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1. Introduction

This paper is concerned with the existence of solutions for the three-point impulsive boundary value problem involving
nonlinear fractional differential equations:

Dlu(t) =f(t,u(t)), 0<t<1, t#bt, k=1,2,....p,
Au'[:tk = Ik(u(tk))a Au/lt:tk = Ik(u(tk))a k= 1, 2,... » D, (11)
u(0) +u'(0) =0, u(l)+u'(#) =0,

where ¢DY is the Caputo fractional derivative, ¢ € R,1 < q < 2,f : [0,1] x R — R is a continuous function,
I Iy : R —> R, & € (0,1), # ti,k = 1,2,...,pand Auli—y, = u(ty) — u(ty), A=, = W' (t5) — U'(&), uty)
and u(t, ) represent the right-hand limit and the left-hand limit of the function u(t) at t = t;, and the sequences {t;} satisfy
that0 =ty <t <bh < <t <tpri=1,peN

Fractional differential equations arise in many engineering and scientific disciplines as the mathematical modeling of
systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of a complex medium, polymer
rheology, etc. involves derivatives of fractional order. Fractional differential equations also serve as an excellent tool for the
description of hereditary properties of various materials and processes. In consequence, fractional differential equations
have been of great interest. For details, see [1-9] and the references therein.

Integer-order impulsive differential equations have become important in recent years as mathematical models of
phenomena in both the physical and social sciences. There has a significant development in impulsive theory especially
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in the area of impulsive differential equations with fixed moments; see for instance [10,11]. Recently, the boundary value
problems of impulsive differential equations of integer order have been studied extensively in the literatures (see [12-15]).

To the best of our knowledge, there are few papers that consider the impulsive boundary value problem involving
nonlinear differential equations of fractional order. In this paper, we study the existence of solutions for three-point
impulsive boundary value problem (1.1); by use of Banach’s fixed point theorem and Schauder’s fixed point theorem, some
existence results are obtained.

The organization of this paper is as follows. In Section 2, we present some necessary definitions and preliminary results
that will be used to prove our main results. The proofs of our main results are given in Section 3. In Section 4, we will give
an examples to ensure our main result.

2. Preliminaries and lemmas

The material in this section is basic in some sense. For the reader’s convenience, we present some necessary definitions
from fractional calculus theory and preliminary results.

Definition 2.1. For a function f : [0, c0) — R, the Caputo derivative of fractional order q is defined as

t (n)
L 76 ds, n=/[q]+1,

C _
PIO=T60 =g Jy t=srm®

where [q] denotes the integer part of real number q.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

1 t
1O = o [ =97 s a0
I (@ Jo
provided the integral exists.

Definition 2.3. The Riemann-Liouville fractional derivative of order q for a function f (t) is defined by

1 d\" [t f(S)
D4 — d —
f(t) I'(n Q) (dt> /(; (t —s)" ! s lal b

provided the right-hand side is pointwise defined on (0, co).

Lemma 2.1 ([9]). Let q > O; then the differential equation
Dint) =0

has solution h(t) = co + cit + cot> + -+ + ooyt L, eRi=0,1,2,....,n—1,n=[q] + 1.

Lemma 2.2 ([9]). Let q > O; then
1“DIn(t) = h(t) + o + 1t + Cot? + -+ + Cu_gt"]
forsomecieR, i=0,1,2,...,n—1, n=[q] + 1
For the sake of convenience, we introduce the following notations.
Let] =1[0,1],Jo = [0, t1],J1 = (t1, 2], . . ., Jp—1 = (tp—1, tp. Jp = (&, 11, =J \ {t1, t2, ..., tp}, and

PCJ)={u:[0,1] > R |ueC(), u(t,:“) and u(t, ) exist,and u(t, ) = u(ty), 1 < k < p}.
Obviously, PC(J) is a Banach space with the norm |[[u|| = supy,<; [u(t)|.

Lemma 2.3. Let y € C[0, 1] and & € (t;, ti+1); | is a nonnegative integer,0 < | <p, 1 < q < 2. Afunctionu € PC(J) is a
solution of the boundary value problem

Dlu(t) =y(t), O<t<1, t#t, k=1,2,...,p,
Au'[:fk = Ik(u(tk))7 Au/|[:[k = Ik(u(tk))7 k= 15 23 .. D, (2'1)
u(0) +u'(0)=0, u+uE) =0,
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if and only if u is a solution of the integral equation

F(q)/(t—s)q ]y(s)ds—i-M(l—t) t €Jo;

ﬁq) / (t— 5T Ty@E)ds + ——

(fz—S)q 'y(s)ds
u(t) = F( ) i=1 Yti-1

k _
+ oy L —6) [ (6= 97 2y(s)ds + S — i u(e)
i=1 i=1

k
+ > Lu)+MQA—t), tef k=1,2,...,p,
iz

where
p+1
_ )1 a2
F(q) i— 1]; =9 y(S)ds+ —1) & Z(l tl)/i (& — )T “y(s)ds

+ / € =92y ds + o ) Z / (t — )" 2y(s)ds
+ 2(1 — )iu(t)) + Zi,(u(ri)) + Zh(u(m).
i=1 i=1 i=1
Proof. Suppose that u is a solution of (2.1). By applying Lemma 2.2, we have

1 t
u(t) =1y() — g — ot = —— / (t —)"'y(s)ds — c1 — cat, € € Jo,
@ Jo
for some cq, ¢; € R. Then, we have

1 t
u'(t) = m/(; (t —9)T2y(s)ds — ¢z, t € Jp.

Ift € J;, then, we have

1 (f i
u(t) = ﬁq)f“(r—sﬂ Y(5)ds — dy — dy(t — 1),

1 t
/ _ _ 42 _
u(t) = Ta—1 /ﬁ (t — )T "y(s)ds — dy,

for some d;, d, € R. Thus,

u(ty) = @ / (t; = $)47y(s)ds — ¢; — ooy,
u(tf) = —dy,

1 f
t7)=——— | (t1—9"%y(s)ds —

W) = o [ =9 e,

U () = —ds.
In view of Aule—, = u(t;") —u(t;) = L(u(ty)) and Au'|i—, = u/'(¢]) — u'(t;) = L1 (u(ty)), we have

1 (4
—d; = 7/ (t; — ) y(s)ds + L (u(ty)) — ¢1 — ety
'@ Jo
—d, =

1 t -
Ta-1 / (t; — )T 2y(s)ds + I (u(tr)) — ;.
- 0

Hence, we obtain

1 t —
_ _ a1 - _ o\q1
=@ / (t—s) y(s)ds+r() / (t; — )T My(s)ds + — ( 5

X / (tr — 9)T2y(s)ds + (¢ — t)[(u(tr) + [ (u(t) — 1 — 6ot € €Jye
0
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In a similar way, we can obtain

¢
u(t) = %q)/ (t — )T y(s)ds + mZ/ (t; — )9 y(s)ds

ti—

b D Z(r t) / (6= 97 2yds + 3¢ - epTu(e))

i=1
+ Zli(u(ti)) —a—ot, tej,k=1,2,...,p. (255)

By (2.3), (2.4) and the boundary condition u(0) + u’(0) = 0, we can obtain ¢; + ¢; = 0.
On the other hand, by (2.5), we have

1 1 1 P
_ _ )91 - _ )91 _ ot
u(l) = F(q)/ (1— )™ y(s)ds + F( > Y =9y s)ds + — Fa 20—
/ (6 — 972y (s)ds + Z(l o) + 3 ) — o -
i i=1
W) = 1 f & — 9T y(o)ds + — 1)2 / - 9" 2y<s>ds+21(u(rl)—cz.
By the boundary condition u(1) + u/(§) = 0 and ¢; + ¢, = 0, we obtain
1 p+1 ti 1 1 )4 ti 2
a= gk @9 y(s)ds—m;(l—m /t G-y
o f E@ —5)12y(s)ds — éi / (t — )7 2y(s)ds
raq-1J, Y ra-n<J_" Y
p 1 p
- Z(l — t)Lut)) — ZL(u(tf)) - Zh(u(m), (2.6)
p+1
Q= F(q) / 6 =9 y©ds + T — 1) 2(1 tl)/ (t; — )"y (s)ds
i=1 Yti-1 ti—
+ 5 f(S—S)q 2y(s)ds + ——— ( D / (t — )" y(s)ds
i=1 Yti-1
+Z<1 t); (u(a))++21(u(n))+Zl(u(n)) (2.7)
i=1 i=1 i=1

Substituting (2.6) and (2.7) into (2.3), (2.5) respectively, and letting M = c,, we get (2.2).
Conversely, we assume that u is a solution of the integral equation (2.2). In view of the relations CDPIPy(t) = y(t) for
p > 0, we get

Dlut) =y(t), 0<t<1t#tk=1,2,....,p,1<q<2.
Moreover, it can easily be shown that Aul—;, = li(u(ty)), AU |=,, = Iiu(t)), k=1,2, ..., p.Also it can easily be verified
that the boundary conditions u(0) + u/(0) = 0, u(1) + v/(§) = 0 are satisfied. The proof is completed. O

3. Existence of solutions

Let £ € (t;, tir1); Lis a nonnegative integer, 0 < I < p. Define an operator T : PC(J) — PC(J) by

(Tu)(t) = / (6 — 97 f (s, u(s))ds + ——

@ S [ -9, usds

F( )0<tk<t tk—1

Yo t—w) / (te = )"2f (s, u()ds + Y (t — t)T(u(t))

F(q - 1) O<tp<t O<tp<t
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p+1 1
+ ) 1k<u<tk>)+<1—t>{r()2 GG +

O<tp<t

& i
X ]; = S)Q—Zf(s, u(s))ds + ﬁ Z(l —t;) /r_ (ti — S)Q—Zf(s, u(s))ds

i=1

/ (t; = $)"72f (s, u(s))ds + Zm — 0)liu(t)) + Z’ (u(t)) + Z' w(t) {-

+7
F( 1)111' i=1 i=1 i=1

Clearly, the fixed points of the operator T are solutions of problem (1.1). Our first result is based on Banach’s fixed point
theorem.

Theorem 3.1. Assume that:

(Cy) There exists a constant Ly > 0 such that |f (¢, x) — f(t,y)| < L1lx — y|, foreacht € J and allx,y € R.
(Cy) There exist constants Ly, L3 > 0 such that |, (x) — L,(y)| < Ly|x — y|, [Ix(X) — [t(y)| < L3|x — y|, foreach t € J and all
X, yER, k=1,2,...,p.

If

r@q+1 r(q)

then problem (1.1) has a unique solution.

2p+3  3p+1
(p P )+p(2L2+3L3)<1,

Proof. Letx, y € PC(J). Then, for each t € J, we have

1 t
(Tx)(6) = (Ty) (O] = m f (t = )7 If (5, x(5)) — f (5, y(5))Ids

te —s)7! - d
F(q) Oij - 1(, $)Tf (s, x(5)) — £ (5, y(s))|ds

+m S -t [ - 9 6 — .y Ids

O<ty <t k-1

+ Z (t — eIk x(t) — Ik (te))] + Z [ (x(tx)) — L (Y (te)]

O<tp<t O<tp<t

P+1
r() / (6= )TV (5. x(5) = f (s, y(s))lds
+ m /t, (& =92 (5, X(5)) — (5, y(©))ds

p ti
+ ﬁ 1:21(1 —t) /ti_] (t — )I72f (s, x(5)) — f (5, ¥(5))|ds

1 ti
" ﬁ Z; ft (ti — T2 1f (5. X(5)) — f (s, (5))|ds

+Z<1 )i (x(n))—l(y(a))uZu (x(t)) — Icy(rl))|+2|1<x<t,>) Ly (6)]

i=1 i=1

Lillx =yl i s 2Ll =yl ”“/ -1
< == 77 ) /k(t $) s + ———— @ _(tl $)Tds

3L X — Li]|x —
1|| Il Z/ (t — )" 2ds+ 1|| Il / (€ — $)72ds
+2pLz||x —yll + 3pLs|lx — yl|

2p+3 3p+1
L 2L, +3L —yl.
= [ (F(q+1) r )+p( 2+ 3)] lIx =yl
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Thus,

2p+3 3p+1> ]
x—Ty| <|L + +pQ2Ly 4+ 3L3) | Ix =yl
l vl [1(1"(q+1) e p2L, 3) | Ix —yll

Since

< 2p+3 3p+1
rg+1n I'(g

consequently T is a contraction. As a consequence of Banach’s fixed point theorem, we deduce that T has a fixed point which
is a solution of problem (1.1). O

> +p(2L2 + 3L3) <1,

Theorem 3.2. Assume that:

(C3) The function f : [0, 1] x R — R is continuous, and there exists a constant Ny > 0 such that
If(t,u)] < N;, foreacht € Jandallu € R.

(C4) The functions Iy, I : R — R are continuous, and there exist constants N,, N3 > 0 such that
[Ir(w)| < Na, I(w)| <N;, foralueR, k=1,2,...,p.

Then problem (1.1) has at least one solution.

Proof. We shall use Schauder’s fixed point theorem to prove that T has a fixed point. The proof will be given in four steps.

Step 1: T is continuous.
Let {u,} be a sequence such that u, — uin PC(J).

1 t
|(Tup) (8) — (Tu)(D)] < m (t =T If (s, un(9)) — f (5, u(s))|ds

tk
te — )TN (s, uq(s)) — f(s, d
F(q) Oij . 1<k TG, un(s)) — f(s, u(s))|ds

+ m O;kq( fk)/ (tx = )T If (s, un($)) — f (5, u(s))|ds
+ Y (= 0 (0)) = T @) + Y Meun(8)) = he(u(t)]
O<tp<t O<ty<t

p+1
+ﬁq) / (ti — )7 If (s, un(5)) — f (s, u(s))|ds

+ ﬁ L ¢ = )T (s, un(5)) — £ (s, u(s)lds

1 p ti >
+ﬁ2<1—a> / (6 — )72 (s, un(5)) — £ (5, u(s))|ds

"o F(q— 1 Z/,. (6 = )21 s, un($)) = f (s, u(s))|ds

+ Z(l — )T (8)) — TiCu(t:))| + Z TiCun (8:)) — Ti(u(t))] + Z i (un (6)) — Ti(u ()|

i=1
= m/ (t — )I7HF (s, un(s)) — f(s, u(s))|ds
P+1
F( ) /; (tl —S)L] 1|f($ un(s)) _f(S U(S))|ds
+m — |, (t, _5)q 2|f($ u,(s)) —f(s U(S))Ids

+F(q_])/n (€ = 9)T2If (s, ua(s)) — (s, u(s))|ds

p p
+3 ) liun(t) — ()] +2 ) i(un(t)) — L(u(t)].

i=1 i=1
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Since f, I and I are continuous functions, then we have

ITu, — Tu|| = 0 asn — oQ.

Step 2. T maps bounded sets into bounded sets.

Indeed, it is enough to show that, for any o > 0, there exists a positive constant L such that, for eachu € £, = {u €
PC(J) | lu|l < p}, we have ||Tu|| < L.By (C3) and (C4), we have, foreacht € J

1
Ty ()] < m/ (= 9T W6 ue)lds + —— 3

@, (tk—S)" 'If (s, u(s))lds

<tp<t ¥ k=1

O<ty <t fk—1

T DR " -9 ) lds + Y (€ - ()

O<typ<t

1 B 1
+ It + —— t— )T (s, u(s)lds + ————
0§t|k(u(,>)| ) Z]/< 9T usNIds + o

1 p ti
x / (& = 9T2If (5, u(s))lds + Ta—D 2 Z(l - ti)/ (ti — 9T 2If (5, u(s))lds
[ - A "

+ﬁ / (G — 91 G, u(s))|ds+2(1—t,>|1 (u(r,)>|+2|1(u(t,>)|+Z|n<u(tl))|
i=1 Yli-1

p+1
t —s)9ds + / ti—s)"d

Sr(q)/( o r(),1t,.( I

+% / t; — )4~ 2ds—i— / (& — 5)972ds + 2pN, + 3pN;
i=1 Yti-

1—

2p+3 3p+1
(F(q+ NRC) >+p(2N2+3N3)'

Thus,

2p+3 3p+1
IITu||§N1< d 4 >+p(2N2+3N3) =1L
r@g+1m '@

Step 3. T maps bounded sets into equicontinuous sets

Let £2, be a bounded set of PC(J) as in Step 2, and let u € §2,,. Foreach t € J, 0 < k < p, we have

ty
T — )72 ds+ ———  — )12 (s, d
|(Tw)' ()] < F( /( 91U uo)Ids + o _1) MZN tk_ft’ )12 (s, u(s))|ds
p+1
Y )+ —— f (6 — 9716, u(s)Ids + ———
O<ty<t F( ) i=1

ti—1 r@g-1

& ti
x / (€ = )" 1f (s, u())lds + ﬁ > oa- ti)/ (ti — )" If (s, u())ds
t - .

i=1

+ﬁ / (6 — )12 G, u(s>)|ds+2(1 — &) [liu(©)) +Z|1 ()| +Z|1,(u(r,>>|
i=1 Jti-1

i=1 i=1

i=1
Ny 92 a2 3N i g2
< 7F(q— 5 (/k (t — ) ds—i—/r’ (& —9)1 ds) * Ta=T1 ;/M(t, $)72ds

p+1

; — )47 'ds + 2pN, + 3pN
F() . ) + 2pN; + 3pNs

3p+2 p—i—l )
< Ni + pN> + 3pN3 := M.
(r(q> rg+1n) PR
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Hence, letting t”, t" € Ji, t' < t”,0 < k < p, we have

’

[(Tw) (t") — (Tw)(t)] < / |(Tw)'(s)lds < M(¢" — ).
r/

So, T(£2,) isequicontinuousonall Jy(k =0, 1, 2, ..., p). We can conclude that T : PC(J) — PC(]) is completely continuous.

Step 4. A priori bounds
Now it remains to show that the set

2 ={uePC()|u=ATuforsome0 < A < 1}

is bounded.
Letu € £2; thenu = ATu for some 0 < A < 1. Thus, for each t € J, we have

u(t) = %q) / (£ — )7 (s, u(s))ds + moz / (6 — (s, u(s)ds

> t—n) / (te = )" (s, u)ds + 2 Y (t — t)(u(te)

O<typ<t O<typ<t

+7
ri@—1

p+1
+1 ) 1,<<u(rk>)+<1—r>x[ oIt )Z " 6= 9 s, u(s)ds

O<ti<t

2
f e / (€ =725, U ds + s Z(l

X /‘ (t — )12 (s, u(s))ds—|— - Z/ (t; — $)T2f (s, u(s))ds
ti1 i=1

ti—
p I
+ ) (= o)hu®) + Y Tiu®) + szu(a))}.
i=1 i=1 i=1
This implies by (C3) and (C4) that, for each t € J, we have

u(®)] < m / (t =9I, u(s))|ds+m0;k<t /k = us I

+m PRNCEEN / (6= "2 s u@)lds + Y (¢ = ()]

O<ty<t O<ty<t

p+1
_ 1
+O;Ktuk(u(tknwm / (6= 9 U + s

/ (€ =P G U s+ Z(l ) / (6 — 9721 s, u(s))|ds
+— F(q_ 52 Z / (6 — 9 If s, u(s))|ds+2(1 — 6)[Ti(u(t)| +Z|I ()| +Z|I(u(tl>)|

p+1
_ )41 a2
F(q) F( ) /' (t; —s) ds+ ]) Zl:f (ti —s)1“ds

1 -2
+7/ (& —s)97%ds + 2pN, + 3pN
rg-mnl, L

( 2p+3 3p+1
rq+1n I
Thus, for every t € J, we have

2p+3 3p+1
] sm( d 4
rq+1 r'(q

) + p(2N; + 3N3).

) + p(2N2 + 3N3).
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This shows that the set £2 is bounded. As a consequence of Schauder’s fixed point theorem, we deduce that T has a fixed
point which is a solution of problem (1.1). O

4. Example

Letq = % &= % , b = 1. We consider the following boundary value problem:

1
DIu(t) =f(t,u), t+# 3 0<t<1

A =1 ! AU =1 !
() i)

u(0) +u'(0) =0, u(l) + o’ (%): ,

where
14 tusintu 3+ 512

_— I(u) = ———, I(u) = .
1+ t2 4 u? @) 1+u? @) 1+u?

ftu) =

Obviously, f, I and I are continuous functions, and

(1) If(t,u)] < 1,foreacht € Jandallu € R.
(2) Iw)] <3, [I(w)] <5,forallu € R.

So conditions (C3) and (C4) hold; by Theorem 3.2, problem (4.1) has at least one solution.
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