexity on 1=� (logarithmic, cf. [20], or even double logarithmic) would be possible
simultaneously with better dependency on geometric parameters.
However, our algorithm does not allow to solve the skew lines problem for bitwise

models of computations. The latter would require, in particular, estimating the bitsize
of the output data. For bitwise models one can consider the following two settings.
SkewLines Bitwise exact: Given a list of n lines and two points s and t in R3, 0nd

n algebraic numbers on the consecutive lines such that the path going through these
points is the shortest path between s and t touching the lines.
SkewLines Bitwise approximate: Given a list of n lines and two points s and t

in R3, and given an �, 0nd an �-approximation to the shortest path between s and t
touching the lines.
We believe that our result is a step towards solving (SkewLines Bitwise Approxi-

mate) problem for which it would be interesting to design an algorithm with complexity
polynomial in log(1=�).
Very likely the method we use can be generalized to 0nd a shortest path touching

cylinders in R3 in a prescribed order.
It is straightforward (a rather general case of three-dimensional TSP with Neighbor-

hoods [18]) that if the order of touching lines is not prescribed the problem of 0nding a
shortest path becomes NP-hard. Indeed, take the lines to be parallel and place the points
s and t at a plane orthogonal to these lines. Then the problem of 0nding a shortest
path touching all the lines is equivalent to the Euclidean traveling salesman problem in
which it is necessary to 0nd a shortest path between s and t and passing all intersecting
points of the lines with the plane and which is known to be NP-complete [21]. We
can slightly incline lines if we wish not to have parallel ones.
Our second result is an analysis of very simple grid approximations. The ques-

tion concerning possibilities of ‘generalized’ grid approximations is mentioned in the
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conclusion of [11]. The matter is that the result of [11,22] is based on such a method.
The initial idea used in [11,22] is straightforward: partition the edges of polyhedra that
constitute the obstacles into suIciently small segments and take them as vertices of a
graph of visibility. Then determine whether two such segments are mutually visible, in
which case connect them by edges. It is not a simple task to implement correctly this
idea for the bitwise computational model because of the necessity to ‘approximate ap-
proximations’, and this was the main source of gaps in [22]. The primitive grid method
we use avoids such diIculties even for semi-algebraic obstacles. But one cannot get
approximations that are, in the worst case, better than 7
∗, where 
∗ is the length of
the shortest path. More precisely, our result is as follows.
When considering grid approximations we assume that a parameter a¿0 describing

a separability of obstacles and the part of a grid admissible for the paths is given,
and s and t are vertices of the grid lying in the space admissible for the paths. We
show that there is an algorithm that in the bitwise machine model has the running time
O((1=a)6) and that for given a-separated obstacles in a unit cube 0nds a path (between
given points s and t) whose length is bounded from above as (84
∗+96a), where 
∗

is the length of shortest paths. On the other hand, we show by an example that one
cannot approximate the length of shortest paths better than 7
∗. We conjecture that 7
is the exact bound for the three-dimensional case for the method we consider.
We do not discuss in detail how to construct the parameter a and the part of the

grid admissible for the paths. It depends on the type of obstacles. For semi-algebraic
obstacles in R3 it can be done (precisely, in terms of algebraic numbers) in polytime
by a bitwise machine. After that, the construction of a shortest path approximation
deals only with natural numbers of a modest size.
As we mentioned above the methods of placing Steiner points and forming a grid

developed in [1,3,11,12,15,22] cannot be directly applied to semi-algebraic obstacles
since they place Steiner points just on the edges of polyhedral obstacles. On the other
hand, in our simple grid method the dependency on the complexity of obstacles is
reduced to the construction of the grid; after that the complexity of the algorithm
depends only on the parameter a of the obstacles; this is in accordance with the
proposal expressed in [3]: ”: : :while studying the performance of geometric algorithms,
geometric parameters (e.g. fatness, density, aspect ratio, longest, closest) should not be
ignored: : :”.

1.4. Structure of the paper

The paper is divided into two parts. Its structure is as follows.
The 0rst and the main part of the paper deals with shortest paths touching lines. In

Section 2 we give basic properties of the spaces under consideration, in particular, we
explain what geometric properties ensure the uniqueness of the shortest path. Our main
theorem is formulated in Section 2.5. In fact, this part is not needed for the proof as
we reduce the problem to a problem of computing a minimum of a strictly convex
function of many variables on a compact space. However, these geometric considera-
tions, that are easy to apply, show the road to take, and they are very instructive indeed
for the problem of shortest path that has rather various technical contexts and rarely
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has a unique solution. Section 3 contains main technical estimates. The central point
is to bound from below the eigenvalues of the Hessian of the path length function
(Section 3.2, Proposition 2). This bound is crucial for the estimation of complexity of
the gradient descent. The latter provides an initial approximation for the application
of Newton’s method that follows the gradient descent. Section 4 gives our approxima-
tion algorithm. It starts with a construction of an initial approximation, then applies a
gradient descent and after that Newton’s method. In the last Section 5 of Part 1 we
estimate the complexity of the algorithm.
Part 2 presents our grid algorithm. The de0nition of separability is given in Section 6.

The same section (Proposition 7) gives a lower bound for the probability to get well
separated obstacles when randomly choosing balls as obstacles. Then in Section 7 we
present the algorithm that constructs a length approximation.

Part 1: Shortest paths touching lines

2. Basic properties of shortest paths touching lines

Our construction is based on the following initial observation: we are seeking a
shortest path in a simply connected metric space of non-positive curvature. This ob-
servation guarantees the uniqueness of the shortest path; moreover, it suggests that the
distance functions in the space enjoys certain convexity properties, which will actually
permit us to use the method of steepest descent to reach an approximate position of
the shortest path.
As we mentioned in the Introduction, formally speaking we can omit these consid-

erations and go directly to the estimations of convexity of the length function within
our parametrization of paths. However, these geometric arguments are simple and di-
rect, and can be used in other problems of construction of shortest paths. We remark
that usually the uniqueness of the shortest path does not take place though the metric
function is quite good (e.g. a sphere as an obstacle in R3).
First, we recall some known facts about spaces of non-positive curvature.

2.1. On spaces of non-positive curvature

Let M be a simply connected metric space. Denote by |XY |M, or by |XY | if M
is clear from the context, the distance between points X and Y in M. A path in M
between two points A and B is a continuous mapping ’ of [0; 1] into M such that
’(0)=A and ’(1)=B. The length of a path ’ can be de0ned as the limit of sums∑

06i6(n−1) |’(i(1=n))’((i + 1)1=n)| as n→∞. A shortest path between two points is
a path connecting these points and having the smallest length. We suppose that for any
two points of M there exists a shortest path between them.
By the angle between two intervals going out of the same point on the plane R2

we mean the (nondirected) angle in [0; 
]. Given 3 points A, B and C the angle
between intervals AB and AC will be denoted by “BAC or “CAB, the angle between
2 intervals � and � will be denoted by “��, and the angle between 2 vectors will
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C
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M(BAC)B't

C'τ

�AC (�)
�AB (t)

Fig. 1. Comparing triangles in M and on the plane.

be treated as the angle between two intervals obtained from the vectors by translating
them to the same origin. If diNerent spaces are considered in the same context the
angle will be denoted by “M.
Take any three points A, B and C in M (Fig. 1). Let �AB and �AC be shortest

paths respectively between A and B, and A and C. On these paths we take two arbitrary
points �AB(t) and �AC(�), where t and � are the values of parameters determining these
points.
Then we choose any point A′ in R2 and take in R2 two points B′

t and C′
� that satisfy

the equalities:

|A′B′
t |R2 = |�AB([0; t])|M; |A′C′

�|R2 = |�AC([0; �])|M;

|B′
tC

′
�|R2 = |�AB(t)�AC(�)|M:

We are interested in the triangle �A′B′
tC

′
� in the plane R2.

Denote by �(t; �) the angle between the intervals A′B′
t and A′C′

� in R2. The angle
between �AB and �AC at A is de0ned as limt; �→0 �(t; �), if the latter exists.
De0ne the angle at A to B and C, or shorter “M(BAC) as the supremum of angles

at A between a shortest path from A to B and a shortest path from A to C.
Consider again three points A, B and C in M. Draw in R2 a triangle A′B′C′ deter-

mined by the following conditions:

|A′B′|R2 = |AB|M; |A′C′|R2 = |AC|M and “M(BAC) =“R2 (B
′A′C′):

By de0nition, the space M is of non-positive curvature if the angle “M(BAC) exists
and |B′C′|R26|BC|M for any three points A, B and C of M.
It is known the following (see, for instance, [4]).
Uniqueness of the shortest path: In any simply connected space of non-positive

curvature, there is a unique shortest path between any two points.

2.2. The con<guration space

Let L=(L1; : : : ; Ln) be a list of straight lines in R3, and s and t two points. Without
loss of generality, we assume that these points are not on the mentioned lines. Clearly,



D. Burago et al. / Theoretical Computer Science 315 (2004) 371–404 379

the shortest paths touching the lines of L in the given order are polygonal chains
(broken lines).
The space where we are looking for such a shortest broken line can be obtained by

the following operation. For each pair (Li; Li+1) take a copy Ri of R3. Glue consecu-
tively Ri and Ri+1 along the line Li+1. Denote the obtained space by RL. Each space
Ri is a space of non-positive curvature, and they are glued along isometric convex
sets. The Reshetnyak’s theorem (see [5]) implies that the resulting space RL is of
non-positive curvature.
The next two paragraphs are not necessary to describe the main algorithm, but rather

to clarify some geometric background behind it. Similarly to nonpositively curved
spaces, one can consider spaces with other curvature bounds (say, spaces with curva-
ture bounded above by −1). They feature even stronger convexity of distance func-
tions, and algorithms for constructing shortest paths converge in such spaces even
faster. Shortest paths in such spaces have remarkable trapping properties, as it is as-
serted by the classic Morse Lemma. The spaces constructed in this paper by gluing
several copies of Euclidean space along a number of lines are nonpositively curved.
Of course, they are not spaces of curvature bounded above by any negative number,
for they have Oat parts (regions in the Euclidean spaces used for this construction).
However, if one considers two points A; B in diNerent copies of Euclidean space and
such that the shortest path between these points meets al least two lines used to glue
the spaces together, and the gluing lines are not parallel, then a distance function
|A · | restricted to a neighborhood of B has the same convexity properties as if the
space was of curvature bounded above by a negative constant. This allows us to
treat such shortest paths as if they were in a space with negative upper curvature
bound.
Note that it is easy to see geometrically where this negative curvature comes from if

the gluing lines are skew lines, and what happens if the gluing lines are parallel. First
assume that the gluing lines are parallel. Consider the following plane lying in our
space and passing through A and B. It is made of three parts: a half-plane containing
A and bounded by the 0rst gluing line (this part lies in the same copy of Euclidean
spaces as A), then a strip between the two gluing lines (it lies in the copy of Euclidean
space which the shortest path connecting A and B passes through), and 0nally a half-
plane containing B and bounded by the second gluing line. These three parts indeed
form a plane (a surface isometric to a plane) lying in our space totally geodesically.
It contains A and B, and hence the convexity properties of the distance function |A · |
restricted to a neighborhood of B are no better than in a Oat space. To see where
the negative curvature comes from in case of skew lines, consider a short Euclidean
segment � containing B and parallel to the second gluing line. Connect all points of
� with A. If the gluing lines were parallel, we would get just a part of the plane
discussed above (more precisely, a triangular region). However, in case of skew lines
the family of segments connecting A with � form a non-Oat surface. This surface has
two Oat parts (a triangle with a vertex at A, and a trapezoid (one of the bases of the
trapezoid is �, and the other one lies in the gluing line)). However, the third part of
this surface is a ruled surface connecting two segments on the gluing lines, and this is
indeed a negatively curved surface.
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A similar construction can be used to obtain a space of non-positive curvature to
seek shortest paths consecutively touching convex cylinders Z =(�1; : : : ; �n) in RN . In
this case the gluings are made along the corresponding cylinders.
Consider the shortest path problem in RL, where two points s and t are 0xed.
From the uniqueness of shortest path between two points in a simply connected

nonpositively curved space we immediately conclude that:

Claim 1. There is a unique shortest path between any two given points in RL; hence
a shortest path touching the lines in a prescribed order and connecting two given
points is unique.

Furthermore, a standard distance comparison argument with Euclidean development
of a broken line representing an approximate solution implies that length-approximation
guarantees position-approximation (this is proven in detail in Lemma 4, Section 4.1):

Claim 2. If the length of the actual shortest path is L, every path whose length
is less than L + � belongs to the

√
L�=2-neighborhood of the actual shortest

path.

To simplify our constructions we will assume that (see Assumption 2.5 in Sec-
tion 2.5) the consecutive lines of L are pairwise disjoint. The case with intersecting
consecutive lines needs a particular attention when our approximation to the shortest
path is close to a point of intersection of lines.
By a path in RL we mean a polygon P consisting of n + 1 links (straightline

intervals), denoted by Pi, 16i6n, connecting s with t via consecutive lines, i.e. the
link P1 connects s with L1, the link Pi+1 connects Li with Li+1 (16i6n− 1), and the
link Pn+1 connects Ln with t. When speaking about the order of points on a path we
mean the order corresponding to going along the path starting from s. Thus any link
of a path is directed from s to t.
Notice that for a shortest path P the angle between Pi (incident ray) and Li must

be equal to the angle between Li and Pi+1 (emergent ray). Clearly, the incident angle
being 0xed, the emergent rays constitute a cone (which may have up to two intersection
points with Li+1—this means that a geodesic in our con0guration space can branch,
having two diNerent continuations after passing through a line Li).

2.3. Technical notations

Throughout the text we use some notations that we summarize here—the reader
can consult the list when coming across a new notation. The list is divided into
4 parts: notations concerning vectors, lengths, angles, paths. Some more local nota-
tion will appear later.

Notation 1 (Vectors, lines, points).
• 〈U; V 〉 is the scalar product of vectors U and V .
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• |U | or ‖U‖ is the L2-norm of a vector U (the length of U ).
• ‖A‖, where A is a matrix, is the spectral norm of A. For positive de0nite symmetric
matrices (our main case) ‖A‖= sup{〈AU;U 〉 : ‖U‖=1}.

• L=(L1; : : : ; Ln) is the list of straight lines in R3 we consider, and s and t are
respectively the 0rst and the last point to connect by a polygon touching the lines
of L in the order of the list.

• !0i is a 0xed vector determining a point on Li. We use it as the origin of coordinates
on Li.

• !i is a unit vector de0ning the direction on Li.
• T =(t1; : : : ; tn) is a list of n reals that will serve as coordinates respectively on

L1; : : : ; Ln. Our applications of gradient and Newton’s methods take place in the
space Rn of such points T .

• To make the notations more uniform we assume that !00 = s, !0n+1 = t, and that
always t0 = tn+1 =0.

• Wi(ti)=df (!0i + ti!i); clearly, it is a point on Li determined by a single real param-
eter ti. Note that W0(t0)= s and Wn+1(tn+1)= t.

• Vi=Vi(ti; ti)=df Wi+1(ti+1) − Wi(ti) is a vector connecting Wi with Wi+1 (in this
order), 06i6n.

• D0 is a vector from s to L1 perpendicular to L1, Dn is a vector from Ln to t
perpendicular to Ln, and Di is a vector connecting Li and Li+1 and perpendicular to
both of them.

• For a directed interval % in R3 we denote by %− and %+ its beginning and its end,
respectively.

Notation 2 (Lengths).
• & will be used to denote various L2-distances, e.g. &(s; Li) will denote the distance
between s and Li.

• vi=df |Vi| is the length of Vi, 06i6n.
• di is the square of the distance between Li and Li+1 for 16i6n − 1, i.e. di=

&(Li; Li+1)2, d0 =df &(s; L1)2, dn=df &(Ln; t)2.
• d=df min{di : 06i6n}.
• d̃=df +

√
d. To simplify formulas we assume that d̃61; we do not loose the gener-

ality as we can change the coordinates in an appropriate way, and within our model
of computation this change does not aNect the complexity. In the proofs we will
also give formulas without this assumption.

Notation 3 (Angles).
• “ABC, where A, B and C are points, is the angle at B in the triangle determined
by these 3 points. In fact, we will consider angles in R3, though formally speaking
we are in con0guration space RL de0ned in Section 2.2.

• “VV ′, where V and V ′ are vectors, is the angle in [0; 
] between these vectors.
• 
i=df (sin“!i!i+1)2, 16i6n− 1, 
=df min{
i : 16i6n− 1}.
• 
̃=df +

√

.

• (i=df (cos“!i!i+1)2, (̃i=df cos“!i!i+1, 16i6n− 1.
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Notation 4 (Paths).
• A path �(T ) is determined by a list of reals T that gives the consecutive points W (ti)
of �(T ) on the lines of Li connected by this path. Thus, W0(t0)=s, Wi(ti)=�(T )∩Li

for 16i6n and Wn+1(tn+1)= t, where Wi, ti and Li are de0ned in Notations 1.
• By Pi for a path P we denote the ith link of P. We consider Pi as an interval
directed from Li to Li+1, 06i6n. Regarded as a vector, it coincides with Vi.

• �∗ is the shortest path between s and t.
• T ∗=(t∗1 ; : : : ; t

∗
n ) is the point in Rn de0ning �∗, i.e. �∗=�(T ∗).

• �0 is the initial approximation of �∗ de0ned below in Section 2.4.
• T 0 is the point in Rn de0ning �0, i.e. �0 =�(T 0).
• r=df |�0| is the length of the initial approximation. It will be clear from its construc-
tion that d̃¡r. Moreover, without loss of generality, just to simplify some formulas
that will appear in the estimations of complexity, we suppose that r¿1.

• R=df r
√
n is the radius of a ball in Rn that will contain all paths in question.

• B is the closed ball in Rn of radius R centered at T 0; it contains all paths under
consideration.

2.4. Initial approximation for the shortest path

Denote by P0i the base of the perpendicular from s to Li.
Take as initial approximation to the shortest path the polygon �0 that starts at s,

then goes to P01 , then to P02 and so on to P0n and 0nally to t. Clearly �0⊆B and

|PiPi+1|6 (|sPi|+ |sPi+1|) for 16 i 6 n− 1: (1)

The length of �0 can be bounded in terms of the length of the shortest path �∗ as

|�∗|6 |�0| = r 6 2
n−1∑
i=1

&(s; Li) + |st|6 2n|�∗|: (2)

The 0rst inequality follows from the fact that the length of any path connecting s and
t and touching lines from L is greater than or equal to |�∗|, the second inequality is
implied by (1), and the third one is due to the fact that the distance from s to any
line is not greater than |�∗|.
For R estimations (2) give

√
n|�∗|6 R6 2n3=2|�∗|: (3)

We remark that if Li= {W 0
i + t!i : t ∈R}, then Pi=W 0

i + t0i !i is determined by
〈Pi; !i〉=0, and thus,

Pi = W 0
i − 〈W 0

i ; !i〉!i: (4)

The parameter R= |�0|√n intervenes in our estimation of complexity, and one may
ask what is the dependence of R on the length of the input. Suppose that the input lines
are represented by W 0

i and !i, and the maximum of the lengths of involved numbers
is +. Then the length of the input is O(n+). Clear that in the worst case the value R
is exponential in this input length. But it can be as well linear, logarithmic and so on.
The precise bound on R is an open question.
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2.5. Main Theorem

Hereafter we suppose that

Assumption. 
̃¿0 and d̃¿0.

The 0rst inequality says that there are no consecutive parallel lines among Li, and
the second one says that the consecutive lines do not intersect and the points s and t
are not on the lines.
Now we can formulate our main result:

Main Theorem. There is an algorithm that <nds a length–position �-approximation
of the shortest path touching lines in time

(
Rn

d̃
̃

)16
+ O

(
n2 log log

1
�

)
;

where R, d̃ and 
̃ are de<ned above in Notations 4, 2, 3.

Remark 1. The complexity bound of the Main Theorem depends actually on � if the
latter is suIciently small (see the end of Section 5.2), namely, �¡O(d̃4
̃2=r3

√
n).

Otherwise, the second summand of the estimation which contains � is dominated by
the 0rst summand in the complexity bound. As we remarked in the Introduction, in
order to simplify the 0rst summand we supposed, without loss of generality, that d̃61;
without this assumption one must take maximum of (35) and (39) which have a similar
form.

3. Bounds on eigenvalues of the Hessian of the path length

This section contains technical bounds on the norm of derivatives of the path func-
tion, in particular the main estimation, namely, a lower bound on the eigenvalues of
the Hessian (‘second derivative’) of the path length. The fact that the length function is
at “least as convex as in Euclidean space” follows from the curvature bound. We will
make direct computation though, due to the fact that we use a particular coordinate
system.
Consider a path �(T )=�(t1; : : : ; tn) represented by points Wi, 06i6n+ 1 (Nota-

tions 4 from Section 2.3).

Notations 5.
• f(T )=df |�|= ∑n

i=0 vi is the length of �(T ), where vi is de0ned in Notations 2.
• g(T )=df f′(T )=df gradf(T )= (

@f
@t1
(T ); : : : ; @f

@tn
(T )) is its gradient (0rst derivative).
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Fig. 2. Hessian (of path length) /.

Let us begin with the formula for g, that is the 0rst variation of length. For 16i6n
we set


i =
@f
@ti

=
@
@ti
(vi−1 + vi) =

@vi−1
@ti

+
@vi
@ti

=
〈Vi−1; !i〉

vi−1
− 〈Vi; !i〉

vi
(5)

and

g = (
1(t1; t2); 
2(t1; t2; t3); : : : ; 
n−1(tn−2; tn−1; tn); 
n(tn−1; tn)) (6)

(which stresses the variables on which each component of g depends).

3.1. The second variation formula for the path length

The Hessian of |�|, which we will denote /=/(T ) (Jacobian of |�|′), looks as
shown in Fig. 2.
The matrix of / is symmetric 3-diagonal with positive diagonal entries. Here are the

formulas for derivatives involved in / in arbitrary coordinates (for further references).

@2vi
@ti@ti+1

=
@
@ti

( 〈Vi; !i+1〉
vi

)
=

〈 @Vi
@ti

; !i+1〉
vi

− 〈Vi; !i+1〉〈Vi; @Vi
@ti
〉

v3i

=− 〈!i; !i+1〉
vi

+
〈Vi; !i+1〉〈Vi; !i〉

v3i
(7)
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= − 1
vi
(cos“!i!i+1 − cos“Vi!i+1 · cos“Vi!i〉); (8)

@2vi
@t2i

=
1
vi

(
1− 〈Vi; !i〉2

v2i

)
=
(sin“Vi; !i)2

vi
; (9)

@2vi
@t2i+1

=
1
vi

(
1− 〈Vi; !i+1〉2

v2i

)
=
(sin“Vi; !i+1)2

vi
: (10)

3.2. Lower and upper bounds on the eigenvalues of the Hessian of the path length

Decompose / into a sum of matrices with 2× 2-blocks corresponding to links of �
plus two 1× 1-blocks for the 0rst and the last links.

Notation 6.

• /0 =df

[
@2v0
@t21

]
.

• /i=df




@2vi
@t2i

@2vi
@ti@ti+1

@2vi
@ti@ti+1

@2vi
@t2i+1


 for 16i6n− 1.

• /n=df

[
@2vn
@t2n

]
.

• /̃i is the n× n-matrix consisting of /i situated at its proper place in / and with
zeros at all other places. More precisely, (1; 1)-element of /i is placed at (i; i) for
16i6n and at (1; 1) for i=0.

Within these notations

/ =
∑

06i6n
/̃i: (11)

3.2.1. Lower bound on eigenvalues of /
Strict convexity of metric implies that the second derivative / is positive de0nite.

However, we need constructive upper and lower bounds on eigenvalues of /. So we
do not use explicitly the just mentioned property of the metric—it will follow from
the estimations below.
We start with a more diIcult question of obtaining a lower bound on the least

eigenvalue of /, i.e. on inf{〈/U;U 〉 : ‖U‖=1}. To do it we reduce this problem to
the same problem for matrices /i.

Lemma 1. The only eigenvalue of /0 and that of /n is greater than d=2r3, and both
eigenvalues of /i for 16i6n − 1 are greater than d
=2r3. Thus d
=2r3 is a lower
bound on the norm of /i for all i (and for any ti).
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Proof. As supposed in the beginning of Section 2.5 there are no consecutive parallel
lines among Li. Thus vectors !i, !i+1 and Di (see notations in Section 2.3) constitute
a basis in R3, and we can represent the link Vi as Vi= ti · !i + ti+1 · !i+1 + Di (here
ti and ti+1 are diNerent from those used in notations in Section 2.3).
To simplify computations rewrite this formula as W = xA+ yB+D, where W =Vi,

x= ti, A=!i, y= ti+1, B=!i+1 and D=Di. For i=0 we put x=0, and for i= n we
put y=0. And let v=

√〈W;W 〉.
Within these notations di= 〈D;D〉, D⊥A and D⊥B.
For i=0 we have that the only eigenvalue of /0 is its element
@2v0=@t21 = (1=v0)(1 − 〈W;B〉2=v20). Here 〈W;B〉= 〈yB + D; B〉=y, 〈W;W 〉= v20 =

〈yB+ D; yB+ D〉=y2 + d0 and thus

‖/0‖ =
∣∣∣∣ 1v0
(
1− y2

v20

)∣∣∣∣ = 1
v30
(y2 + d0 − y2) =

d0
v30

¿
d
r3

:

Similarly for i= n we have ‖/n‖¿dn=v3n¿d=r3.
Consider i∈{1; : : : ; n− 1}. Notice that in our notations

v2 = 〈xA+ yB+ D; xA+ yB+ D〉 = x2 + 2xy(̃i + y2 + di

and

/i =




@2v
@x2

@2v
@x@y

@2v
@x@y

@2v
@y2


 :

Now we compute the second derivative of v:

@2v
@x2

=
1
v

(
1− 〈xA+ yB+ D; A〉2

v2

)
=
1
v3
(v2 − (x + y(̃i)

2)

=
1
v3
(y2 + di − (y(̃i)

2) =
1
v3
(y2
i + di);

@2v
@y2

=
1
v

(
1− 〈xA+ yB+ D; B〉2

v2

)
=
1
v3
(v2 − (x(̃i + y)2)

=
1
v3
(x2
i + di);

@2v
@x@y

=− 1
vi

(
(̃i −

〈xA+ yB+ D; B〉〈xA+ yB+ D; A〉
v2

)

=− 1
v3
((̃i(x

2 + 2xy(̃i + y2 + di)− (x(̃i + y)(x + y(̃i))

=− 1
v3
((x2(̃i + 2xy(̃

2
i + y2(̃i + di(̃i)− (x2(̃i + xy + xy(̃

2
i + y2(̃i))

=− 1
v3
(xy(̃

2
i + di(̃i − xy) = − 1

v3
(di(̃i − xy
i):
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Let us estimate the determinant

det/i =
1
v6
((y2
i + di)(x2
i + di)− (di(̃i − xy
i)2)

=
1
v6
(x2y2
2i + di
i(x2 + y2) + d2i − d2i (̃

2
i − x2y2
2i + 2xy
idi(̃i)

=
1
v6
(di
i(x2 + y2) + d2i 
i + 2xy
idi(̃i)

=

i

v6
(di(x2 + y2) + d2i + 2xydi(̃i)

¿

i

v6
(di(x2 + y2) + d2i − 2|x||y|di)

¿
d2i 
i

v6
:

Note that Tr /i=(1=v3)(
i(x2 +y2)+2di). The smallest of two eigenvalues of /i is
not less than

det/i

Tr /i
¿

v3d2i 
i

v6(
i(x2 + y2) + 2di)
¿

d2i 
i

v32di
=

di
i

2v3
¿

d

2r3

:

Proposition 2. All eigenvalues of /(T ) are greater than d
=2r3. Thus /(T ) is positive
de<nite, the metric function is strictly convex and ‖/(T )‖¿d
=r3, and ‖/−1(T )‖6
r3=d
 for any T .

Proof. Now we estimate 〈/U;U 〉 for ‖U‖=1. Formula (11) gives
〈/U;U 〉 =∑

i
〈/̃iU; U 〉 =∑

i
〈/iUi; Ui〉;

where Ui is the appropriate 2-vector. From Lemma 1 we have

〈/U;U 〉¿∑
i

d

2r3

〈Ui; Ui〉 = d

2r3

∑
i
〈Ui; Ui〉 = d


2r3
· 2 = d


r3
:

This inequality gives a lower bound on eigenvalues of /. Hence, ‖/‖¿d
=r3, and
‖/−1‖6r3=d
.

3.2.2. Upper bound on the norm of /
The matrix / is symmetric, therefore, using formulas (8)–(10), Notations 2 and

standard inequalities for the norms one gets

‖/‖ = ‖/(T )‖6 √
n · ‖/‖1 =

√
n ·max

i

∑
j

|/i;j|

6 4
√
n max

i

{
1
vi

}
6
4
√
n

d̃
(12)

for all T .
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3.3. Newton’s method for the search of zero of the gradient of path length

Our algorithm consists of 3 phases described below in Section 4. The third phase is
an application of Newton’s method to approximate the zero of the Jacobian f′ of the
length function. The main diIculty, however, is to 0nd an appropriate approximation
for Newton iterations. That will be done by a gradient descent described in Section 4.3.
We will use the bounds we just have obtained to estimate the rate of convergence of
Newton’s method.
First let us recall standard facts about Newton’s method. Consider a mapping H =

(h1; : : : ; hn) from Rn into Rn. Letter X without or with superscripts and subscripts will
denote vector-columns from Rn. Newton’s iterations are de0ned by the formula

X k+1 = X k − (H ′(X k))−1H (X k); (13)

where H ′ is the Jacobian of H .
Proposition 3 gives a suIcient condition to ensure a fast convergence of Newton’s

iterations (it can be found in textbooks on numerical methods).

Proposition 3. Suppose that X0 is a zero of H , i.e. H (X0)=R0, where R0=(0; : : : ; 0)∈Rn.
Let a; a1; a2 be reals such that 0¡a and 06a1; a2¡∞, and denote
6a= {X : ‖X − X0‖¡a}, c= a1a2 and b= min{a; 1=c}.
If X0 ∈6b and

(A) ‖(H ′(X ))−1‖6a1 for X ∈6a,
(B) ‖H (X1)− H (X2)− H ′(X2)(X1 − X2)‖6a2‖X1 − X2‖2

for X1; X2 ∈6a then

‖X k − X0‖6 1
c
(c‖X 0 − X0‖)2k : (14)

In Proposition 3 there are two constants a1 and a2: the norm of the inverse of H ′ has
to be at most a1 (condition (A)); and a2 is, in fact, an upper bound on the norm of the
second derivative of H ′′ (condition (B)). Both bounds must hold in a-neighborhood of
the zero X0 of H . In our case a, that appears only in (B), will be ‘big’ (more precisely,
we will take a=R), so we can ignore it for now. Then the convergence is determined
by two things: a parameter b=1=a1a2, and the choice of initial approximation X 0

that must be in an open b-neighborhood of the zero X0. We are interested in making
c‖X 0 − X0‖ smaller than 1 with a known upper bound less than 1. We will construct
X 0 such that c‖X 0 − X0‖6 1

2 .
We will take the bound from Proposition 2 for a1. As for a2, it is not hard to

estimate it using formulas for elements of /. We will choose X 0 in Section 4.3.

3.3.1. Choosing parameters a1 and a2 to satisfy (A) and (B) of Proposition 3
We start with calculating a2. To satisfy condition (B) it is suIcient to show that

the (partial) second derivatives of f are bounded in some neighborhood of X0. We
use Taylor’s formula with the third derivatives of f. Take any T1; T2 ∈B. In our case

H (X1)− H (X2)− H ′(X2)(X1 − X2) = f′(T1)− f′(T2)− /(T2)(T1 − T2): (15)
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We assume that the vectors involved in (15) are represented as columns. To bound
from above the norm of this vector, 0rstly estimate its components. Using notations
Tj =(t

( j)
1 ; : : : ; t( j)n ); j=1; 2, we can write the ith component of (15) as


i(t
(1)
i−1; t

(1)
i ; t(1)i+1)− 
i(t

(2)
i−1; t

(2)
i ; t(2)i+1) +

∑
j

@
i(t
(2)
j )

@tj
(t(1)j − t(2)j ): (16)

Taylor’s formula says that (16) is equal to

1
2

( ∑
j=i−1;i;i+1

@2
i(�)
@tj@(t′j − tj)2

+
∑

j;k=i−1;i;i+1

@2
i(�)
@tj@tk

(t′j − tj)(t′k − tk)

)
(17)

for some vector �=(�j)j whose jth component is between t(1)j and t(2)j .
Equalities (7)–(10) show that the second derivatives of 
i (notation from (6)) in-

volved in (17) are of the form

1
v2i

∑
(sinO(1) ’; cosO(1)  ; (O(1))) +

1
v2i−1

∑
(sinO(1) ’; cosO(1)  ; (O(1)));

where
∑
(sinO(1) ’; cosO(1)  ; (O(1))) is a sum of expressions in parenthesis (“argu-

ments of :”). Thus the absolute value of each second derivative of 
i is bounded by
O(1=d). Hence, the absolute value of each component of vector (15) is bounded by
O(1=d). This implies that in our case (see (15))

‖H (X1)− H (X2)− H ′(X2)(X1 − X2)‖ = ‖f′(T1)− f′(T2)− /(T2)(T1 − T2)‖
6C1

(√
n

d

)
‖T1 − T2‖2 (18)

for some constant C1¿0 and for T1; T2 ∈B.
Thus we set

a2 = C1 ·
√
n

d
: (19)

As in our case H ′ = /, Proposition 2 permits to take as a1 the lower bound for ‖/−1‖
from this proposition.
Now we can de0ne all the parameters for Newton’s method:

• a=R ( justi0ed by (18)),
• a1 = r3=d
 (see Proposition 2), a2 =C1(n=d) (see (18)),
• c= a1a2 =C1(nr3=
d2) for the constant C1 from (18).
Our assumptions about r (see Notations 4) imply that a= r¿1=c.
Hence we take

b =
1
c
=


d2

C1nr3
=


̃2d̃
4

C1nr3
: (20)
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For further references we rewrite (20) as (we use Notations 2 and 3)

• b
2
= c2


̃2d̃
4

nr3
= c2


d2

nr3
; (21)

where c2 =df 1=2C1.
To ensure fast convergence we will need a ‘good’ initial approximation X 0 for

Newton’s method, namely such that

X 0 ∈ 6b=2: (22)

For such X 0 we have

c‖X 0 − X0‖6 1
2 ; (23)

and the rate of convergence guaranteed by Proposition 2 will be ( 12 )
2k , where k is the

number of iterations (see Proposition 3).

4. Algorithm for the shortest path touching lines

The algorithm takes as input a list L of lines, points s and t and �, 1¿�¿0.
The algorithm outputs a path, represented as the list of points where it meets the

lines of L. The output path is in the �-neighborhood of the shortest path and its length
is �-close to the length of the shortest path.
We assume that the lines of L are represented by vectors !0i (point on the line

Li) and !i (unit vector directed along the line Li) introduced in Section 2.3. The
complexity of transforming another usual representation of lines and points into this
form is of linear complexity for our computation model.

The algorithm consists of three phases:
Phase 1: Preliminary computations.
Phase 2: Application of a gradient method to 0nd an approximation for Newton’s

method.
Phase 3: Application of Newton’s method.
Below in this section we will describe the phases. Their descriptions are rather short

within the technique developed before, however some new notions will be needed. To-
gether with this description we will make some estimations of complexity that concerns
‘local’ computations. The global estimation of the complexity will be done in the next
Section 5.

4.1. Length approximation from a position approximation

The algorithm seeks an approximation of the position of the shortest path. An appro-
priate approximation of the length in our case is ‘automatic’ as follows from Lemma 4
below.
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L
i+1

A*

B

A
B*

L
i

Fig. 3. Comparing the lengths of two paths.

Lemma 4. |�(T )| − |�(T ∗)|62‖T − T ∗‖16
√
n‖T − T ∗‖.

Proof. The last inequality is standard. Let us prove the 0rst one. We compare �=
�(T ) and �∗=�∗(T ∗) linkwise, see Fig. 3, where �i=AB, �∗

i =A∗B∗, |AA∗|= |ti−
t∗i |, |BB∗|= |ti+1 − t∗i+1|. The triangle inequality immediately implies that

|AB| − |A∗B|6 |AA∗|; |A∗B| − |A∗B∗|6 |BB∗|
and thus, |AB| − |A∗B∗|6|AA∗|+ |BB∗|.
Similarly, we get |A∗B∗|−|AB|6|AA∗|+|BB∗|. Hence, ‖AB|−|A∗B∗‖6|AA∗|+|BB∗|.
It remains to notice that we use each |AA∗|= |ti − t∗i | twice for 16i6n.

Thus, to obtain a length-approximation with precision �, we will construct a position
�=
√
n-approximation.

4.2. Preliminary computations

Phase 1: Compute the path �0 and the values d, d̃, 
, 
̃ r, R and save also all
intermediate values that appear within these calculations (all that will be used in the
estimations that govern the two other phases).
Our construction of the initial approximation �0 was described in Section 2.4. The

values d, d̃ are de0ned in Notations 2, the values 
, 
̃ are de0ned in Notations 3 and
the values r, R are de0ned in Notations 4.

4.3. Initial gradient descent to initial approximation of Newton’s method

Recall that f(t1; : : : ; tn) denotes the length of a path � represented by points on
the lines of L, i.e. f(t1; : : : ; tn)=f(T )= |�(T )| (see Notations 5). This function f is
convex (see Proposition 2), and the point at which it attains its minimum is denoted
by T ∗ (Section 2.3, Notations 4). Proposition 2 gives a positive lower bound for the
norm of the Hessian / of f; we denote this lower bound by ;. Let ;̃ be the upper
bound on the norm of / from (12).
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Consider g=df gradf=((@f=@t1); : : : ; (@f=@tn)). Notice that g(T ∗)= 0. We have
g(T )=

∫ T
T∗ /, where one can integrate / along any path from T ∗ to T .

Denote by < the distance from T ∗ to T . Since / is positive de0nite and its norm is
at least ;, we have 〈/(V ); V=‖V‖〉¿;‖V‖ for all vectors V . Hence the projection of
the integral of / along the segment from T ∗ to T to this segment is at least ;<, and
in particular the norm of the integral itself is at least ;<. Recalling that this integral is
equal to the gradient of f at T , we conclude that the absolute value |(@f=@ti)(T )| of
one of the coordinates of the gradient g(T ) is at least ; · <=√n.
Choose i such that

∣∣∣∣@f@ti (T )
∣∣∣∣¿ ; · <√

n
: (24)

Let us estimate how one can decrease the length of the path by changing ti (which
geometrically represents moving the point where the path meets Li).
To study how f depends on ti, introduce a function in one variable � given by

’(�)=f(t1; : : : ; ti−1; �; ti+1; : : : ; tn). Function ’ is the restriction of f to a straight line
and hence convex. Let ’ attain its minimum at �0.
We summarize the just introduced notations for further references:

Notations 7.
• ;̃=4

√
n=d̃ is an upper bound for / (formula (12)).

• ;=d
=r3 is a lower bound for / (Proposition 2).
• g=df gradf=((@f=@t1); : : : ; (@f=@tn)).
• < is the distance from T ∗ to T , i.e. <=df ‖T ∗ − T‖, where T ∗ is a point where
the length of our path �(T ∗) is minimal and T is the current point in the space of
parameters determining our path.

• ’(�)=f(t1; : : : ; ti−1; �; ti+1; : : : ; tn) (f is de0ned in Notations 5).
• i is chosen such that (24).

We wish to estimate |’(ti)−’(�0)| from below. Notice that our bounds on the Hessian
of f imply that ;6’′′6;̃. We need the following lemma.

Lemma 5. Let h be a strictly convex function, i.e. h′′¿0 on a segment %. Suppose
that h attains its minimum at a point �0, and assume that h′′6;̃.
Then

h(�)− h(�0)¿
(h′(�))2

4;̃
(25)

for all �∈ %.

Proof. Suppose without loss of generality that �0¡�, and let a point �1 be such
that h′(�1)= h′(�)=2. This de0nes �1 uniquely since the derivative h′ of h is strictly
increasing.
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Then

h(�)− h(�1)¿ (�− �1) · h
′(�)
2

: (26)

On the other hand, integrating h′′ from �1 to � yields

h′(�)
2

6 ;̃ · (�− �1): (27)

Multiplying (26) and (27) we obtain (25).

Lemma 5 gives

Lemma 6. In the notations introduced above (Notations 7)

|’(ti)− ’(�0)|¿ ;2<2

4n;̃
:

This Lemma 6 describes what one gains (in terms of shortening the path in question)
by setting ti= �0. To use this lemma we introduce

Notations 8.
• gain=df |’(ti)− ’(�0)| is the gain in the shortening of the path �(T ) after setting

ti= �0, where �0 is the point where ’ attain its minimum.
• UpBnd =df (gain · 4n;̃)1=2=; is an upper bound on < (the latter denotes the distance
between T ∗ and T—see Notations 7).

Phase 2: Gradient method procedure.
Phase 2.1: Find i such that∣∣∣∣@f@ti (T )

∣∣∣∣ = maxj
{∣∣∣∣@f@tj (T )

∣∣∣∣
}

:

(See formulas (5) for @f=@ti= @|�|=@ti.) This is done by using formulas (5), which
involve only arithmetic operations and square root extractions.

Claim 3. The complexity of Phase 2.1 is linear in n.

Phase 2.2: Find the point �0 where ’(�) attains its minimum. Since ’ is strictly
convex, this happens at the point where its derivative vanishes. Using our notations
(see Notations 5 for ’ and Notations 2 of Section 2.3 for vi) we have

’(�) = v0(t1) + v1(t1; t2) + · · ·+ vi−1(ti−1; �) + vi(�; ti+1) + · · ·+ vn(tn):

Hence, using (5), we have

d’
d�
(�) =

dvi−1(ti−1; �)
d�

+
dvi(�; ti+1)

d�

=
〈Vi−1(ti−1; �); !i〉

vi−1
− 〈Vi(�; ti); !i〉

vi
: (28)
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Equating expression (28) to zero, then squaring both sides and expressing the square
of the length of a vector vj by the scalar product of the vector by itself, we get

〈Vi−1(ti−1; �); !i〉2
〈Vi−1(ti−1; �); Vi−1(ti−1; �)〉 =

〈Vi(�; ti); !i〉2
〈Vi(�; ti); Vi(�; ti)〉 : (29)

Notice that both Vi−1(ti−1; �) and Vi(�; ti) depend in � linearly (see Notations 1). Thus,
Eq. (29) is of the 4th degree in �. The classical method of L. Ferrari reduces this
equation to equations of the 2nd and of the 3rd degree. This method uses a 0xed
number of arithmetical operations. The solutions of these equations of the 2nd and 3rd
degree (formulas of G. Cardano for the latter) can be found using explicit formulas
over arithmetic operations and square and cubic root extraction—all these operations
are admissible in our computational model (see the Introduction).
Hence,

Claim 4. The complexity of Phase 2.2 is O(1).

Note that, for a standard convexity reason, the modi0cation of the path described in
this phase cannot make it leave a ball where the path lied. Hence the path stays in the
ball B (Notations 4).
Phase 2.3: Calculate (we use Notations 8)
gain, the point T ′=(t1; : : : ; ti−1; �0; ti ; : : : ; tn) and UpBnd , where �0 is from Phase 2.2

just above.
If �=

√
n¡UpBnd¡b=2 (cf. (21) and (22)) then go to Phase 3 with T ′ as the initial

approximation for Newton’s method.
Otherwise, repeat Phase 2 with T =T ′. Thus, the recalculation of gain, T ′ and

UpBnd is iterated while UpBnd¿max{�=√n; b=2}.
As one can see from the formulas de0ning the values of gain, T ′ and UpBnd

(Notations 8, 5 and the respective notations from Section 2.3),

Claim 5. The complexity of computing gain, T ′ and UpBnd is linear in n.

4.4. Application of Newton’s method

Phase 3 (Newton’s method). Apply Newton’s method with the value of T , found
by Phase 2.3, as X 0. Iterate (13) until obtaining a suIciently close approximation; see
Section 5 below, formula (46). The rate of convergence is estimated in Proposition 3,
formula (14).

5. Complexity of the algorithm

Now we summarize the comments on the complexity made in the previous sec-
tions to count the number of steps used by the algorithm to 0nd a length–position �-
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approximation of the shortest path touching the lines of L. By Ci, cj we will denote
various positive constants (using capital C for upper bounds, and lower case c for
lower bounds).

5.1. Complexity of preliminary computations

Phase 1 0nds perpendiculars from s to lines Li. These perpendiculars fall at points
Pi ∈Li. To 0nd a point Pi we solve a linear equation with one unknown ti: 〈Wi(ti)−
s; !i〉=0. This can be done using only arithmetic operations. The complexity of
solving one equation is constant, thus the total complexity of 0nding all Pi’s is linear in
n. The points Pi represent the polygon �0, and computing its length |�0| also involves
square root extraction. However, the complexity is still linear in n.
Thus, the parameter R has been computed with linear complexity.
To compute sines 
̃i= sin“!i!i+1 and cosines (̃i= cos“!i!i+1 we compute the

scalar products 〈!i; !i+1〉, and use the standard formulas that involve arithmetic oper-
ations and square root extractions only. The complexity is again linear in n.
The next parameter to 0nd is the minimal distance between consecutive lines. For

two consecutive lines Li and Li+1, the distance between them is the length of the
segment connecting the lines and perpendicular to both of them; this is again a standard
“analytic geometry” computation, which yields d̃ and d in linear time. The calculation
of ; and ;̂ add only O(1) to the complexity (see formulas in Notations 5). Hence,

Claim 6. The complexity of Phase 1 is linear in n.

5.2. Complexity of gradient descent

The complexity of one iteration of the gradient descent of Phase 2 was estimated
from above at the end of Section 4.3. This complexity is O(n).
So we are to estimate a suCcient number of iterations.
Recall that ‖T − T ∗‖= <6UpBnd (Notations 5 and Lemma 6). Phase 2.3 iterates

the calculation of UpBnd until the latter becomes less than max{�=√n; b=2}.
It is evident that initially we have gain6r (r is the length of the initial approximation

to the shortest path—see Notations 4). Hence, initially for the initial gain (we use the
expression for UpBnd from Notations 8)

UpBnd 6
(gain · 4n;̃)1=2

;
6 c3

(rn · n1=2)1=2r3
d̃
1=2

d

= c3 · r

7=2 · n3=4
d̃
5=2 · 


=df B0: (30)

(We replaced d by d̃2 and ;̃; ; by their expressions using, respectively, Notations 2
and Notations 7.)
So we can estimate the number of iterations in the Phase 2.3 as the ratio of the

right-hand side value in formula (30) over a lower bound for gain that is valid while
UpBnd goes down to the demanded value. Such a lower bound can be found from the
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condition UpBnd¿max{�=√n; b=2} that controls the continuation of the iterations:

UpBnd =
(gain · 4n;̃)1=2

;
¿ max

{
�√
n
;
b
2

}
: (31)

This condition (31) gives

gain¿
;2

4n;̃
·max

{
�2

n
;
b2

4

}
=

(d
)2 · d̃
r6 · 4n · 4√n

·max
{
�2

n
;
b2

4

}
(32)

=
d̃
5 · 
2

r6 · 16n3=2 ·max
{
�2

n
;
b2

4

}
;

=




d̃
5

2

r6 · 16n3=2 ·
b2

4
=df g1 if

�2

n
¡

b2

4

d̃
5

2

r6 · 16n3=2 ·
�2

n
=df g2 if

�2

n
¿

b2

4
:

(33)

To estimate the number of iterations of recalculations of UpBnd in Phase 2 we estimate
B0=g1 and B0=g2. Denote the number of iterations by NbIter, and consider 2 cases
corresponding to the cases in (33).
Case 1: �2=n¡b2=4. Replace b2=4 by its value from (21)

g1 =
d̃
5

2

r6 · 16n3=2 · c2

d2

nr3
= c′2 ·

d̃
9 · 
3

r9 · n5=2 : (34)

Divide B0 from (30) by g1 from (34)

NbIter 6 O
(
r7=2 · n3=4 · r9 · n5=2
d̃
5=2 · 
 · d̃9 · 
3

)
= O

(
r12:5 · n3:25
d̃
11:5 · 
4

)
: (35)

We take into account that d̃61¡r (Notations 2 and 4), 
61 and 
= 
̃2 (Notations 3)
and n¿1, and rewrite (35) as

NbIter 6 O

((
r

d̃

)12:5
·
(n



)4)
6 O

(
rn

d̃
̃

)13
: (36)

Case 2: �2=n¿b2=4. Divide B0 from (30), this time, by g2 from (33):

NbIter 6
B0
g2
= O

(
r7=2 · n3=4 · r6 · n3=2 · n
d̃
5=2 · 
 · d̃5 · 
2 · �2

)
= O

(
r19=2 · n13=4
d̃
15=2 · 
3 · �2

)
: (37)

In Case 2 we can bound 1=�2 using Case 2 condition:

1
�2
6

4
b2 · n = O

(
r6 · n
d4 · 
2

)
= O

(
r6 · n
d̃
8 · 
2

)
; (38)
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where we used also (21) to replace b and Notations 2 to replace d by d̃2. From (38)
and (37) we get

NbIter 6 O
(
r19=2 · n13=4 · r6 · n
d̃
15=2 · 
3 · d̃8 · 
2

)
= O

(
r31=2 · n17=4
d̃
31=2 · 
5

)
= O

(
r15:5 · n4:25
d̃
15:5 · 
5

)
(39)

6 O

((
r

d̃

)15:5
·
(n



)5)
6 O

(
rn

d̃
̃

)16
: (40)

The bound in (40) majorizes the bound in (36), so we can take the bound from (40)
for further references. Hence, in any case

NbIter 6 O
(

rn

d̃
̃

)16
: (41)

From this bound (41) and Claim 5 that says that the complexity of calculating of gain,
T ′ and UpBnd in Phase 2.3 is linear we get

Claim 7. The complexity of Phase 2.3 is O(rn=d̃
̃)16 that is majorized by O(Rn=d̃
̃)16.

From Claims 3, 4 and 7 we deduce

Claim 8. The complexity of Phase 2 is O(rn=d̃
̃)16 or, in other terms, O(Rn=d̃
̃)16.

5.3. Complexity of Newton’s method

Once �=
√
n6b=2, and this is the case we are mainly interested in, Phase 3 of our

algorithm applies Newton’s method. Formula (14) for the convergence of Newton’s
method estimates the error after k iterations by

1
c
(c‖X 0 − X0‖)2k ; (42)

which we want to be smaller than �=
√
n. For our choice of initial approximation for

Newton’s method, see (23), and for our value of 1=c, see (20), value (42) takes the
form

1
c

(
1
2

)2k
= b

(
1
2

)2k
=


d2

C1nr3

(
1
2

)2k
: (43)

Thus we need

(
1
2

)2k
¡

C1
√
nr3�


d2
: (44)
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Inequality (44) is equivalent to

2k ¡ log
1
�
+
1
2
log n+ 3 log r + log

1


− 2 log d+O(1)

6 log
1
�
+O

(
log r + log

1



)
(45)

where all log’s are with base 2; recall also that (without loss of generality) we assumed
n6r. From (45) we can bound k as

k ¡ log
(
log

1
�
+O

(
log r + log

1



))
: (46)

It remains to estimate the complexity of computing the kth iterate X k+1 using for-
mula (13). In our case F(T )= gradf(T ) and F ′(T )−1 =/(T )−1. The complexity of
calculating F(T ) is shown to be linear in n. Computing the inverse of a 3-diagonal
n× n-matrix /(T ) takes O(n2) operations. Note that the complexity of computing one
element of /(T ) is constant. Thus the total complexity of Newton’s method is

O
(
n2 log

(
log

1
�
+O

(
log r + log

1



)))
: (47)

Taking into consideration that log(x+y)6(log x+log y) for x; y¿2, we can simplify
this estimation (47), obtaining the following bound for the complexity of Newton’s
method

Claim 9. The complexity of Phase 3 is

O
(
n2 log log

1
�

)
+O

(
n2
(
log r + log

1



))
: (48)

Combining complexity estimates for the three phases stated in Claims 6, 8 and 9
and observing that the term O(n2(log r+ log 1=
)) is much smaller than the bound on
the complexity of the gradient procedure,
we <nally obtain the estimation of the Main Theorem.
Thus, the Main Theorem is proved.

Part 2: A simple grid approximation of shortest paths amidst separated obstacles

6. Separated obstacles

We consider obstacles in R3 though all the notions and constructions can be easily
generalized to an arbitrary dimension. The dimension under consideration inOuences
only the constants that appear in estimations of the complexity of algorithms.
The problem we study here is, as in the previous part, to construct a path that

connects two given points s and t, does not intersect given obstacles W and whose
length is close to that of a shortest path.
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6.1. Obstacles and paths

Let W be an arbitrary set in R3, and s and t be two points in its compliment.
Denote by cl(S), int(S) and bnd(S), respectively, the closure, the interior and the

boundary of a set S.
Denote by Bv(a), where a∈R¿0 and v∈R3, the ball of radius a centered at v.
The boundary bnd(W )= cl(W )\int(W ) may contain ‘degenerate’ pieces. For exam-

ple, an isolated point or a point with a neighborhood homeomorphic to a segment.
Such pieces can hardly be considered as obstacles. So we assume that every point of
bnd(W ) has a two-dimensional neighborhood. For technical reasons it is convenient
to assume a neighborhood of each point of bnd(W ) intersects int(W ). To achieve this
we can ‘slightly inOate’ W . It is known how to do it eIciently for semi-algebraic
obstacles, see e.g. [13].
A path is a continuous piecewise smooth image of a closed segment. A simple path

or a quasi-segment is a path without self-intersections (which is, clearly, homeomorphic
to a segment).
The set R3\W will be called the free space, and its closure will be called the space

admissible for trajectories.
We consider only paths lying in the admissible space and not intersecting the interior

of W .

6.2. Separability and random separated balls

We say that obstacles W are a-separated if for any v∈R3 the set W ∩Bv(a) is
connected.
For example, if each connected component of W is convex and the distance between

each two connected components is greater than 2a, then W is a-separated. However,
the convexity of the obstacles is not assumed in the general case. What is imposed by
a-separation is a certain smoothness of concave (from the point of view of an observer
outside the obstacles) pieces of the boundary—a ball of radius 2a that goes inside
‘fjords’ of an obstacle cannot touch or intersect two pieces of the obstacles that are
‘remote’ if to follow the boundary.
Our main goal is to describe an algorithm that constructs a length approximation

to a shortest path under the condition of separability of obstacles. But now we will
make a digression estimating the expectation of separability of obstacles constituted by
n randomly chosen balls. The centers of the balls are independently chosen in the unit
cube [0; 1]3, and their radii are independently chosen from an interval [0; r] under the
uniform distribution.

Proposition 7. There exist constants c1; c2¿0 such that for any r¡c1n−2=3 the union
of n randomly chosen balls in [0; 1]3 is (c2n−2=3)-separated with probability greater
than 2

3 .

Proof. We claim that n randomly chosen points in the unit cube are c3=n2=3-separated
with probability greater than 2

3 for some constant c3¿0.
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Indeed, a choice of n points in [0; 1]3 is equivalent to a choice of a point
p=(x1; y1; z1; : : : ; xn; yn; zn)∈ [0; 1]3n. For any pair of natural numbers i; j such that

16i¡j6n, the measure of those points p for which |xi−xj|; |yi−yj|; |zi−zj|6c3n−2=3

is not greater than (
√
2c3n−2=3)3. This is true for any constant c3. Hence the measure

of those p for which there exist a pair 16i¡j6n such that this condition holds is
not greater than [n(n− 1)=2](√2c3n−2=3)36 1

3 for an appropriate constant c3.
To 0nish the proof of the lemma we choose c1 and c2 so that 2c1 + c2¡c3.

7. A grid algorithm for a shortest path approximation

In this section we assume that the obstacles W ⊆ [0; 1]3 are a-separated and that
s; t ∈ [0; 1]3.

7.1. Approximation algorithm and its complexity

Denote by L⊆ [0; 1]3 a cubic grid with mesh (edge of the basic cube) a. Without
loss of generality we assume that 1=a is an integer and that s and t are nodes of the
grid.
Consider a graph G whose vertices are those nodes of the grid that do not belong

to W and whose edges are those edges of the grid that do not intersect W .
Assume that the length of every edge in G is a.
The length of a path P will be denoted by |P|.

Theorem on Simple Grid Method. There is an algorithm of time complexity O((1=a)6)
that, using the graph G de<ned above, constructs a path �G connecting s and t and
whose length satis<es the inequality |�G|6392|�∗| + 448a, where �∗ is a shortest
path amidst the obstacles W connecting s and t.

Remark 2. If a is not known but it is possible to construct the part of the grid ad-
missible for paths, an algorithm can consecutively try a= 1

2 ;
1
4 ;
1
8 ; : : : until it obtains a

path with the bound from Theorem on Simple Grid Method.

From Proposition 7 one concludes

Corollary 8. When the set of obstacles W is a union of n random balls whose radii
are independently chosen from [0; c1n−2=3], then a6c2n−2=3 with probability greater
than 2

3 . Hence the algorithm will compute an approximation (as described in Theorem
on Simple Grid Method) to a shortest path with probability greater than 2

3 within
time O(n4).

We say that a path is a grid polygon if it goes only along the edges of the grid.
To prove the Theorem, it suIces to show that the length of a shortest grid polygon

�G connecting s and t and satis0es

|�G|6 84|�∗|+ 96a: (49)
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Then this grid polygon can be constructed in quadratic time as a shortest path �G

in the graph G by using any polytime algorithm for a shortest path in a graph
(e.g. see [2]).
Estimate (49), and hence Theorem on Simple Grid Method will follow from Lemmas

9 and 10.
We say that a cube of the grid is visited by a path P if the closure of this cube

without vertices intersects with P. Notice that P does not determine uniquely the order
of visited cubes as P may visit two cubes simultaneously by going along their common
edge.

Lemma 9. If two nodes v1 and v2 of the grid are connected by a path P that visits
s distinct cubes of the grid, then one can connect v1 and v2 by a grid polygon whose
length is not greater than 612sa.

Proof. For each cube K , we can consider a maximal segment of P contained in K .
Thus P is subdivided into intervals, each contained in one cube of the grid and such
that its continuation in either direction leaves the cube. Consider such a segment (a
subpath) [wu] for a cube K , that is P enters K via a point w and leaves it via a point
u (of course, P can make several visits like that to a cube). Let u lie in a face with
vertices u1, u2, u3, u4. Then one of the four intervals uui, 16i64, does not intersect
the obstacles W .
Indeed, assume the contrary. Then, because of a-separability of W , the intersection

W with any cube of the grid and, thus, with any of its faces is a convex set. The
fact that a segment lying in the face intersects W means that there are points of the
segment in the interior of W . But u �∈ int(W ). So if u is diNerent from any ui, then
our assumption implies that u∈ int(W ), for u is in the convex hull of the intersection
of the face with int(W ). If u= ui for some i then uui= u have the desired property.
Now replace P by a path P′ obtained by a sequence of the following modi0cations.

Take any cube K visited by P, together with a maximum segment [wu] of P in K .
Let i, 16i64, be such that the segment uui does not intersect W . Insert the intervals
uui and uiu into P to force P to visit a vertex of the cube by going there and back.
Repeating the same procedure for the entry point w (which is in its turn an exit point
for some other cube), we modi0ed our segment so that it ends and begins at a vertex
of K . We will say that the visit of P to K terminates at ui. Perform this operation for
all cubes visited by P. This gives P′, a new path which visits the same cubes, and for
which every maximum subpath contained in a cube begins at and leaves the cube via
a vertex.
We remark that though the number of cubes visited by P′ is the same as for P,

i.e. s, the length of P′ might have increased.
Delete from P′ all loops connecting the same vertex, thus obtaining a new path P′′.

Notice that the number of vertices visited by P′′ is at most 8s, for any vertex of any
of the visited cubes is visited at most once. Moreover, P′′, still connects v1 and v2.
Now consider a maximum subpath of P′′ contained in a grid cube K and connecting

two vertices of K . Denote by W1 the (convex) intersection W ∩K . Consider the fol-
lowing homotopy of this subpath in K : pull each of its points v in the direction from



402 D. Burago et al. / Theoretical Computer Science 315 (2004) 371–404

the point of W1 nearest to v. (The nearest point is unique since W1 is convex.) Let
the magnitude of the velocity of v (with respect to the parameter of the homotopy)
be equal to the distance from v to the boundary @K of K . This way we “push” the
maximum subpath of P′′ in question away from W1 until we transform it into a path
lying in the boundary @K of K , connecting the same vertices of K and not intersecting
W . Of course, its length still might have increased. Repeat the same procedure for each
maximal subpath contained in one cube, having constructed a path going along faces.
Having repeated again the same operation for each maximum subpath contained in

one boundary square of a grid cube (and now using a homotopy pushing this subpath
to the boundary of this square), we end up with a polygonal path P′′′ that consists of
edges of the grid, connects the same vertices v1 and v2, and is contained in at most s
cubes. After removing all loops from this path, we obtain a path P′′ that traverses each
edge at most once. Since s cubes together have at most 12s edges, we have constructed
a path with required properties and whose length is at most 12as.

Lemma 10. If a path P connecting nodes v1 and v2 of the grid has visited s diEerent
cubes of the grid, then |P|¿�(s− 2)=7�a.

Proof. Mark the points when P visits for the 0rst time the 1st, the 9th, the 16th; : : : ;
the (7l + 2)th; : : : cube (we count only the visits to new cubes). The pieces of P
between two consecutive marked points will be called intervals. Clearly, the number
of intervals is at least �(s− 2)=7�.
It remains to show that the length of each interval is at least a. Reasoning by

contradiction, note that the projection of an interval whose length is less than a to
each coordinate axis is a segment of a length less than a. Hence it is contained in
the interior of the union of two adjacent intervals of the form [ka; (k + 1)a]. Now the
product of these intervals, which is the interior of the union of eight grid cubes with a
common vertex, contains the interval. This contradicts the assumption that the interval
visited at least 9 cubes.

Recall that s denotes the number of diNerent cubes of the grid visited by a shortest
path �∗. Lemma 10 gives |�∗|¿�(s − 2)=7�a¿((s − 2)=7− 6

7 )a. On the other hand,
for the length of a shortest grid polygon �G Lemma 9 gives |�G|612sa. Estimate
(49) immediately follows from these two inequalities, and this concludes the proof of
Theorem on Simple Grid Method.

Remark 3. The estimation given by Theorem on Simple Grid Method is, obviously,
far from the exact one. We conjecture that |�G|67|�∗|. The latter bound cannot be
essentially improved as one can see from the following example. Denote by v1, v2, v3,
v4 the vertices of the bottom face of the unit cube (ordered counter clockwise), and
by u1, u2, u3, u4 the respective vertices of the top face, see Fig. 4. Let W0 be the
polyhedron with the following 5 vertices: 3 vertices at the middles of edges v1v2, v3v4,
u3u4, and 2 vertices on edges u1v1 and u2v2 close to points v1 and v2, respectively.
To obtain W , apply to W0 a homothety (scaling) with coeIcient (1 + �), for a small
enough �¿0 centered at the center of the cube.
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Fig. 4. Some faces of W0.

For this obstacle the only grid polygon connecting v1 and v2 visits consecutively
v1, v4, u4, u1, u2, u3, v3, v2. On the other hand, one can see that v1 and v2 can be
connected by a path (avoiding W and contained in the cube) of length close to 1.
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