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1. Introduction

Consider the following nonlinear inequality constrained optimization problem (NLP):
min f ðxÞ;
s:t: gjðxÞ 6 0; j 2 I ¼ f1;2; . . . ;mg; ð1Þ
where f: Rn ? R and g(x) = (g1(x),g2(x), . . . ,gm(x))T: Rn ? Rm are continuously differentiable functions. We denote by
D = {x 2 Rnjg(x) < 0} and D ¼ clðDÞ the strictly feasible set and the feasible set of the Problem (NLP), respectively.

The Lagrangian function associated with the Problem (NLP) is the function
Lðx; kÞ ¼ f ðxÞ þ kT gðxÞ;
where k = (k1,k2, . . . ,km)T 2 Rm is the multiplier vector. For simplicity, we use (x,k) to denote the column vector (xT,kT)T.
A point ð�x; �kÞ 2 Rn � Rm is called a Karush�Kuhn�Tucker (KKT) point or a KKT pair of Problem (NLP), if it satisfies the fol-

lowing conditions:
rxLð�x; �kÞ ¼ 0; gð�xÞ 6 0; �k P 0; gið�xÞ�ki ¼ 0; 8i 2 I; ð2Þ
where I :¼ {1 6 i 6m}. We also say �x is a KKT point if there exists a �k such that ð�x; �kÞ satisfies (2).
. All rights reserved.
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There are many practical methods for solving problem (NLP). Among these methods, as we know, the sequential quadratic
programming (SQP) method is one of the most efficient methods to solve problem (NLP). Because its superlinear conver-
gence rate, it has been widely studied [1–8]. However, the SQP algorithms have two serious shortcomings. First, in order
to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the com-
putation amount of this type is very large. Second, the SQP algorithms require that the related quadratic programming sub-
problems to be solvable per iteration, but it is difficult to be satisfied. Moreover, the solution of the sequential quadratic
subproblem may be unbounded, which leads to the sequence generated by the method is divergence.

Based on the above reasons, Panier et al. [9] gave a feasible QP-free algorithm for overcoming the difficulties encountered
in the SQP methods. Their method needs to solve two linear systems and a quadratic subproblem at each iteration. In addi-
tion, in the global convergence theorem, there is a restrictive condition which requires that the number of stationary points
is finite. By the means of the Fisher–Burmeister function, Qi and Qi [10] proposed a QP-free algorithm for solving problem
(NLP). It need to solve three linear systems and one least-square problem at each iteration. Using a new piecewise linear NCP
functions, Zhou and Pu [11] proposed a QP-free method which need to solve three linear systems and one least-square prob-
lem at each iteration, and they only proved the global convergence of the algorithm.

In this paper, we presented a modified QP-free filter method based on the new piecewise linear NCP functions proposed
by Zhou and Pu [11]. This algorithm has the following merits: it requires to solve only systems of linear equations. In order to
overcome the Maratos effect, a high order direction is computed by solving a system of linear equations with small scale.
Moreover, we adapt the filter technique, which is proposed by Fletcher and Leyffer [12] in 2002, and it saves the computa-
tional cost largely. In the end, its global convergence and local superlinear convergence are obtained under mild conditions.
2. Preliminaries

In this section, we recall some definitions and preliminary results about the filter algorithm, which will be use in the se-
quent analysis.

2.1. Some definitions and propositions

Definition 2.1 (NCP pair and SNCP pair). We call a pair (a,b) 2 R2 to be an NCP pair if a P 0, b P 0 and ab = 0; and call (a,b) to
be an SNCP pair if (a,b) is an NCP pair and a2 + b2 – 0.
Definition 2.2 (NCP function). A function /: R2 ? R is called an NCP function if /(a,b) = 0 if and only if (a,b) is an NCP pair.
In this paper, we use a new 3-piecewise linear NCP function w(a,b) as follows:
wða; bÞ ¼
3a� a2=b if b P a > 0; or 3b > �a P 0;

3b� b2
=a if a > b > 0 or 3a > �b P 0;

9aþ 9b if 0 P a and� a P 3b; or � 3a 6 b 6 0;

8><
>: ð3Þ
If (a,b) – (0,0), then
rwða; bÞ ¼

3� 2a=b

a2=b2

 !
if b P a > 0; or 3b > �a P 0;

b2
=a2

3� 2b=a

 !
if a > b > 0 or 3a > �b P 0;

9
9

� �
if 0 P a and � a P 3b; or � 3a 6 b 6 0

8>>>>>>>>>><
>>>>>>>>>>:

ð4Þ
and
Aw ¼ @Bwð0;0Þ ¼
3� 2t

t2

� �
: �3 6 t 6 1

� �
[ t2

3� 2t

 !
: �3 6 t 6 1

( )
: ð5Þ
It is easy to check the following proposition.

Proposition 2.1. For the function w(a,b) the following holds.

(I) wða; bÞ ¼ 0 () a P 0; b P 0; ab ¼ 0;

(II) the square of w is continuously differentiable;
(III) w is twice continuously differentiable everywhere except at the origin, but it is strongly semismooth at the origin;
(IV) for any (a,b) 2 @Bw(a,b), (a,b) – (0,0), or any (a,b) 2 @Bw(0,0), a2 + b2 P 1 > 0.



Now we construct the semismooth equation U(x,k) = 0, which is equivalently reformulated as the KKT point conditions. Let
T
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Uðx; kÞ ¼ ð/1ðx; kÞ; . . . ;/nþmðx; kÞÞ ;

where
/iðx; kÞ ¼ rxi
Lðx; kÞ; 1 6 i 6 n;
and

/iðx; kÞ ¼ wð�gjðxÞ; kjÞ; nþ 1 6 i ¼ nþ j 6 nþm:
If (gj(x),kj) – (0,0) and n + 1 6 i = j + n 6 n + m, then /i(x,k) is continuously differentiable at (x,k) 2 Rn+m. We have
r/i ¼

�ð3þ 2gjðxÞ=kjÞrgjðxÞ;
ðg2

j ðxÞ=k
2
j Þej

 !
if kj P �gjðxÞ > 0;
or 3kj > gjðxÞP 0;

�ðkj=gjðxÞÞ
2rgjðxÞ;

ð3þ 2kj=gjðxÞÞej

 !
if � gjðxÞ > kj > 0;
or � 3gjðxÞ > �kj P 0;

�9rgjðxÞ
9ej

� �
if 0 P �gjðxÞ and gjðxÞ 6 �3kj;

or � 3gjðxÞ 6 kj 6 0;

8>>>>>>>>><
>>>>>>>>>:

ð6Þ
where ej = (0, . . .,0,1,0, . . . ,0)T 2 Rm is the jth column of the unit matrix, its jth element is 1, and other elements are 0.
If (gj(x),kj) = (0,0) and n + 1 6 i = j + n 6 n + m, then Ui(x,k) is strongly semismooth and directionally differentiable at

(x,k)) 2 Rn+m. We have
Aw ¼ @Bwð0;0Þ ¼
ð�3� 2tÞrgjðxÞ

t2ej

 !
: �3 6 t 6 1

( )
[ �t2rgjðxÞ

ð3þ 2tÞej

 !
: �3 6 t 6 1

( )
; ð7Þ
2.2. The notion of filter

To avoid using the classical merit function with penalty term, in which the penalty parameter is difficult to obtain, we
adopt the filter technique, which is proposed by Fletcher and Leyffer [12]. The acceptability of step is determined by com-
paring the constraint violation and objective function value with previous iterates collected in a filter. The new iterate is
acceptable for the filter if either feasibility or the objective function value is sufficiently improved in comparison to all iter-
ates bookmarked in the current filter. The promising numerical results lead to a growing interest in filter methods in recent
years. In [12], they define the constraint violation by
hðxÞ ¼ kgðxÞþk1 ¼
Xm

j¼1

maxf0; gjðxÞg:
It is easy to see that h(x) = 0 if and only if x is a feasible point. So a trial point should reduce either the value of constraint
violation h or the objective function f. To ensure sufficient decrease of at least one of the two criteria, we say that a point x1

dominates a point x2 whenever
hðx1Þ 6 hðx2Þ and f ðx1Þ 6 f ðx2Þ: ð8Þ
All we need to do is to remember iterates that are not dominated by any other iterates using a structure called a filter. A filter
is a list F of pairs of the form (hi, fi) such that either
hðxiÞ 6 hðxjÞ or f ðxiÞ 6 f ðxjÞ; ð9Þ
for i – j. We thus aim to accept a new iterate xi only if it is not dominated by any other iterates in the filter.
In practical computation, we do not wish to accept xk + dk if its (h, f)-pair is arbitrarily close to that of xk or that of a point

already in the filter. Thus we set a small ‘‘margin” around the border of the dominate point of the (h, f) space in which we
shall also reject trial points. Formally, we say that a point x is acceptable for the filter if and only if
hðxÞ 6 ð1� cÞhj or f ðxÞ 6 f j � chj
; ð10Þ
for all ðhj
; f jÞ 2 F , where c is close to zero. So, there is negligible difference in practice between (10) and (9). As the algorithm

progresses, we may want to add a (h, f)-pair to the filter. If xk + dk is acceptable for F , then xk+1 = xk + dk, and
Dkþ1 ¼ ðhj
; f jÞjhj P hk and f j � chj P f k � chk

; 8ðhj
; f jÞ 2 F

n o
:

Filter set is update as the following rule
ðF kþ1Þ F kþ1 ¼ F k

[
ðhkþ1

; f kþ1Þ
n o

n Dkþ1: ð11Þ
We also refer to this operation as ‘‘adding xk + dk to the filter”, although, strictly speaking, it is the (h, f)-pair which is added.
We note that if a point xk is in the filter or is acceptable for the filter, then any other point x such that
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hðxÞ 6 ð1� cÞhk and f ðxÞ 6 f k � chk ð12Þ
is also acceptable for the filter and xk. Let
U1ðx; kÞ ¼ ð/nþ1ðx; kÞ; . . . ;/nþmðx; kÞÞ
T
: ð13Þ
Replacing the violation constrained function hðxÞ ¼
Pm

j¼1 maxf0; gjðxÞg in the filter F of Fletcher and Leyffer’s method, we use
the violation constrained function
pðgðxÞ; kÞ ¼ kU1ðx; kÞk1: ð14Þ
For convenience, we use k � k to instead of k � k1 in this paper.

3. Description of algorithm

For the sake of simplicity, we denote
I1ðx; kÞ ¼ fijðgiðxÞ; kiÞ– ð0;0Þg; I2ðx; kÞ ¼ fjjðgjðxÞ; kjÞ– ð0;0Þg: ð15Þ
Let (nj(x,k),cj(x,k)) = (�1,1), if j 2 I2, otherwise let
ðnjðx; kÞ; cjðx; kÞÞ ¼ rwða; bÞja¼�gjðxÞ;b¼kj
:

We have nj(x,k) < 0,cj(x,k)) > 0,
njðx; kÞ ¼
�ð3þ 2gjðxÞ=kjÞ; if kj P �gjðxÞ > 0 or 3kj > gjðxÞP 0;

�ðkj=gjðxÞÞ
2
; if � gjðxÞ > kj > 0 or � 3gjðxÞ > �kj P 0;

�9; if 0 P �gjðxÞ and gjðxÞP 3kj or 3gjðxÞ 6 kj 6 0

8><
>: ð16Þ
and
cjðx; kÞ ¼
ðkj=gjðxÞÞ

2
; if kj P �gjðxÞ > 0 or 3kj > gjðxÞP 0;

ð3þ 2kj=gjðxÞÞ; if � gjðxÞ > kj > 0 or � 3gjðxÞ > �kj P 0;
9; if 0 P �gjðxÞ and gjðxÞP 3kj or 3gjðxÞ 6 kj 6 0

8><
>: ð17Þ
In the following algorithm, let nk
j ¼ njðxk; kkÞ and ck

j ¼ cjðxk; kkÞ; gk
j ¼

ffiffiffiffiffiffiffiffi
2ck

j

q
,

Vk ¼
Vk

11 Vk
12

Vk
21 Vk

22

 !
¼

Hk þ ck
1In rgLk

ðxkÞ
diagLk

ðnkÞrgLk
ðxkÞT diagLk

ðgkÞ

 !
; ð18Þ
where In is the n order unit matrix, ck
1 ¼ c1 min 1; Uk

�� ��vn o
v > 1; c1 2 ð0;1Þ; Uk ¼ Uðxk; �kkÞ, �kk is obtained in Algorithm 3.1,

diagLk
ðnkÞ or diagLk

ðgkÞ denotes the diagonal matrix whose jth diagonal element is nj(x,k) or gj(x,k), respectively.

Algorithm 3.1

Step 0. Initialization.
Parameters: e0, M0, h 2 (0,1), s 2 (2,3), �l > 0, g, a1, a2 2 (0,1);
Data: x0 2 D, H0 2 Rn�n, an initial symmetric positive definite matrix, �l; f ðx0Þ

� 	
2 F0.

Set k = 0;
Step 1. Computation of an approximate active constraints set Lk:
For the current point xk and the parameter l xk

� 	
¼ lk

j ; j 2 I

 �

> 0
1.1. Let i = 0, ek, i = e0, Mk, i = M0;
1.2. Set
Lk;i ¼ j 2 Ij � ek;ilk
j 6 gj xk

� 	
6 0

n o
; ð19Þ

Ak;i ¼ rgj xk
� 	

; j 2 Lk;i
� 	

;

Vk;i ¼ V xk;Hk; Lk;i


 �
:

If Ak, i is of full rank and k(Vk,i)�1k < Mk, i, let Lk = Lk, i, Ak = Ak, i, Vk = Vk, i, ik = i, and go to Step 2;
1.3. Set i ¼ iþ 1; ek;i ¼ 1

2 ek;i�1; Mk;i ¼ 1
2 Mk;i�1, and go to Step 1.2 (inner loop A);

Step 2. Computation of the direction dk
0:

Computation dk
0 and kk

0 ¼ kk
0j; j 2 Lk


 �
by solving the following linear system in (d,k)
Vk
d

k

� �
¼ �rf ðxkÞ

0

 !
: ð20Þ
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If dk
0 ¼ 0; kk

0 P 0, STOP. If dk
0 – 0, let Jk ¼ Lk; d̂k ¼ dk

0, and go to Step 4, otherwise, let jk 2 Lk, such that

kk
0jk
¼ min kk

0j; j 2 Lk

n o
< 0 ð21Þ

and set Jk = Lkn{jk};
Step 3. Computation of the direction �dk

0:
3.1. Compute ð�dk1

0 ;
�kk1

0 Þ by solving the following linear system in (d,k):
V
d
k

� �
¼

�rf xk
� 	

diagkk
nk

 �

kk
0jk


 �3

0
@

1
A; ð22Þ

where Lk ¼ rgjðxkÞ; j 2 Jk

� 	
; V ¼ V xk;Hk; Lk


 �
;

�k2 k2
� 	
3.2. Compute d0 ;
�k0 by solving the following linear system in (d,k):
V
d

k

� �
¼

�rf ðxkÞ

diagkk
nk

 �

kk
0jk


 �3
� �dk1

0

�� ��m
diagLk

nk

 �

eLk

0
@

1
A; ð23Þ

where eLk
¼ ð1; . . . ;1ÞT 2 RjLk j;
3.3. Let
�dk
0

�kk
0

 !
¼ bk

�dk1
0

�kk1
0

 !
þ qk

�dk2
0

�kk2
0

 !
; ð24Þ

where bk = 1�qk and qk ¼ ðh� 1Þ ð�dk1
0 Þ

Trf k

1þj
Pn

j¼1
kk

0j jk
�dk

0k
m;

3.4. Set d̂k ¼ �dk;

Step 4. Computation of the high-order revised direction dk

1:
4.1. Let A1

k be the matrix whose rows are jLkj linearly independent rows of Ak, and A2
k be the matrix whose rows are the

remaining n�jLkj rows of Ak. We might as well as denote Ak ¼
A1

k

A2
k

 !
.

4.2. Compute sk
1 by solving the following linear system in s
A1
k


 �T
s ¼ �wke� ~f k; ð25Þ

where

wk ¼max d̂k
��� ���s

; max
j2Lk ;k

k
0j–0

nk
i

�gk
j k

k
0j

� 1

�����
�����
h

d̂k
��� ���2

8<
:

9=
;; e ¼ ð1; . . . ;1ÞT 2 RjLk j;

~f k ¼ ~f k
j ; j 2 Lk


 �
; ~f k

j ¼
gj xk þ d̂k

 �

j 2 Jk

0 j 2 Lk n Jk

 !
:

ð26Þ
4.3. Denote 0 ¼ ð0; . . . ;0ÞT 2 Rn�jLk j. Define dk
1 to be the vector formed by sk and 0 such that
AT
k dk

1 ¼ A1
k


 �T
sk þ A2

k


 �T
0 ¼ A1

k


 �T
sk ð27Þ

and set dk ¼ d̂k þ dk
1.
Step 5. Test to accept the trial step:
If xk + dk is not acceptable for the filter.

If U1 xk; dk

 ���� ��� > dk

��� ���min g;a1 dk
��� ���a2

n o
, call Restoration Algorithm (Algorithm 3.2) to obtain xk

r ¼ xk þ sk
r , and go to Step

2. Otherwise go to Step 6;
If xk + dk is acceptable for the filter, let xk+1 = xk + dk, and add xk+1 to the filter, go to Step 9;
Step 6. Computation of the direction qk:

like Ak, we might as well let rf xk
� 	

¼ rf1ðxkÞ
rf2ðxkÞ

� �
.

Compute
qk ¼ �rf ðxkÞT dk
; pk ¼ � A1

k


 ��1
rf1ðxkÞ;

~dk ¼
�qk A1

k


 ��1
� �T

e

1þ 2jeTpkj
; qk ¼ qkðdk þ �dkÞ; ð28Þ

where �dk ¼
~dk

0

� �
; e ¼ ð1; . . . ;1ÞT 2 RjLk j;
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Step 7. ak,0 = 1, l = 0;
Step 8. If xk + ak,lq

k is not acceptable for the filter, then go to Step 8. Otherwise let ak = ak,l, xk+1 = xk + akqk and add xk+1 to the
filter, go to Step 1;

Step 9. ak,l+1 = ak,l/2, l = l + 1, go to Step 6 (inner loop B);
Step 10. Update:

Choose Hkþ1 2
P
; rkþ1 2 ½rl;rr �; k ¼ kþ 1. Set �kk ¼min kk�1

0 ; �le
n o

; U ¼ U xk; �kk
� 	

. If U1ðxk; dkÞ
��� ��� > dk

��� ��� g;a1 dk
��� ���a2

n o
,

call Restoration Algorithm (Algorithm 3.2) to obtain xk
r ¼ xk þ sk

r , and go to Step 2. Or else, go to Step 1.

If U1ðxk; dkÞ
��� ��� > dk

��� ���min g;a1 dk
��� ���a2

n o
, we give the restoration algorithm (Algorithm 3.2) to compute the xk

r such that

U1 xk
r ; k

k
r


 ���� ��� 6 gmin Uk
1

��� ���I
;a1 dk
��� ���h

� �
, where 2 < h 6 3; Uk

1

��� ���I
¼min pijpi > 0; ðpi; f iÞ 2 F


 �
.

In a restoration algorithm, it is therefore desired to decrease the value of kU1k. The direct way is utilized Newton method or
the similar ways to attack g(x + s)+ = 0. We now give the restoration algorithm.
Algorithm 3.2

Step 1. Let xk
0 ¼ xk; Dk

0 ¼ rk; j ¼ 0; g; �g 2 ð0;1Þ; 2 < h 6 3;

Step 2. If U1 xk
j ; k

k
j


 ���� ��� 6 gmin Uk
1

��� ���I
;a1 dk
��� ���h

� �
, then let xk

r ¼ xk
j , STOP;

Step 3. Compute
min U1 xk
j ; k

k
j


 ���� ���� W1 �gk
j � Ak

j d; kk
j


 ���� ���;
s:t: kdk 6 Dk

j ; ð29Þ

to get sk
j , where

W1ð�gðxÞ; kÞ ¼ ðwð�gnþ1ðxÞ; knþ1Þ; . . . ;wð�gnþmðxÞ; knþmÞÞ:
U1 xk ;kk
j


 ���� ���� U1 xkþd;kk
j


 ���� ���

Let rk

j ¼
j j

U1 xk
j
;kk

j


 ���� ���� W1 �gk
j
�Ak

j d;kk
j


 ���� ���;

Step 4. If rk
j 6

�g, then let xk
jþ1 ¼ xk

j ; Dk
jþ1 ¼ 1

2 Dk
j ; j ¼ jþ 1 and go to Step 3. Otherwise, let xk

jþ1 ¼ xk
j þ sk

j ; Dk
jþ1 ¼ 2Dk

j , get
Ak

jþ1; j ¼ jþ 1 and go to Step 2.
The above restoration algorithm is a Newton method for kU1k = 0. This method is utilized frequently [13]. Of course, there
are other restoration algorithm, such as interior point restoration algorithm, SLP restoration algorithm and so on.

4. Global convergence of algorithm

Assumptions

A1: The set D is bounded.
A2: The strictly feasible set D is nonempty. The level set S ¼ xjf ðxÞ 6 f ðx0Þ and x 2 D


 �
is bounded.

A3: f and gi, (i = 1, . . . ,m) are Lipschitz continuously differentiable and for all y, z 2 Rn+m, kL(y)�L(z)k 6 c2ky�zk.
A4: Hk is positive definite and there exists a positive number m1 such that 0 < dTHkd 6m1kdk2 for all d 2 Rn, d – 0.
Lemma 4.1. If Uk – 0, then Vk is nonsingular. Furthermore, assume that (x*,k*) is an accumulation point of {(xk,kk)},
(xk,kk) ? (x*,k*), Uk ! U� and Vk ? V*. If U* – 0, then k(Vk)�1k is bounded and V* is nonsingular.

Proof. If Vk u
v

� �
¼ 0 for some u

v

� �
2 RnþjLk j, where u = (u1, . . . ,un)T, v ¼ ðv1; . . . ;v jLk jÞ

T , then we have
Hk þ ck
1In


 �
uþrgLk

ðxkÞv ¼ 0 ð30Þ
and
diagLk
ðnkÞrgLk

ðxkÞT uþ diagLk
ðgkÞv ¼ 0: ð31Þ
Assume Uk – 0, obviously we have ck
1 – 0. From the definition of nk

j and gk
j , we have that nk

j < 0 and gk
j > 0; j ¼ 1;2; . . . ;m.

Thus, diagLk
ðgkÞ is nonsingular. We have
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v ¼ � diagLk
gk
� 	
 �T

diagLk
nk

 �
rgLk

xk
� 	T

u: ð32Þ
Putting (32) into (30), we have
uT Hk þ ck
1In


 �
u� uTrgLk

ðxkÞdiagLk
nk

 �

ðdiagLk
gk
� 	
Þ�1 rgLk

xk
� 	
 �T

u ¼ 0: ð33Þ
uT Hk þ ck
1In


 �
u ¼ 0 and u = 0 are implied by the fact that Hk þ ck

1In is positive definite and �rgLk
ðxkÞdiagLk

nk

 �

diagLk
gk
� 	
 ��1

rgLk
ðxkÞT is positive semi-definite, then v = 0 by (31). The first part of this lemma holds.

On the other hand, without loss of generality we may assume that ckðiÞ
1 ! c�1 – 0; diagLk

nkðiÞ

 �

! diagLk
n�ð Þ;

diagLk
gkðiÞ� 	

! diagLk
g�ð Þ and Hk(i) ? H*. We know that g�j > 0 for all j = 1,2, . . . ,m. Hk(i) ? H* imply that H* is positive

semi-definite. By replacing index k by * in the above proof, it is easy to check that V* is nonsingular. Assumption Vk ? V*
imply that k(Vk)�1k is bounded. This lemma holds. h

From Lemma 4.1 we have k(Vk)�1k is also uniformly bounded. It is then not difficult to see from Step 1 of Algorithm 3.1
that the inner loop A terminates in finite number of times, i.e. the parameter ek,i will return to be fixed after finitely many
iterations and Mk,i will also be constant after many iterations.

If U(xk,kk) = 0, then (xk,kk) is a KKT point of Problem (NLP). Without loss of generality, in the sequel, we may assume that
U(xk,kk) – 0 for all k.

Because Vk is nonsingular, (20) (21) or (24) always has unique solution.
Vk is nonsingular, so Bk = (Vk)�1 exist. Let
Bk ¼
Hk þ ck

1In rgLk
ðxkÞ

diagLk
nk

 �
rgLk

ðxkÞT diagLk
gk
� 	

0
@

1
A
�1

¼
Bk

11 Bk
12

Bk
21 Bk

22

 !
: ð34Þ
By calculating directly, we have
Bk
11 ¼ Hk þ ck

1In


 ��1
þ Hk þ ck

1In


 ��1
rgLk

ðxkÞðQ kÞ�1 ð35Þ

� diagLk
nk

 �
rgLk

ðxkÞT Hk þ ck
1In


 ��1

Bk
12 ¼ � Hk þ ck

1In


 ��1
rgLk

ðxkÞðQ kÞ�1 ð36Þ

Bk
21 ¼ �ðQ

kÞ�1diagLk
nk

 �
rgLk

ðxkÞ�1 Hk þ ck
1In


 ��1
ð37Þ

Bk
22 ¼ ðQ

kÞ�1 ð38Þ
where Q k ¼ diagLk
gk
� 	

� diagLk
nk

 �
rgLk

ðxkÞT Hk þ ck
1In


 ��1
rgLk

ðxkÞ.

Lemma 4.2. If Uk – 0, then dk
0 ¼ 0 if and only if r f(xk) = 0, and dk

0 ¼ 0 implies kk
0 ¼ 0 and ðxk; kk

0Þ is a KKT point of the Problem
(NLP).
Proof. If rf(xk) = 0, then dk
0 ¼ 0 and kk

0 ¼ 0 by (20). If dk
0 ¼ 0, then (20) implies rgLk

ðxkÞkk
0jk
¼ �rf ðxkÞ and diagLk

gk
� 	

kk
0jk
¼ 0.

From the definition of gk
j , we have gk

j > 0; j ¼ 1;2; . . . ;m. Thus, diagLk
gk
� 	

is nonsingular. So, kk
0 ¼ 0 and rf(xk) = 0. h
Lemma 4.3. If dk
0 – 0, then

1. ck
1 dk

0

��� ���2
6 dk

0


 �T
Hk þ ck

1In


 �
dk

0 6 � dk
0


 �T
rf ðxkÞ;

2. �dk1
0

� 	Trf ðxkÞ ¼ dk
0


 �T
rf ðxkÞ �

P
j:kk

0jk
<0 kk

0jk


 �4
;

3. �dk
0

� 	Trf ðxkÞ 6 h �dk1
0

� 	Trf ðxkÞ;

4. rf ðxkÞT qk
6 � 1

2 ðqkÞ2 < 0.
Proof. (20) implies
Hk þ ck
1In


 �
dk

0 þrgLk
ðxkÞkk

0 ¼ �rf ðxkÞ ð39Þ
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and
diagLk
nk

 �

rgLk
ðxkÞ


 �T
dk

0 þ diagLk
gk
� 	

kk
0 ¼ 0 ð40Þ
we have
kk
0 ¼ � diagLk

gk
� 	
 ��1

diagLk
nk

 �

rgLk
ðxkÞ


 �T
dk

0 ð41Þ
Putting (41) into (39), we have
� dk
0


 �T
rf ðxkÞ ¼ dk

0


 �T
Hk þ ck

1In


 �
þrgLk

ðxkÞkk
0


 �
¼ ðdk

0Þ
T Hk þ ck

1In


 �
dk

0 � dk
0


 �T
rgLk

ðxkÞ � diagLk
gk
� 	
 ��1

diagLk
nk

 �

rgLk
ðxkÞ


 �T
dk

0 ð42Þ
dk
0


 �T
rgLk

ðxkÞ diagLk
gk
� 	
 ��1

diagLk
ðnkÞ rgLk

ðxkÞ

 �T

dk
0 6 0 implies
ck
1 dk

0

��� ���2
6 dk

0


 �T
Hk þ ck

1In


 �
dk

0 6 � dk
0


 �T
rf ðxkÞ ð43Þ
The first part of the lemma holds. (20) and (34) imply
dk
0


 �T
¼ �Bk

11rf ðxkÞ; kk
0 ¼ �Bk

21rf ðxkÞ ð44Þ
The property of the matrix implies
ðQ kÞ�1diagLk
ðnkÞ ¼ diagLk

ðnkÞ

 ��1

Qk
� ��1

¼ diagLk
ðnkÞ


 ��1
diagLk

ðgkÞ � diagLk
ðnkÞ � ðrgLk

ðxkÞÞT Hk þ ck
1In


 ��1
rgLk

ðxkÞ
� �� ��1

¼ diagLk
ðgkÞ � rgLk

ðxkÞ

 �T

Hk þ ck
1In


 ��1
� rgLk

diagLk
ðnkÞ

� �
diagLk

ðnkÞ

 ��1

� ��1

¼ ðQ kÞT diagLk
ðnkÞ


 ��1
� ��1

¼ diagLk
ðnkÞ ðQ kÞT


 ��1
ð45Þ
(21), (34) and (45) imply Bk
12diagLk

ðnkÞ ¼ Bk
21


 �T
and
�dk1
0

� 	Trf ðxkÞ ¼ � Bk
11rf ðxkÞ


 �T
rf ðxkÞ � Bk

12


 �T
diagLk

ðnkÞ
� �T

rf ðxkÞ kk
0


 �3
¼ dk

0


 �T
rf ðxkÞ �

X
j:kk

0jk
<0

kk
0jk


 �4
: ð46Þ
The second part of this lemma holds. (24)–(26) and (46) imply
�dk2
0 � �dk1

0

� 	Trf ðxkÞ ¼ �dk1
0

�� ��t
Bk

12diagLk
ðnkÞeLk

h iT
rf ðxkÞ ¼ �dk1

0

�� ��tXm

j¼1

kk
0jk
and
�dk
0

� 	Trf ðxkÞ ¼ ð1� qkÞ �dk1
0

� 	Trf ðxkÞ þ qk
�dk2

0

� 	Trf ðxkÞ 6 h �dk1
0

� 	Trf ðxkÞ: ð47Þ
The third part of this lemma holds. Finally, from (28), we obtain
rf ðxkÞT qk ¼ qkrf ðxkÞTðdk þ �dkÞ ¼ qkðrf ðxkÞT dk þrf ðxkÞT �dkÞ ¼ qkð�qk þrf1ðxkÞT ~dkÞ ¼ qk �qk þ qkðpkÞT e
1þ 2jeTpkj

 !

6 �1
2
ðqkÞ2 < 0 ð48Þ
This lemma holds. h
Lemma 4.4. The inner loop B terminates in finite number of times.
Proof. By contradiction, if the conclusion is false, then the Algorithm 3.1 will run infinitely between Step 8 and Step 9, so we
have
ak;l ! 0 ðl!1Þ
and xk + ak,lq
k is not acceptable for the filter.
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since xk is acceptable for the filter, we have
U1ðxk;lkÞ
�� �� 6 h Ul

1

��� ��� or f ðxkÞ � f ðxlÞ 6 �ak�1h Uk
1

��� ��� 8 f l; Ul
1

��� ���
 �
2 Fk:
By the assumption, xk + ak,lq
k is not acceptable for the filter, so we have
U1 xk þ ak;lqk;lk þ a2
k;lk

k

 ���� ��� > h Ul

1

��� ��� ð49Þ
and
f ðxk þ ak;lqkÞ � f ðxlÞ > �akh U1 xk þ ak;lqk
� 	�� ��: ð50Þ
For the point xk, if it holds that kU1ðxk;lkÞk 6 h Ul
1

��� ���, then by ak,l ? 0,
U1 xk þ ak;lqk;lk þ a2
k;lk

k

 ���� ��� 6 h Ul

1

��� ��� ð51Þ
which contradicts (49).
If it holds f ðxkÞ � f ðxlÞ 6 �ak�1h Uk

1

��� ���, then by ak,l ? 0, we get
f xk þ ak;lqk
� 	

¼ f ðxkÞ þ ak;lrf1ðxkÞT qk þ O ak;lqk
�� ��2

 �

ð52Þ

6 f ðxkÞ 6 f ðxlÞ � ak;lh Uk
1

��� ���

which contradicts (50).

Based on the above analysis, this lemma holds. h

Lemma 4.4 means that there exists a constant �a > 0, such that ak P �a for large enough k.
By the above statement, we see that Algorithm 3.1 is implementable. Now we turn to prove the global convergence of

Algorithm 3.1. We assume that assumptions A1-A4 holds.

Lemma 4.5. Assume xk ? x* and Uk > e > 0 for some e, then the sequence of dk
0; k

k
0

n o
, �dk1

0 ;
�kk1

0


 �
and �dk2

0 ;
�kk2

0


 �
are all bounded on

k = 0,1, . . .
Proof. If xk ? x* and Uk > e > 0 for some e, then the matrix sequence {(Vk)�1} is uniformly bounded form Lemma 4.1. {xk} is
bounded due to the assumption A3. The solubility of system (20) implies that dk

0; k
k
0

n o
is bounded, which implies the bound-

edness of �dk1
0


 �
of the right-hand side of (21). Hence �dk1

0 ;
�kk1

0


 �
is also bounded. Finally, the boundedness of �dk1

0 ;
�kk1

0


 �
implies

the boundedness of the right-hand side of (22). Hence �dk2
0 ;

�kk2
0


 �
is also bounded. h
Lemma 4.6. Assume xk ? x* and Uk > e > 0 for some e. There is a c3 > 0 such that, for all k = 1,2, . . .,
�dk
0 � �dk1

0

�� �� 6 c3 dk
0

��� ���:

Proof. It is from the Lemma 4.1 that there exists a c3 > 0 such that,for all k = 0,1, . . . , c3 P 2mqkk(Vk)�1k.

Let Ddk ¼ �dk
0 � �dk1

0 and Dkk ¼ �kk
0 � �kk1

0 . Then by (21)–(25), (Ddk,Dk) is the solution of
V
Ddk

Dkk

 !
¼

0

�qk dk
0

��� ���v
diagLk

ðnkÞeLk

 !
: ð53Þ
It is easy to see that
ðDdk
;DkkÞ

��� ��� 6 c3 dk
0

��� ���v
; Ddk
��� ��� 6 c3 dk

0

��� ���v
the lemma holds. h
Lemma 4.7. Assume xk ? x*, and kk ? k*,

1. If �dk
0 ! 0, then k�j P 0 for any 1 6 j 6m;

2. If dk
0 ! 0, then x* is a KKT point of the Problem (NLP);

3. If �dk
0 ! 0 and Uk > e > 0 for some e, then x* is a KKT point of the Problem (NLP).
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Proof. It follows from the Lemma 4.3 that
�dk
0

� 	Trf ðxkÞ 6 �ck
1h dk

0

��� ���2
� h

X
j:kk

0jk
<0

kk
0jk


 �4
: ð54Þ
Hence �dk
0


 �
! 0 implies that
X

j:kk
0jk
<0

kk
0jk


 �4
! 0 and k�j P 0; 1 6 j 6 m:
The first part of this lemma holds.
Because �kk

6 �l and {kk} are bounded, there is an accumulation point k* of f�kkg. Without loss of generality we assume that
ck ! c�; kk ! k�;

�
kk ! �k� and Lk ? L*. (54) implies that, for any accumulation point k* of fkkg; k�i P 0; 1 6 i 6 m. Taking the

limitations in both side of (20), by noting dk
0 ! 0, we obtain k�L�

TrgL� ðx�Þ ¼ �rf ðx�Þ and diagL� ðg�Þk
�
L� ¼ 0. If �gi(x*) > 0, for

some 1 6 i 6m, then �g�i P d > 0 and k�i ¼ 0, that is, for any 1 6 i 6m, giðx�Þk�i ¼ 0. The second part of this lemma holds.
If �dk

0 ! 0, and Uk > e > 0 for some e, then (54) implies dk
0 ! 0. So, x* is a KKT point of the Problem (NLP). This lemma

holds. h
Lemma 4.8. The Restoration Algorithm terminates in a finite number of iteration.
Proof. It is similar to lemma 1 in [13]. h

By the above statement, we see that Algorithm 3.1 is implementable. Now, we turn to prove the global convergence of
Algorithm 3.1.

Lemma 4.9. Suppose that infinite points are added to the filter, then limk?1,k2Kpk = 0, where K is an infinite set.
Proof. If the lemma was not true, there would have an infinite subsequence K1, such that for "k 2 K1,
pk P e > 0:
At each iteration k, (pk, fk) is added to the filter. By (11), we can deduce that (p, f)-pair be added to the filter at a large stage
within the square
½pk � ce; pk� � ½f k � ce; f k�;
even if (pk, fk) is later removed from the filter. Now observe these squares whose area are all c2e2. As a consequence, the set
[0,pmax] � [fmin,1] \ {(p,h)jf 6 jf} is completely covered by at most finite number of such squares, for any choice of jf P fmin.
Since (pk, fk)(k 2 K1) keep on being added to the filter, this implies that fk tends to infinite when k tends to infinite. Without
loss of generality, we can obtain that fk+1 P fk, for k large enough. Then
pkþ1
6 ð1� cÞpk

6 pk � ce:
Therefore, pk ? 0(k ?1), which is a contradiction. The conclusion follows. h
Lemma 4.10 [11]. Assume xk ? x* and Uk > e > 0 for some e. If dk ? 0, then (x*,k*) is a KKT point of the Problem (NLP), where k*
is an accumulation point of {kk}.
Lemma 4.11 [11]. Assume xk ? x* and Uk > e > 0 for some e. If liminf {k(dk)�1k} > 0, then (x*,k*) is a KKT point of the Problem
(NLP), where k* is an accumulation point of {kk}. From above lemmas, the following global convergence theorem holds.
Theorem 4.1. If x* is a limit point of {xk}, (x*,k*) is a KKT point of the Problem (NLP).
5. Superlinear convergence of algorithm

In order to study the superlinear convergent property, we need some stronger regularity assumptions.

Assumptions

B1:Hk ? H* as k ?1.
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B2: The second-order sufficiently conditions are satisfied at the KKT point x* and the corresponding multiplier vector k*,
i.e.

dTr2
xxLðx�; k�Þd > 0; 8d 2 fdjrgjðx�Þ

T d ¼ 0; j 2 Iðx�Þg;

where Lðx; kÞ ¼ f ðxÞ þ
Pm

j¼1kjgjðxÞ; Iðx�Þ ¼ fjjgjðx�Þ ¼ 0g:
B3: At x*, strict complementarity slackness and linear independence of the gradients of the active constraints hold.
B4: Matrices Hk, k = 1,2, . . .are symmetric positive definite and satisfy the following condition
lim
k!1

Hk �r2
xxLðx�; k�Þd

��� ���
kdkk

¼ 0:
Lemma 5.1. It holds, for k ?1, that
Lk � Iðx�Þ ¼ I�; dk ! 0; kk ! k�j ; j 2 I�

 �

:

Proof. By Lemma 4.9, Hk ? H*, it holds that dk ? 0 as k ?1. According to Lemma 4.1, it follows that I* � L � Lk. First, we
prove that
kk ! ðk�j ; j 2 LÞ;
since x* is the KKT point of Problem (NLP), we have
rf ðx�Þ þ A�k
�
L ¼ 0; k�L P 0; k�j ¼ 0 j 2 I n L;
where k�L ¼ ðk
�
j ; j 2 LÞ; A� ¼ ðrgjðx�Þ; j 2 LÞ.

From Lemma 4.1, it following that
AT
�A� is nonsingular; and ðAT

k AkÞ�1 ! ðAT
�A�Þ

�1
:

So k�L ¼ �ðA
T
�A�Þ

�1AT
�rf ðx�Þ

Moreover, by KKT condition of Problem (NLP), we have
rf ðxkÞ þ Hkdk þ Akk
k ¼ 0:
Hence, kk ¼ � AT
k Ak


 ��1
AT

kðrf ðxkÞ þ HkdkÞ ! � AT
�A�


 ��1
AT
�rf ðx�Þ ¼ k�L .

Second, we prove that L � I*.
For j0 �2L, if j0 �2I� by contradiction, there must be a constant n0 > 0 such that gj0

ðx�Þ 6 �n0 < 0. Again, since gj0
ðxÞ is

continuously differentiable, and dk ? 0(k ?1), we have for k large enough
gj0
ðx�Þ þ rgj0

ðx�ÞT dk
6 � n0

2
< 0;
which means j0 �2L, contradicts the above assumption. Hence L � Lk � I*. h
Lemma 5.2. Suppose A1–A4, B1–B4 hold, then xk+1 = xk + dk for k sufficiently large.
Proof. Suppose xk is acceptable for the filter, we will show that for k sufficiently large, xk + dk is acceptable for the filter. From
Lemma 4.9 and Lemma 5.1, we know that dk ! 0; Uk

1

��� ���! 0 as k ?1. Also, by the construction of Algorithm 3.1, we have
kU1(xk)k = o(kdkk2). So, we just need to show that f(xk + dk) 6 f(xk) + ckU1(xk)k. Let dk = f(xk + dk)�f(xk)�ckU1(xk)k, we have
dk ¼ rf ðxkÞT dk þ 1
2

dT
kr2f ðxkÞdk þ oðkdkk2Þ:
While by the KKT condition of Problem (NLP) and kUk
1k ! 0, we have
rf ðxkÞT dk ¼ �ðdkÞT Hkdk �
Xm

j¼1

kk
jrgjðxkÞT dk

;

gjðxkÞ þ rgjðxkÞT dk þ 1
2
ðdkÞTr2gjðxkÞdk ¼ oðkdkk2Þ:
Then it holds
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dk ¼ �ðdkÞT Hkdk �
Xm

j¼1

kk
jrgjðxkÞ þ 1

2
ðdkÞTr2L xk; kk

0


 �
dk þ oðkdkk2Þ

¼ �1
2
ðdkÞT Hkdk þ

Xm

j¼1

kk
j gjðxkÞ þ 1

2
ðdkÞTðr2L xk; kk

0


 �
� HkÞdk þ oðkdkk2Þ: ð55Þ
According to kk ! k�j > 0; gjðxkÞ ! gjðx�Þ < 0; j 2 I� and Assumption A4, we have
dk 6 �
a
2
kdkk2 þ 1

2
ðdkÞTðr2

xxL xk; kk
0


 �
�r2

xxLðx�; k�ÞÞdk þ
1
2
ðdkÞTðr2

xxLðx�; k�Þ � HkÞdk þ oðkdkk2Þ: ð56Þ
Since xk ! x�; kk
0 ! k�, then
ðdkÞT r2
xxLðx�; k�Þ � Hk


 �
dk ¼ oðkdkk2Þ:
Therefore, while k is sufficiently large, it holds
dk
6 � a

2
kdkk2 þ oðkdkk2Þ 6 0:
Hence, for all k large enough, xk + dk is acceptable for the filter. h

In view of Lemma 4.2, assumption B4 and the way of Theorem 3.1 in [14], it is easy to get the convergence theorem as
follows.

Theorem 5.1. Under all stated assumptions, the algorithm is superlinearly convergent, i.e., the sequence {xk} generated by the
algorithm satisfies kxk+1�x*k = o(kxk�x*k).
6. Numerical tests

In this section, we give some numerical experiences to show the success of proposed method.

(1) Updating of Hk is done by
Hkþ1 ¼
Hk; if sT

k yk 6 0;

Hk þ yT
k

yk

yT
k

sk
� HksksT

k
Hk

sT
k

Hksk
; if sT

k yk > 0;

8<
: ð57Þ
(2) The stop criteria is kdkk sufficiently small;
(3) If an equality constraint g(x) = 0 exists in the original problem, it is most easily handled as two corresponding inequal-

ities g(x) 6 0 and g(x) P 0, and we can apply the above algorithm.

In Table 1 which presented the results of the numerical experiences, we use the following notations:
Table 1
Numerical results for Algorithm 3.1.

Problem x0 IT kU1k FV

4 1.125, 0.125 3 1.0e�08 2.6327e+00
5 0, 0 6 6.14e�06 �1.9751e+00
9 0, 0 4 1.72e�06 �0.5012e+00
11 4.9, 0.1 8 5.84e�06 �8.4985e+00
12 0, 0 12 4.07e�06 1.0054e+00
24 1, 0.5 5 3.19e�06 �1.0000e+00
26 �2.6, 2, 2 15 2.33e�06 0.0000e+00
28 �4, 1, 1 5 7.22e�06 0.0000e+00
29 1, 1, 1 10 1.11e�07 �22.6274e+00
30 1, 1, 1 16 9.01e�06 1.0000e+00
33 0, 0, 3 5 5.62e�06 �4.5876e+00
34 0, 1.05, 2.9 7 2.18e�06 �0.8342e+00
35 0, 1.05, 2.9 19 1.19e�06 1.1082e�01
41 2, 2, 2, 2 5 2.33e�06 1.9259e+00
44 0, 0, 0, 0 6 1.06e�06 �15.0000e+00
51 2.5, 0.5, 2, �1, 0.5 5 4.25e�06 0.0000e+00
66 0, 1.05, 2.9 6 8.47e�06 0.5166e+00
71 1, 5, 5, 1 4 5.85e�07 17.0140e+00
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Problem: the number of problems in [15], x0: the starting vector, IT: the number of iterations, kU1k: the value of kU1(�)k at
the final iterate (xk,kk), FV: the objective function value at the final iteration.

We can see that the numerical results indicate that this method is quite promising.

7. Conclusions

The proposed algorithm combines a QP-free method with a 3-piecewise linear NCP function to globalize the process. Each
step is obtained only through systems of linear equations, and a higher order step is computed in order to overcome the Mar-
atos effect. The algorithm makes use of filter technique so that the computational cost is decreased largely. The convergent
results and the preliminary numerical tests in this paper shows that the method is interesting and of significance. However,
to prove the superlinearly convergence of our algorithm, we suppose some rigorous conditions such as the strict comple-
mentarity condition and so on. We hope that we can get rid of them in our future work.
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