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Abstract

We present an investigation into the dynamics of a system, which underlies a new estimating algorithm for
regression with grouped and nongrouped data. The algorithm springs from a simpli-cation of the well-known
EM algorithm, in which the expectation step of the EM is substituted by a modal step. This avoids awkward
integrations when the error distribution is assumed to be general. The sequences generated by the estimating
procedure proposed here de-ne our objective system, which is piecewise linear. The study tackles the system’s
asymptotic stability as well as its speed of convergence to the equilibrium point. In this sense, to reduce the
speed of convergence, we propose an alternative estimating procedure. Numerical examples illustrate the
theoretical results, compare the proposed procedures and analyze the precision of the estimate.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This paper focuses on the global dynamics of a system that derives from an estimating algo-
rithm proposed here, which serves to -t a linear model when some of the dependent values are
interval-censored and the error distribution is general.
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The algorithm mentioned above implies a modi-cation of the well-known EM algorithm [2,3,5–8].
This algorithm starts from an arbitrary initial point and the iteration consists of two steps. The E-step
computes the expectation of the complete log-likelihood conditioned on the observed data and the
current value of the parameter. The M-step substitutes this current value of the parameter by the
argument which maximizes the former expectation.

In the case of exponential families, it is known that only the suFcient statistics need to be
taken into consideration. In the case of a linear model with censored data, the suFcient statistic
is the sample mean and the E-step is equivalent to -lling each censored data by its conditional
expectation. Finally, in the exponential family case the M-step agrees with the calculation of the
maximum likelihood estimate using the suFcient statistic obtained from the observed data and the
above imputations for the censored data. When the errors distribute normally this estimate can be
obtained by ordinary least squares.

We propose an algorithm which, -rst, imputes the censored data by a conditional modal step and,
second, the estimate is updated by simple least squares. As we will see, the modal step takes a very
simple form and avoids the awkward integrations which appear in the E-step when the distribution
of the errors is arbitrary. The simplicity of the algorithm lies also on the least-squares step whose
implementation may be carried out using standard computer statistical packages.

The study of the convergence of the algorithm proposed here is the main goal of this paper.
The main contribution of the paper characterises the algorithm as a multidimensional piecewise
linear system, whose in-depth study allows us to conclude that it is globally convergent to a single
equilibrium point. This will de-ne our proposed estimate of the regression coeFcients. Additionally,
the piecewise characterisation suggests an alternative algorithm, which, on some occasions, may allow
us to speed up the search of the equilibrium point. Also, we comment on some issues concerning the
selection of convenient initial points, in order to diminish the number of iterations to convergence.

The paper is organised as follows. Section 2 presents the regression model and the iterative
procedure for estimating the model parameters. In Section 3 the evolution equations are formulated
for the diHerent regions of the state space, given by the censored data. The stability analysis of the
global system is addressed in Section 4, together with its piecewise characterisation. An alternative
algorithm to seek the unique equilibrium point is presented in Section 5, whereas numerical results
are illustrated in Section 6. These results refer to convergence rates of the algorithm and also to the
precision of the -nal estimates. Some concluding remarks are stated in Section 7.

2. Original model and the dynamic system

Let us consider the standard linear regression model

zi = atxi + �i; i = 1; 2; : : : ; n; (1)

where a is a -xed m-dimensional parameter to be estimated, xi is an m-dimensional vector of
independent variables, zi is a real dependent variable and the errors �i are independent identically
distributed random variables following a known density function f, which may be general with the
only restriction of being symmetrical and unimodal about zero. It will also be assumed that the
dependent data has been collected from diHerent sources and may be either grouped or nongrouped.
Then, the index set I = {1; 2; : : : ; n} may be partitioned into I g and I ng containing, respectively, the
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indices i depending on whether or not their corresponding values zi have been grouped. For i∈ I g,
only an interval (li; ui] which contains zi is known, whereas, on the contrary, if i∈ I ng the exact
value zi is observed.

The ordinary least-squares (OLS) estimate for the regression parameter a; â= (X tX )−1X tz, where
X t = (x1; : : : ; xn) and z = (z1; : : : ; zn)t cannot be directly applied if there is grouped data, since the
interval-censored zi’s are unknown. In this case, the simple substitution of each grouped zi by an
arbitrary value within its grouping interval yields, in general, undesirable bias. Assuming normal
errors and taking into consideration the suFcient statistic, it can be seen that the EM algorithm runs
as follows:

Initialisation: Let a0 be an arbitrary initial value.
Iteration: Assume that the current estimate ak is known.

• (E-step) Compute the vector z∗(ak) = (z∗1 (ak); : : : ; z∗n (ak))t, where z∗i (ak) = zi if i∈ I ng, and

z∗i (ak) = at
kxi + E(�i| − at

kxi + li ¡ �i6− at
kxi + ui);

if i∈ I g and zi ∈ (li; ui].
• (M-step) Evaluate the maximum likelihood estimate, ak+1 = (X tX )−1X tz∗(ak).

The conditional expectation is given by the integral equality

E(�i| − at
kxi + li ¡ �i6− at

kxi + ui) =

∫ −at
k xi+ui

−at
k xi+li

tf(t) dt∫ −at
k xi+ui

−at
k xi+li

f(t) dt
; (2)

where f is the density function of the errors. It is known that the EM algorithm converges to the
maximum likelihood estimate for the censored data. Thus its asymptotic distribution, as n → ∞, is
normal, centred on the true parameter a. We propose to analyse the behaviour of the following algo-
rithm, which is a modi-cation of the former, and to use it for the general class of error distributions
commented on above.

Initialisation: Let a0 be an arbitrary initial value.
Iteration: Assume that the current estimate ak is known.

• (Modal step) Compute the components of the vector z(ak) = (z1(ak); : : : ; zn(ak))t, which are given
by zi(ak) = zi, if this value is not grouped, and

zi(ak) = at
kxi + Mode(�i| − at

kxi + li ¡ �i6− at
kxi + ui)

=


0 if li6 at

kxi ¡ui;

−at
kxi + ui if ui6 at

kxi;

−at
kxi + li if at

kxi ¡ li;

(3)

otherwise.
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• (OLS step) Update the current ak through the equation

ak+1 = (X tX )−1X tz(ak): (4)

The use of conditional modes instead of the conditional expectations of the EM avoids the in-
tegration shown in (2), which is substituted by the three alternatives given on the right of (3).
These alternatives are much easier to compute than the integrals of (2) with general errors. After
the modi-cation, it is not obvious whether or not the transformation T (�) = (X tX )−1X tz(�) has any
-xed point �∗ and, if it has, if this point is asymptotically stable, globally or locally.

3. Dynamic system explicit formulation

In this section, we prove that the state space Rm, where dynamic system (4) evolves, can be
partitioned in diHerent regions. In each one of these regions the behaviour of such a dynamic system
is ruled by a time invariant linear diHerence equation. When the state vector ak jumps from one
region to another, the coeFcients of the dynamic system change accordingly, delineating a piecewise
characterization.

Let us consider an index i∈ I g ⊂ {1; : : : ; n}, corresponding to a grouped datum zi ∈ (li; ui], where
only the extreme values −∞6 li ¡ui6∞ are known. This index i∈ I g, determines three sets
denoted by

Rli = {a∈Rm|atxi6 li};

Roi = {a∈Rm|li ¡atxi6 ui};

Rui = {a∈Rm|atxi ¿ui}:
If li = −∞, then Rli = ∅, whereas, if ui = ∞, then Rui = ∅.

Obviously, the sets Rli ; R
u
i and Roi de-ne a partition of the state space Rm associated with the ith

grouped datum. When i varies over I g, the intersection of these sets provides a new partition

P =

{⋂
i∈I g

Rhii

}
hi∈{l;o;u}

containing, at most, 3w diHerent nonempty disjoint convex subsets, where w is the cardinal of I g. For
simplicity, we will denote this partition by P = {Sj}j=1; :::; r , where r6 3w. The following theorem
proves that the dynamic system (4) is linear time invariant within every set Sj.

Theorem 1. If ak is in the set Sj, then the transition to ak+1 is ruled by a linear time invariant
dynamic system

ak+1 = c(j) + B(j)ak ; (5)

where c(j)∈Rm and B(j) is a square matrix of order m.
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Proof. Following a constructive procedure, we will explicitly evaluate the coeFcients c(j) and B(j)
related to the set Sj. We begin by writing

Sj =
⋂
i∈ILj

Rli ∩
⋂
i∈IUj

Rui ∩
⋂
i∈IOj

Roi ;

where ILj = {i∈ I g | hi = l}; IUj = {i∈ I g|hi = u} and IOj = {i∈ I g|hi = o} de-ne a partition of I g.
Now, when ak ∈ Sj, it holds that

zi(ak) =


zi if i∈ I ng;

li if i∈ ILj ;

xt
iak if i∈ IOj ;

ui if i∈ IUj :

Additionally,

ak+1 = (X tX )−1X tz(ak)

= (X tX )−1(X t
ng; X

t
Lj ; X

t
Oj
; X t

Uj
)


zng

Lj

XOjak

Uj

 : (6)

In this notation, X t
ng = (xi)i∈I ng = (: : : xi : : :); X t

Lj = (xi)i∈ILj ; X t
Oj

= (xi)i∈IOj ; X t
Uj

= (xi)i∈IUj ; zng =
(zi)i∈I ng = (: : : zi : : :)t ; Lj = (li)i∈ILj and Uj = (ui)i∈IUj .

Eq. (6) can be rewritten as

ak+1 = (X tX )−1(X t
ngzng + X t

LjLj + X t
Uj
Uj) + (X tX )−1X t

Oj
XOjak

= c(j) + B(j)ak ;

where c(j) = (X tX )−1(X t
ngzng + X t

LjLj + X t
Uj
Uj) and B(j) = (X tX )−1X t

Oj
XOj, thus completing the

proof.

4. Global stability analysis of the system

In this section we prove, under weak conditions, the global stability of the dynamic system (4),
that is, its convergence to a single equilibrium point, regardless the selected initial point. This result
is based on a general theorem on the stability of piecewise linear contractive dynamic systems.

First, we show that all the linear dynamic systems (5) are globally asymptotically stable.

Theorem 2. Let us assume that the matrix (X tX )ng is positive de:nite. For all indices j∈{1; : : : ; r},
the linear dynamic system

an+1 = c(j) + B(j)an; n = 1; 2; : : : ;

converges to a unique point a(j)∈Rm, whichever initial point a0 is selected.
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Proof. The dynamic system will globally converge to a unique equilibrium point if, and only if,
the spectral radius of the matrix B(j) is less than 1. The matrix B(j) is not symmetric but it has real
eigenvalues, since it is similar to the symmetric and positive de-nite matrix (X tX )−1=2X t

Oj
XOj(X tX )−1=2.

Denoting by $(A) the spectral radius of matrix A, it holds that

$(B(j)) = $((X tX )1=2B(j)(X tX )−1=2)

= $((X tX )−1=2X t
Oj
XOj(X tX )−1=2)

= max
|u|=1

|ut(X tX )−1=2X t
Oj
XOj(X tX )−1=2u|

= max
|u|=1

utX t
Oj
XOju

utX tXu
6

(
1 +

min|u|=1ut(X tX )ngu

max|u|=1utX t
Oj
XOju

)−1

= &j ¡ 1;

having assumed that IOj 
= ∅. Otherwise, B(j) = 0 and $(B(j)) = 0¡ 1. Therefore, in both cases,
the theorem holds.

Corollary 1. The linear function

fj(a) = (X tX )1=2(c(j) + B(j)(X tX )−1=2a)

is strictly contractive in a∈Rm.

Proof. Take arbitrary x; y∈Rm and observe that, since (X tX )1=2B(j)(X tX )−1=2 is a symmetric
matrix, we can write

‖fj(x) − fj(y)‖ = ‖(X tX )1=2B(j)(X tX )−1=2(x − y)‖
6 &j‖x − y‖;

where &j ¡ 1.

The following lemma will lead to prove the global asymptotic stability of piecewise contractive
functions.

Lemma 1. Let f :Rm → Rm be de:ned by f(x) =
∑r

j=1 ISj(x)fj(x), where the functions fj are
strictly contractive and ISj is the indicator function of Sj, which are convex sets forming a partition
of Rm. If f is a continuous function, then f is strictly contractive.

Proof. For any x; y∈ Sj

‖f(x) − f(y)‖ = ‖fj(x) − fj(y)‖6 &j‖x − y‖6 &‖x − y‖;
where & = maxri=1 &i ¡ 1. On the contrary, if x∈ Si and y∈ Sj (i 
= j), and denoting [x; y] the
linear segment of extreme points x and y, there exist points ak ∈ [x; y]; k ∈{1; : : : ; s} ⊆ {1; : : : ; r},
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such that

[x; y] =
s−1⋃
k=1

[ak ; ak+1];

{(ak ; ak+1)}s−1
k=1 are disjoint intervals, x = a1; y = as; and ak ; ak+1 ∈ cl(Shk ). From the continuity of f,

it follows, for all k = 1; : : : ; s− 1, that

f(ak) = fhk (ak) and f(ak+1) = fhk (ak+1) = fhk+1(ak+1):

Hence, we can write

‖f(x) − f(y)‖ = ‖fi(x) − fj(y)‖6
s−1∑
k=1

‖f(ak) − f(ak+1)‖

=
s−1∑
k=1

‖fhk (ak) − fhk (ak+1)‖

6
s−1∑
k=1

&hk‖ak − ak+1‖6 &
s−1∑
k=1

‖ak − ak+1‖

= &‖x − y‖:

Corollary 2. The piecewise linear function

f(a) = (X tX )−1=2X tz((X tX )−1=2a)

is contractive in a∈Rm.

Proof. Since z(a) is a continuous function f is also continuous. It suFces to consider the contractive
functions de-ned in Corollary 1, fj(a) = (X tX )1=2(c(j) + B(j)(X tX )−1=2a), when (X tX )−1=2a∈ Sj,
and apply Lemma 1.

Theorem 3. The piecewise linear dynamic system

an+1 = (X tX )−1X ty(an); a0 ∈Rm

converges to a unique point, whichever initial point is taken.

Proof. De-ne bn = (X tX )1=2an, and observe that

bn+1 = (X tX )1=2an+1 = f((X tX )1=2an) = f(bn);

where f agrees with that de-ned in Corollary 2. Using this, we guarantee that bn converges to the
unique -xed point, say b̂, of the strictly contractive function f. As the matrix (X tX )1=2 is de-nite
positive, we can guarantee that an also converges, for any initial point a0, to â = (X tX )−1=2b̂, the
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unique solution of the equation

â = (X tX )−1X tz(â);

thus completing the proof.

Remarks. (i) Subsystem (5) associated with the region Sj is globally convergent to the point a(j)=
(I − B(j))−1c(j), which can be computed via standard routines. Since

(I − B(j))−1 = (X tX )−1
I−Oj

(X tX );

where X t
I−Oj

= (xi)i∈I−IOj
and (X tX )I−Oj = X t

I−Oj
XI−Oj , it holds that

a(j) = (X tX )−1
I−Oj

X t
I−Oj


zng

Lj

Uj

 :

Thus, a(j) agrees with the OLS estimate considering only the censored data which are imputed as
li if i∈ ILj and ui if i∈ IUj .

(ii) In each region Sj there exists a -xed number of constraints of the type li ¡atxi6 ui, which
are held by all a∈ Sj. This number s (06 s6w) determines the complexity of the accompanying
matrix of the subsystem associated with Sj. If s = 0, then IOj = ∅, which implies that B(j) = 0 and
subsystem (5) is constant, ak+1 = c(j). Thus, if the objective system (4) reaches the state ak ∈ Sj at
step k, then ak+1 =c(j). Therefore, ak+1 =ak+2 = · · ·=c(j) if c(j)∈ Sj, and ak+2 =c(j∗)+B(j∗)c(j),
if c(j)∈ Sj∗ . If s=1, then IOj is unitary. Let i be the only point of IOj . Then X t

Oj
=xi, and subsystem

(5) associated to Sj becomes

ak+1 = c(j) + (X tX )−1xixt
iak :

When ak , ak+1 ∈ Sj it follows that the diHerences ak+2 − ak+1 are proportional to the constant vector
(X tX )−1xi. In general, for s¿ 1, the rank of the matrix B(j)=(X tX )−1X t

Oj
XOj is at most min{m; s}.

(iii) The most likely situation is that the limit point â∈ Int(Sj), for some region Sj. In this case,
objective system (4) maintains in the region Sj from a certain step onward. This means that the
jth subsystem governs the asymptotic behaviour of (4), which tends to be within the vector space
generated by the eigenvectors associated with the dominant eigenvalue. If algebraic multiplicity of
the latter is 1, then the system approximates the limit point in the direction given by the unique
eigenvector. If â 
∈ Int(Sj), for some j, there may be several regions Sj for which â∈Fr(Sj).
In this case, the asymptotic behaviour of objective system (4) may be ruled by one or several
subsystems.

5. An alternative algorithm

It is known that system (4) converges to a unique equilibrium point, â, which satis-es the implicit
equation

â = (X tX )−1X tz(â):
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If we assume that â∈ Sj, then â = c(j) + B(j)â and â = a(j) is the unique limit point of the jth
linear subsystem. Additionally, it is clear that there exists a unique index j∈{1; : : : ; r} such that
a(j)∈ Sj. Thus, the search of the point â, can be restricted over the -nite set {a(1); : : : ; a(r)}.

This suggests the following new algorithm for determining the point â and also provides an
optimum stop criterion.

1. Take an arbitrary value a∈Rm in a region which is not labelled.
2. Determine the index j such that a∈ Sj. If region Sj is labelled, return to 1. Otherwise, evaluate

a(j) = (I −B(j))−1c(j), the -xed point of the linear subsystem (5), and put a label on the region
Sj.

3. If a(j)∈ Sj, the algorithm stops (since â = a(j)). Otherwise, take a = a(j) and return to 2.

Since the regions Sj are polytopes, the selection of a point in such regions can be performed via
speci-c procedures (see [4]). The new algorithm determines the solution in a number of iterations less
than r. Since each iteration requires solving a linear algebraic system, if direct methods are employed,
the number of operations (sums and products) needed in each iteration is O(m3), unlike the algorithm
proposed in (4) which requires O(m2) operations. If we denote the number of iterations of both the
original algorithm (4) and the alternative by N1 and N2, respectively, then the latter algorithm is
more eFcient than the former if mN1 ¿N2, as it occurs in the example shown in Section 6.

6. Some numerical results

The following data was presented in [1] and, later, analysed in [9,10]. The data is the result of
a temperature accelerated life test on electrical insulation in 40 motorettes. Ten motorettes were
tested at each one of the four following temperatures, 150◦; 170◦; 190◦ and 220◦ (Table 1). Testing
was terminated at diHerent times at each temperature, resulting in a total of 17 failed units and 23
unfailed ones. The exact results of the failure times are given below, where l+

i indicates that the
correspondent datum is still on test without failure at li hours.

Table 1
Results of failure times for the numerical example

150◦ 170◦ 190◦ 220◦

8064+ 1764 408 408
8064+ 2772 408 408
8064+ 3444 1344 504
8064+ 3542 1344 504
8064+ 3780 1440 504
8064+ 4860 1680+ 528+

8064+ 5196 1680+ 528+

8064+ 5448+ 1680+ 528+

8064+ 5448+ 1680+ 528+

8064+ 5448+ 1680+ 528+
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As in [10], we consider the linear model was -tted

zi = a1 + a2ti + �i; i = 1; : : : ; 40;

where zi = log(ith failture time), ti = 1000(temperature + 273:2)−1 and �i is an arbitrary unimodal
distribution of error (in [10] normal distributions were assumed). Observe that the values with sign
+ are censored in the interval (l+

i ;∞) and therefore we are ready to apply algorithm (4) presented
in Section 2. The 23 censored values partition the parameter space R2 in r = 11 diHerent regions,
{Sj}j=0;1:::;10. Observe that there are four diHerent values for ti and l+

i :

t1 = 2:3629; l+
1 = log(8064);

t2 = 2:2563; l+
2 = log(5448);

t3 = 2:1588; l+
3 = log(1680);

t4 = 2:0275; l+
4 = log(528):

The regions Sj are built from the four hyperplanes

Hi: a1 + tia2 = log(l+
i ); i = 1; 2; 3; 4

which are plotted in Fig. 1. Each hyperplane Hi determines two halfspaces, Rli ={a1 +&ia26 l+
i } and

Roi = {a1 + &ia2 ¿l+
i }, and the intersection of all of these halfspaces determines the aforementioned

regions {Sj}j=0; :::;10.
Let us pay attention to the following three important regions:

S0 = Rl1 ∩ Rl2 ∩ Rl3 ∩ Rl4;

S1 = Ro1 ∩ Rl2 ∩ Rl3 ∩ Rl4;

S2 = Ro1 ∩ Ro2 ∩ Ro3 ∩ Ro4;

which are showed in Fig. 1. No constraint of the type li ¡atxi6 ui (i∈ I g) is ful-lled in S0, exactly
one (for i = 1) is ful-lled in S1 and, -nally, all the constraints are ful-lled in S2. Therefore,

B(0) = 0;

rank B(1) = rank(XO1) = rank

(
1

t1

)
= 1 and

rank B(2) = rank(XO2) = rank

(
1 1 1 1

t1 t2 t3 t4

)
= 2:

Next, we illustrate the dynamics of the algorithm for diHerent initial points. First, we have veri-ed
that, independently on the initial point a0 ∈R2, algorithm (4) converges to a unique limit point
â = (−5:2250; 3:8868)t, as Theorem 3 states. Taking an arbitrary initial point a0 ∈ S0 the system
-rstly jumps to the state value a1 = c(0) = (−4:9326; 3:7480)t that belongs to S1 and then remains
inde-nitely in S1 converging to â∈ S1. Since rank B(1) = 1, the points ak lie in a line. This fact
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Fig. 1. Two algorithm trajectories from diHerent initial conditions in the numerical example. The top -gure corresponds
to a0 = (−3; 4)∈ S2, whereas the bottom -gure corresponds to a0 = (−6; 2)∈ S0.
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Table 2
Characterisation of a trajectory with initial point (a0;1; a0;2) in S0 for the numerical example (the line indicates change
of region)

Iteration ak;1 ak;2 vk;1 vk;2 ‖dk‖
0 a0;1 a0;2

1 −4.9326 3.7480 0.8790 0.4767 5.76452
2 −5.0271 3.7929 −0.9034 0.4287 0.10464
3 −5.0911 3.8232 −0.9034 0.4287 0.07081
4 −5.1344 3.8438 −0.9034 0.4287 0.04791
5 −5.1637 3.8577 −0.9034 0.4287 0.03242
6 −5.1835 3.8671 −0.9034 0.4287 0.02194
7 −5.1969 3.8734 −0.9034 0.4287 0.01484
8 −5.2060 3.8777 −0.9034 0.4287 0.01004
9 −5.2121 3.8807 −0.9034 0.4287 0.00679

10 −5.2163 3.8826 −0.9034 0.4287 0.00460
11 −5.2191 3.8840 −0.9034 0.4287 0.00311
12 −5.2210 3.8849 −0.9034 0.4287 0.00210
13 −5.2223 3.8855 −0.9034 0.4287 0.00142
14 −5.2232 3.8859 −0.9034 0.4287 0.00096
15 −5.2237 3.8862 −0.9034 0.4287 0.00065
20 −5.2248 3.8867 −0.9034 0.4287 0.00009
25 −5.2250 3.8868 −0.9034 0.4287 0.00001
26 −5.2250 3.8868 −0.9034 0.4287 0.00000

can be recognised from Table 2, which shows: (i) the points ak = (ak;1ak;2)t, (ii) the normalized
diHerence vectors nk = dk=‖dk‖ (where dk = ak − ak−1), and (iii) the norm ‖dk‖, from iteration
k = 1–26. The line in the table indicates that the sequence changes from one region to another. The
sequence with starting point a0 = (−6; 2)t is shown in Fig. 1.

Now, for the initial point a0 =(−3; 4)t ∈ S2 we observe that a1 and a2 stay in S2 where the system
is governed by

ak+1 = B(2)ak + c(2);

where the matrix

B(2) =

(−1:9381 −5:7979

1:1416 3:2166

)
has rank two, and c(2) = (7:0128;−2:5868)t.

The sequence generated by the algorithm is shown in Table 3 (with the same structure as Table
2). In the iteration k=8 the sequence enters in the region S1, keeping the vector nk+1 invariant from
this iteration on. This is a consequence of the fact that the dynamic system associated with region
S1 is determined by the rank one matrix

B(1) =

(−5:5670 −13:1544

2:6424 6:2437

)
:
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Table 3
Characterization of a trajectory with initial point in S2 for the numerical example (the line indicates change of region)

Iteration ak;1 ak;2 vk;1 vk;2 ‖dk‖
0 −3.0000 4.0000
1 −10.3645 6.8549 −0.9323 0.3614 7.89851
2 −12.6435 7.6307 −0.9466 0.3222 2.40743

3 −12.7248 7.5247 −0.6084 −0.7936 0.13364
4 −11.3325 6.8200 0.8922 −0.4515 1.56041
5 −9.8261 6.0906 0.9000 −0.4357 1.67368
6 −8.6069 5.5036 0.9009 −0.4338 1.35315

7 −7.6601 5.0480 0.9011 −0.4335 1.05074

8 −6.9331 4.6985 0.9012 −0.4333 0.80663
9 −6.3936 4.4414 0.9027 −0.4301 0.59765

10 −6.0157 4.2621 0.9034 −0.4287 0.41822
11 −5.7601 4.1407 0.9034 −0.4287 0.28300
12 −5.5871 4.0586 0.9034 −0.4287 0.19150
13 −5.4700 4.0031 0.9034 −0.4287 0.12958
14 −5.3908 3.9655 0.9034 −0.4287 0.08769
15 −5.3372 3.9400 0.9034 −0.4287 0.05933
20 −5.2409 3.8943 0.9034 −0.4287 0.00841
25 −5.2272 3.8878 0.9034 −0.4287 0.00119
30 −5.2253 3.8869 0.9034 −0.4287 0.00016
35 −5.2250 3.8868 0.9034 −0.4287 0.00002
36 −5.2250 3.8868 0.9034 −0.4287 0.00001
37 −5.2250 3.8868 0.9034 −0.4287 0.00001
38 −5.2250 3.8868 0.9034 −0.4287 0.00000

The sequences converge to the limit point â=(−5:2250; 3:8868)t following the eigenvector associated
with the dominant eigenvalue of B(1); (0:9034;−0:4288)t, which appears in Tables 2 and 3.

In order to analyse the algorithm speed of convergence, a stop condition must be -xed. In our case,
this condition was ‖dk‖1 = ‖ak − ak−1‖1 ¡ 10−4. Fig. 2 depicts the number of iterations required to
achieve this stop condition, for diHerent initial points a0. A grid of initial conditions was employed to
generate this -gure, both on a large rectangle (top part) and on a small one (bottom part) containing
the limit point â. It can be seen that the number of iterations remains constant for all a0 ∈ S0. When
the starting point is chosen in S2, a type of staircase evolution occurs, and the number of iterations
increases as the initial point moves away from â, accordingly with matrix B(2). The bottom part
of Fig. 2 shows a sink around the limit point â, where the number of iterations reaches the value
zero.

Note that, although there exist initial points for which the required number of iterations is small
(e.g., less than 20), they are within a very narrow region. From a practical point of view, it is
unlikely that one may choose one of these such points as an initial value (if we think in terms
of volume of the regions). It is more likely to select an arbitrary initial point in the unbounded
region S0. In this case, 20 iterations are required to reach the limit point within the -xed accuracy.
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Fig. 2. Number of algorithm iterations required for convergence in the numerical example. The bottom -gure is focused
in a small neighborhood of the limit point.

If we start from region S2 the required number of iterations may be too large. One can see that this
number may have a signi-cant dependency on the selected initial value. This suggests the need for
developing some appropriate criteria for choosing the initial iterate.

The behaviour of the alternative algorithm presented in Section 5 is also illustrated. The selected
initial iteration points are the same as in the previous computations. Table 4 indicates the behaviour
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Table 4
Alternative algorithm iteration results for any initial point in S0

Iteration ak;1 ak;2

0
1 −4.932643 3.748032
2 −5.225032 −3.886814

Table 5
Alternative algorithm iteration results for any initial point in S2

Iteration ak;1 ak;2

0
1 −5.149491 3.819083
2 −4.932643 3.748032
3 −5.225032 −3.886814

for any initial point belonging to region S0, whereas Table 5 displays such behaviour for any initial
point belonging to region S1. Note that the number of iterations is considerably smaller, N2 = 2 or 3.
Since m = 2, the linear systems can be solved by direct methods and, in general, N2�mN1, which
shows the high eFciency of the alternative procedure.

Finally, practical statisticians are interested in measuring the precision of the estimates. To this
end, we have used the jackknife method to evaluate the covariance matrix, /, of the point estimate
â = (−5:2250; 3:8868)t. As it is known (see [11, pp. 154–155]), once the sample data has been
randomly partitioned in g groups of m observations the jackknife estimate of / is given by

/̂g;m =
1

g(g− 1)

g∑
0=1

(J0 − â)(J0 − â)t ;

where the pseudovalue J0 is de-ned as

J0 = gâ− (g− 1)â0

and â0 is the estimate of a computed from the reduced sample of m(g−1) observations which results
after omitting the observations of the 0th group. For values given in Table 1 and taking m = 1 and
g = 40 we have obtained

/̂40;1 =

(
0:2687 −0:1285

−0:1285 0:0616

)
;
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which leads to the following con-dence intervals for a1 and a2 at level 0.95:

I(a1) = (4:6820; 5:7680) and I(a2) = (3:7623; 4:0113):

Equally, for m = 2 and g = 20 the jackknife estimate of / and the corresponding intervals for a1

and a2 at level 0.95 have been

/̂20;2 =

(
0:2460 −0:1170

−0:1170 0:0559

)
and

I(a1) = (4:7101; 5:7399) and I(a2) = (3:7698; 4:0038):

7. Concluding remarks

In this paper an analysis of the global dynamics of an iteration scheme for performing regression
with grouped data has been presented. From a practical point of view, the estimation algorithm
proposed here is an alternative to the EM algorithm which avoids the integration involved in the
E-step as it is substituted by a much simpler step. This implies the reduction of both the programming
and the computation time.

The dynamical system of the iteration procedure has been shown to be piecewise linear time
invariant, having a unique equilibrium point, which is asymptotically stable. In addition, a parti-
tion has been de-ned in the whole state space, so that in each composing region the dynamics
evolve in some aFne subspaces. The nature of the problem has led us also to de-ne an alterna-
tive algorithm for computing the equilibrium point of the objective system in a -nite number of
iterations. Finally, on the one hand, a numerical example shows the performance of system (5),
whose speed of convergence may be reduced with the alternative procedure; on the other hand,
the covariance matrix of the estimate that we have obtained has been evaluated using the jackknife
method.
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