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Neuronal signaling in the CNS depends on the microenvironment around synapses and axons. To
prevent fluctuations in blood composition affecting the interstitial fluid and CSF, two barriers, the
blood–brain barrier (BBB) and blood–CSF barrier (BCSFB), are interposed between the blood and
the brain/CSF compartment. Brain capillary endothelial cells (ECs) constitute the BBB whereas cho-
roid plexus epithelial (CPE) cells form the BCSFB. The anatomical basis of these barriers is located at
the level of an intercellular junctional complex that impedes paracellular diffusion. Tight and adher-
ens junctions are known as the principal constituents of this junctional complex. Transmembrane
connexins (Cxs) are the prime building blocks of plasma membrane hemichannels that combine
to form intercellular gap junctions (GJ). Although Cxs co-exist within the junctional complex, their
influence on tight/adherens junctions and their role in barrier function of BBB ECs and CPE has been
mostly ignored. Here, we review current knowledge on the role of Cxs in the BBB, BCSFB and other
interfaces that subside within the CNS. We conclude that Cxs are a rather unexplored but promising
target for influencing CNS barrier function.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Barriers in the CNS

Efficient electrical signaling in the CNS requires a balanced and
well-controlled composition of the micro-environment around
glial cells, neurons and synapses. This is maintained by a series
of barriers interposed between the nervous tissue, the blood and
the cerebrospinal fluid (CSF) that collectively protect the intersti-
tial fluid and CSF from fluctuations in blood composition. The larg-
est, most stringent, and by far, most complex barrier is formed by
capillary endothelial cells (ECs) and is situated between the blood
and the brain (i.e., blood–brain barrier, BBB), whereas epithelial
cells of the choroid plexus, as well as the arachnoid epithelium
and tanycytes form a blood–CSF barrier (BCSFB). Tight junctions
(TJs) and adherens junctions (AJs) between the endothelial and epi-
thelial cells are the structural components of these barriers as they
impede the paracellular movement of ions, solutes, proteins, water
and blood cells. This implies the necessity for transporter
mechanisms that mediate the influx of essential, and the efflux
of deleterious molecules across the barriers.

The expression and function of TJs and AJs in the barriers of the
CNS is well established; however, our appreciation of expression
and function of a third class of junctional proteins, i.e. connexins,
is lagging far behind. In this review we summarize current knowl-
edge on the expression and role of these proteins at the different
CNS interfaces.
1.1. The blood–brain barrier

The distinct and unique capillary endothelial cells (ECs) of the
brain form the anatomical basis of the vertebrate blood–brain bar-
rier (BBB) (Fig. 1). These cells furnish a highly sophisticated
junctional complex consisting of AJs and TJs that limit paracellular
diffusion of solutes between the blood and the brain [1–4]. This tem-
pered paracellular movement of water, molecules and ions is echoed
in a high transendothelial electrical resistance (TEER). Electrical
resistance measured in frog pial capillaries amounts 1900 X.cm2

and values measured in rat cerebral capillaries are in the range of
3000 X.cm2 [5]. In comparison, peripheral microvessels, that are
often fenestrated and exhibit slightly different TJ components and
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Fig. 1. Barriers of the CNS. The central nervous system, i.e. brain, spinal cord and retina, is separated from the peripheral blood by a set of epithelial and endothelial barriers.
The central image depicts a schematic representation of the CNS with insets pointing to the location of the different blood–tissue interfaces. The detailed architecture of the
separate barriers is illustrated in the outer panels. At the ocular level (panel A), the inner endothelial and outer epithelial BRB act together to protect the retina from
potentially deleterious circulating molecules. In the brain (panel B/D), the endothelial BBB is interposed between the nervous tissue and the microcirculation, while at the
ventricular level (panel C), the epithelial BCSFB forms a blood–CSF interface. In the spinal cord, the BSCB, an endothelial barrier highly similar to that in the brain (panel B/D),
can be found. The arachnoid barrier which is composed of leptomeningeal cells finally separates the blood compartment from the CSF in the sub-arachnoid space (panel E).
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organization [6,7] have TEER values a 100 times lower. The absence
of pinocytotic activity and the presence of a strictly regulated set of
transport proteins and enzymes add up to the specific features of
BBB ECs [1], altogether rendering these vessels far less permeable
to endo- and exogenous molecules than their peripheral counter-
parts. These specialized characteristics may endure in pre- and
post-capillary segments, though it is not clear to what extent [1–3].

TJs or zonulae occludens (ZO) are domains of occluded intercel-
lular clefts that in freeze-fracture replicas appear as an elaborate
complex of parallel, anastomosing intramembranous protein
strands, arranged as a series of multiple barriers (Fig. 2). They
not only restrict the paracellular passage of solutes (gate function),
but also polarize the cell (fence function) [8,9]. Claudins are a fam-
ily of transmembrane (TM) proteins (20–24 kDa) of which more
than 24 isoforms are identified [10] and are the primary barrier-
forming TJ constituents. In the BBB, claudin-3, -5 and -12 are most
important for composing the TJ backbone [4,11,12], but claudin-2,
-11, and -18 have been identified as well [13]. Occludin was the
first TJ protein discovered [14] but in contrast to claudins, it does
not seem to be required for the formation of TJs as such.
Well-developed, morphologically correct networks of TJ strands
have indeed been observed in occludin deficient animals [15].
Furthermore, occludin cannot establish organized strands by itself
but is instead incorporated into claudin-based strands [16].
Nevertheless, functionally, occludin expression is associated with
TJ sealing and is correlated with increased electrical resistance
[17,18]. In this respect, strong occludin expression is mainly
observed in BBB endothelium and other CNS barriers (see further)
whereas only trace amounts are observed in ECs of peripheral tis-
sue like the aorta [19,20]. Mature BBB ECs thus use occludin to reg-
ulate rather than to establish their barrier properties. The JAM
proteins represent a third family of TM proteins that mediate
homo- and heterophilic interactions in the TJ region, establishing
the early attachment of adjacent cell membranes [21,22]. Other,
less-characterized TM proteins, like junctional adhesion molecules
(JAMs) and tricellulin, may further assist in TJ formation [23]. First-
and second-order cytoplasmic adaptor proteins are associated with
the TM components and act as scaffolds for cytoskeletal and signal-
ing molecules. ZO proteins are the prototypic example of such first-
order adaptor proteins. They play an important role in signal trans-
duction and in anchoring the TJ proteins to the cytoskeleton, either
via direct interaction with actin or indirectly via binding to second-
order adaptor proteins. This association is not only important for
stabilization of the junctions, but also for the dynamic regulation
of junction opening and closure [6,23]. Brain microvessels are
especially abundant in ZO-2 with a contribution of ZO-1, but ZO-
3 is hardly detected [19]. Other cytoplasmic adaptor proteins in-
clude cingulin, afadin (AF-6) and 7H6 antigen [24].

Already during fetal development, TJs are present between ECs
of the vascular sprouts that invade the neural tube. Although these
early vessels display an enlarged diameter and irregular shape, the
absence of plasma proteins in the brain interstitial compartment
and the impermeability of 3 kDa biotin-dextrans suggest that para-
cellular diffusion is restricted and that TJs are sufficiently well



Fig. 2. Cx channels form part of the intercellular junctional complex. TJs and AJs between endothelial and epithelial cells are responsible for impeding the paracellular
movement of ions, solutes and blood cells; thereby establishing the anatomical barriers of the CNS. The principal constituents of TJs are the transmembrane proteins occludin
and claudins. These interact with the actin cytoskeleton via adaptor proteins such as the ZO proteins, afadin and cingulin. AJs are build up by transmembrane proteins
belonging to the cadherin family and by catenins that link the cadherins to actin. Transmembrane Cx proteins constitute a third partner in the intercellular junctional
complex. These proteins combine into a CxHC that exist as transmembrane channels in the plasma membrane or that exist as GJ channels, formed by two apposed CxHCs. GJ
channels are found within the junctional complex, are endowed with adhesive properties and functionally link the cytoplasm of adjacent cells. Cx channels may connect
physically to claudins, occludin, N-cadherin and catenins, or may promote occlusion of the intercellular cleft by indirect signaling to AJs and TJs (indicated by the arrows).
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developed to exclude these proteins and markers from the fetal
brain parenchyma [8,25]. In situ measurement of electrical resis-
tance over the pial vessel wall reported a low TEER (�300
X.cm2) in rat embryos up to E20, but starting from E21, TEER
increases up to �1200 X.cm2 [26]. The further maturation of the
barrier arises from progressive changes in TJ morphology which
is initiated by interactions between ECs and their surrounding
partners [8,25,27,28].

The current concept of the BBB has shifted from a purely ana-
tomical, endothelial barrier to an integrative view in which the
BBB is regarded a modulatory interface, controlled by intercellular
signaling processes between ECs, glial cells, pericytes and neurons
that together form the neurogliovascular unit (or neurovascular
unit) [1,29]. Astrocytic projections, termed endfeet, almost
completely surround the brain capillaries, but direct contact be-
tween these structures and the endothelium is hindered by the
basement membrane [30]. Grafting experiments are indicative
for the barrier-supporting role of the nervous tissue: brain vessels
growing into peripheral tissue grafts become less tight, whereas
leaky vessels become more restrictive when grafted into brain tis-
sue [31]. However, although astrocytes are necessary for BBB
maintenance, they are probably not sufficient to induce a proper
barrier. Some BBB characteristics are present very early during
development, even before differentiated astrocytes are present.
In rodents, neurogenesis (E11–17), rather than gliogenesis (E17)
coincides with the invasion of early blood vessels into the neural
tube (E10–11) [25,27]. Therefore, neurons or pericytes are more
likely candidates to induce TJ formation while gliogenesis coin-
cides with marked alterations in TJ complexity [32]. Pericytes
are in close contact with capillaries, even in the earliest stages
of development. They display a dendrite morphology with several
cytoplasmic processes wrapping around the vessel wall [33] and
are, together with the ECs, embedded in the endothelial basement
membrane of which they synthetize most molecular components
[13,34]. Unlike astrocytes, pericytes are in direct contact with ECs.
Pericytes regulate vessel growth and development, as well as TJ
formation and transporter function via secretion of growth factors
such as transforming growth factor-b (TGFb) angiopoietin-1,
platelet-derived growth factor B (PDGF-B) and basic fibroblast
growth factor (bFGF) [34–41]. In higher order vessels, these
growth factors are additionally involved in regulation of vessel
tone [42–44].

1.2. The blood–CSF barriers

The brain is surrounded, both internally and externally, by CSF
which is secreted by the choroid plexus, a villous structure located
in the roof of each of the four cerebral ventricles. The choroid
plexus is a highly vascularized structure; yet capillaires are fenes-
trated and leaky, thus lacking barrier properties. Nevertheless, a
barrier between blood and CSF is formed by the cuboidal choroid
plexus epithelial cells (CPE) that are positioned between these
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two compartments (Fig. 1). The TJ structure at the BBB and the
BCSFB is largely similar, but ECs and CPE express different levels
of occludin, ZO-1 and ZO-2 [19]. In addition, different claudin iso-
forms are present in these cells. As described above, BBB ECs
mainly express claudins-3, -5 and -12 whereas claudins-1, -2, -3
and -11 are found in the CPE [19,45,46]. These varying isoforms
and expression levels may account for the differences in resistance
measured over the BBB and BCSFB. It is challenging to measure
electrical resistance over the BCSFB in vivo; yet in vitro measure-
ments of resistance over CPE isolated from bull frog is about 150
X.cm2 [47], much lower compared to that measured at the level
of the BBB. While the BBB is considered an absolute immunological
barrier, the BCSFB is thought to be permissive to immune surveil-
lance of the CNS [48], further highlighting important differences
between the BBB and the BCSFB. Major functions of the CPE include
the secretion of CSF for the ventricles and the production of growth
factors via which they signal to the fenestrated capillaries [49]. The
CPE is highly responsive to inflammatory changes in the periphery,
which is reflected in inflammation-induced changes in CPE
proteome, secretome, transcriptome and functionality [50–52].
The outer layer of the ventricular lining is composed of ependymal
cells that constitute a leaky CSF–brain interface. Indeed, despite
the presence of occludin, ZO-1 and AJ proteins, the TJs in ependy-
mal cells are discontinuous, blind-ending strands [53,54]. As a
result, the CSF is in contact with and mixes with the brain
interstitial fluid which has a similar composition [55] (Fig. 1).
Nevertheless, ependymal cells express a multitude of enzymes
and transporters via which they regulate the exchange between
CSF and interstitial fluid. Glucose levels for example differ between
the two compartments (CSF: �2.5 mM versus brain interstitial
fluid: �1 mM) [56,57]. Ependymal cells additionally scavenge toxic
byproducts of metabolism thereby constituting a metabolic
barrier. Also, by regulating water flow through aquaporin
channels, ependymal cells are important for handling hydrocephalic
pressure [53].

A second blood–CSF interface is located at the level of the cir-
cumventricular organs (CVOs), such as the median eminence
(ME), i.e. the neurohemal part of the hypothalamus where
hormones are collected before entering the hypophyseal portal
system. CSF communicates with the internal milieu of the ME
but a barrier is present between the arcuate nucleus, where hor-
mones are secreted, and the ME, preventing blood coming into
contact with the CSF. This barrier is formed by tanycytes that are
found predominantly lining the floor of the 3rd ventricle, overlying
the ME [58] and that face the fenestrated portal capillaries of the
ME, forming a dense network around them. TJ proteins were iden-
tified as a continuous belt around the tanycyte cell bodies and to
form a diffusion barrier for the large MW tracer Evans Blue [59].
Recently, a similar barrier was observed in other CVOs including
the organum vasculosum laminae terminals (OVLT), the subfornical
organ (SFO) and the area postrema (AP) [60]. The characterization
of TJ components in tanycytes is less straightforward. Tanycytes
describe a heterogeneous population of alpha1/2 and beta1/2 sub-
types that are all adjoined by AJs, but although TJ proteins are pres-
ent in alpha2, beta1 and beta2 tanycytes, actual TJs were only
identified between beta cells. Hence, only beta1 and beta2

tanycytes have been proposed to form a diffusion barrier [61].
Finally, at the exterior part of the brain, three layers of menin-

ges, namely the dura mater, arachnoid membrane and pia mater
cover the brain surface. Fenestrated vessels are found throughout
the meninges, but due to the presence of TJs in the outer arachnoid
leptomeningeal membrane, blood does not come into contact with
the subarachnoid CSF that is drained from the ventricular space
[45,46,62–64].
In both the BBB and BCSFB, simple paracellular diffusion of
metabolites and ions is impeded by the presence of TJs in endothe-
lial and epithelial cells respectively. Consequently, exchange be-
tween blood and nervous tissue is largely dependent on solute
carriers that provide essential nutrients to the brain. These include
different amino acid transporters, GLUT-1 (glucose uptake) and ion
transporters. Extrusion of toxic waste products largely depends on
a variety of energy-requiring efflux pumps (ABC transporters) that
remove deleterious lipophilic compounds diffusing in over the BBB.
P-glycoprotein is without doubt the best known example of such
efflux pump. The BBB and the BCSFB have, in general, a similar
functional organization with regard to transport of molecules,
but the actual set of carrier proteins and efflux pumps slightly dif-
fers. An elaborate description of transporters in the blood–brain
and blood–CSF interfaces lies beyond the scope of this review but
is excellently reviewed in [46,65].

1.3. Other barriers in the CNS

The main supply of blood to the retina, that is ontogenetically
part of the CNS, is provided by retinal microvessels whereas the
outer one-third is perfused by the choroidal circulation. At both
levels, a blood–retinal barrier (BRB) separates blood from the reti-
nal nervous tissue (Fig. 1). The inner BRB (iBRB) is highly similar to
the BBB and is composed of capillary, non-fenestrated ECs that are
characterized by highly restrictive TJs. These ECs lie on a basement
membrane that also contains pericytes, and that is associated with
astrocytic endfeet and glial Muller cells. The outer BRB (oBRB) is lo-
cated at the retinal pigment epithelium (RPE) that lies on the
Bruch’s membrane and that contains TJs separating the fenestrated
choriocapillaires from the neural retina. Like the BBB and BCSFB,
the oBRB and iBRB jointly serve to secure a continuous nutrient
supply and metabolite removal in order to maintain a stable com-
position of the extracellular fluid in the retina [66,67].

Finally, an endothelial barrier is present between the blood and
the spinal cord; the BSCB. This barrier is roughly similar to the BBB
and both are often mentioned in the same breath. More and more
evidence indicates however, that important structural and func-
tional differences exist between the BBB and the BSCB. The BSCB
for instance contains lower levels of occludin, ZO-1 and AJ proteins
VE-cadherin and b-catenin. As a result, the barrier is more perme-
able to tracers and pro-inflammatory cytokines. Additionally, BSCB
ECs express lower levels of P-glycoprotein, the major efflux pump
in the BBB [68]. Further studies will be required to define and char-
acterize additional differences between the BBB and the BSCB. It is
not clear whether a BCSFB exists in the spinal cord, where CSF
flows in the central canal and in the subarachnoid space that is
continuous with the subarachnoid space around the brain.

2. Connexins, not just another partner in the junctional
complex

Although often overlooked when discussing intercellular junc-
tions, connexin (Cx) proteins constitute an important partner in
the junctional complex [69,70] (Fig. 2). Cxs belong to a superfamily
containing 21 isoforms that are expressed in a tissue-specific man-
ner and which are named according to their molecular weight (e.g.
Cx43 has a MW of 43 kDa) [71,72]. The Cxs appear in a hexameric
configuration in the plasma membrane (PM), but unlike TJs and AJs
proteins, these do not form a tight seal between the cells. Their pri-
mary function is to form gap junction (GJ) channels that directly
connect the cytoplasm of adjacent cells. GJs are also endowed with
adhesive properties, for example to attach neurons to radial glial
cells during their cortical migration in brain development [73–77].
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GJ channels are large, poorly selective, aqueous pores that are
assembled by the head-to-head docking of two half GJ channels
or hemi-channels (CxHC), each delivered by one of the partner cells.
CxHCs are composed of six Cx proteins, arranged around a central
pore. CxHC docking occurs in specialized PM regions termed GJ pla-
ques which can be found in nearly all mammalian cell types [78–
80]. GJ plaques are characterized in freeze-fracture microscopy by
clusters of condense membrane particles with central depressions
corresponding to the channel pores. The plaques contain from less
than a dozen to up to 200000 units and may extend from several
nanometers to a few micrometers in diameter [78,79]. CxHCs, by
themselves, form a tightly regulated conduit between the cyto-
plasm and the extracellular environment. Because CxHCs allow
the passage of globular substances up to �1.5 kDa, it was originally
believed that these channels remain closed until they dock with op-
posed CxHCs to form GJ channels. This would prevent cell death
caused by the loss of essential metabolites, energy substrates and
diffusible second messengers, and by the collapse of ionic gradients.
However, brief and controlled opening of CxHCs does not lead to
cell loss, suggesting that cells can at least cope with some degree
of CxHC opening [81]. CxHCs may be activated by a multitude of ex-
tra- and intracellular triggers such as changes in the intra- ([Ca2+]i)
and extracellular ([Ca2+]e) Ca2+ concentration, free radicals, intra-
cellular redox potential [82–85], metabolic inhibition [86] or ische-
mia [87], and mechanical stimulation or fluid flow shear stress [88].
Whereas GJs form a direct communication route between cells,
CxHC opening provides a diffusive uptake and release pathway.
CxHCs have been demonstrated to allow the release of messenger
molecules like ATP and glutamate [89], thereby possibly contribut-
ing to both autocrine and paracrine signaling [90]. Together, GJs and
CxHCs coordinate different functions from the cellular up to the or-
gan level, including development and differentiation, oncogenic
transformation and growth control, cell death, inflammation and
intercellular signal transmission [91–93].

Cxs significantly contribute to the junctional complex. Recent
research has revealed the involvement of Cxs in stabilizing inter-
cellular junctions, thereby promoting occlusion of the intercellular
cleft in a number of peripheral tissues [94]. Several lines of evi-
dence confirm this notion. Freeze-fracture analysis has revealed
the presence of GJs plaques within TJ strand networks [67,95,96].
In colonic epithelial cells, airway epithelial cells and hepatocytes,
Cxs potentiate the expression of and interact with claudins, occlu-
din, N-cadherin, and catenins [69,95,97–102]. These interactions
are suggested to enhance barrier function. Oppositely, treatment
with Cx channel blockers downregulates the expression of occludin
and claudins, increasing the permeability of the different compart-
mental barriers [95,102–105]. The role of Cxs in modulating barrier
function is most elegantly demonstrated in the testis, where a bar-
rier is formed by the seminiferous Sertoli cells. Here, Cx43 is tran-
siently lost from the intercellular junctions during the spermiation
process which involves a temporary increase in permeability. Cx43
re-associates with the junctional proteins as soon as the barrier
closes up again [106].

From the data discussed above, it follows that Cxs provide an
important contribution to the barrier function established by TJs
and AJs in peripheral tissues; however, Cxs are often neglected in
the context of CNS barriers. In the following chapter we will pro-
vide evidence that Cxs are also important players in regulating
the permeability of the blood–CSF and blood–tissue interfaces.

3. Connexins in the cerebral barriers

Cxs are found throughout the CNS where they establish connec-
tions that are most prominent in glial and vascular cells, but also
exist in neurons. Eleven Cx subtypes are found in the CNS with
the subset and the expression levels varying depending on the cell
type and the developmental stage [107]. GJs and CxHCs are in-
volved in key functions of the CNS such as glial metabolism and
synaptic signaling, and aberrant Cx protein expression may con-
tribute to CNS pathologies (reviewed in [92,107–110]). However,
the role of Cxs in the barrier-forming cells of the CNS has hardly re-
ceived attention.

3.1. Cxs in endothelial cells of the BBB, BRB and BSCB

Vascular ECs throughout the body express Cx37, Cx40 and Cx43
with variability in abundance, depending on the vessel type and
position in the vascular tree. Cx37 and Cx40 are widely distributed
in large vessel ECs, whereas Cx43 is strongly expressed in regions
of turbulent flow [111–113]. Our knowledge on the role of Cx
channels in the function of capillaries and microvessels is still lim-
ited. In larger vessels (arteries/veins and arterioles/venules) GJs
coordinate cell migration during angiogenesis and wound healing
[113]. GJs are also instrumental in conducting a hyperpolarizing,
electrical wave between ECs that modulates the vascular tone
[114,115]. The coupling of ECs with smooth muscle cells via myo-
endothelial junctions contributes to modulating the vessel diame-
ter that is subject to changes in blood pressure, blood flow and
shear stress [116–118]. Alterations in these parameters have fur-
thermore been demonstrated to adjust Cx expression levels in
ECs [119,120]. In capillaries, endothelial Cx channels have been
associated with inflammatory responses. In lung alveolar blood
vessels for instance, GJs mediate the bidirectional propagation of
intercellular Ca2+ waves from capillaries to first order venules
where the Ca2+ signal induces the expression of P-selectin, a cell-
adhesion molecule that is important for leukocyte recruitment
[121]. Similar results were reported for hamster cheek pouch cap-
illaries [122] and capillaries of the renal cortex [120].

As for the CNS, there is no doubt about the presence of Cxs in
the different vascular beds, but it is less well established which
Cx subtypes are being expressed in the BBB. It is more or less ac-
cepted that brain microvascular endothelium expresses Cx37 and
Cx40 [7,123–125] (Table 1). In addition, Cx43 was identified in
freshly isolated capillary and microvascular ECs of bovine, rat,
mouse and porcine brain [7,123,126–129]; however experiments
performed on rat brain slices could not confirm such observations
[30].

Several lines of evidence point to the possible contribution of
endothelial Cxs in determining the permeability status of the
BBB. Lum and colleagues indicate that Cx40 and Cx43 are associ-
ated with occludin and claudin-5 in porcine brain ECs, possibly
via their association with ZO-1 [130]. Others have proposed a role
of Cx channels in stabilizing brain endothelial junctions. Blocking
Cx channels with 18b-glycyrrhetinic acid or oleamide, two non-
specific Cx channel blockers, did not influence the expression or
localization of TJ proteins, but did inhibit the barrier function of
the TJs, based on measurements of TEER and paracellular flux of
mannitol and inulin in vitro [7]. However, most knowledge on
the role of Cxs in modulating the BBB comes from pathological
models. In cerebral ischemia, a condition associated with disturbed
BBB functionality, Cx43 immunolabelling was lost from isolated
brain capillaries [131]. However, the authors indicate that glial
endfeet are still present in their microvessel preparations, so care
should be taken when ascribing the loss of Cx43 immunolabelling
entirely to ECs. Another condition generally associated with a pro-
gressive dysfunction of the BBB is aging. Using ovariectomy of
young animals as a menopause/aging model, it was shown that
Cx43 redistributes in the BBB ECs without accompanying changes
in ZO-1. Nevertheless, BBB permeability to Evans Blue was in-
creased compared to non-ovariectomized controls [128]. These



Table 1
Cx expression in cells constituting the different CNS interfaces. For references and
abbreviations: see text.

Barrier/interface Cell type Cx expression

Blood–brain
interface

EC Cx37
Cx40
Cx43

Astrocyte Cx26
Cx30
Cx43

Pericyte Cx37
Cx40
Cx43

Blood–retina
interface

EC (iBRB) Cx30.2 (murine orthologue of
human Cx31.9)
Cx37
Cx40
Cx43

RPE (oBRB) Cx40
Cx43
Cx46

Müller cells Cx43
Cx45

Pericyte Cx30.2 (murine orthologue of
human Cx31.9)
Cx37
Cx40
Cx43

BSCB EC Cx43

BCSFB CPE Cx23
Cx26
Cx30.3
Cx31.1
Cx36
Cx43
Cx50

Tanycyte Cx43
Leptomeningeal
cells

Cx26
Cx30
Cx43

Brain–CSF
interface

Ependymal cells Cx26
Cx30
Cx43
Cx45
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data indicate that a loss in endothelial cell–cell communication
due to altered hormonal levels, may underpin the barrier defects
associated with ageing. CxHCs have been implicated in the inflam-
matory response of BBB cells. Exposure of immortalized rat brain
RBE4 cells to conditioned medium harvested from lipopolysaccha-
ride-activated microglia induces CxHC-mediated dye uptake in
these ECs [108]. Treatment of immortalized mouse bEnd5 cells
with peptidoglycan also activated Cx43 HCs. This led to the release
of the extracellular messenger molecule ATP and resulted in
increased expression of the toll-like receptor 2, potentiating the
production of interleukin-6 [132]. Work from our hand brought
up a novel role for CxHCs in the regulation of BBB function by
the inflammatory stressor bradykinin. Here, CxHCs influenced
BBB permeability via their involvement in the Ca2+ signaling
machinery activated by bradykinin. The endothelial cytoplasmic
Ca2+ concentration ([Ca2+]i) is an important determinant of BBB
function and an increase in endothelial [Ca2+]i is invariably associ-
ated with a dysfunctional barrier (reviewed in [133]). CxHCs are
Ca2+ permeable channels that open in response to a [Ca2+]i in-
crease, therefore contributing to Ca2+-induced Ca2+ entry [134].
Additionally, open HCs mediate diffusive ATP release that subse-
quently engages in an autocrine signaling loop by activating puri-
nergic receptors that activate phospholipase C (PLC) and promote
the generation of inositol 1,4,5-trisphosphate (IP3), triggering
Ca2+ release from endoplasmic reticulum Ca2+ stores. P2Y1, P2Y2,
P2Y6, P2Y11 and P2Y12 are present in BBB ECs [135–138]. Both
CxHC-related mechanisms contribute to the oscillatory [Ca2+]i

changes induced by bradykinin and appear to be critical for Ca2+

oscillation-induced BBB dysfunction [129,134]. Notably, CxHC-
supported endothelial Ca2+ oscillations were not associated with
alterations in occludin and ZO-1 organization, suggesting that al-
tered BBB function may be related to increased transcellular traf-
ficking across BBB endothelial cells. The increase in [Ca2+]i may
be furthermore communicated to adjacent endothelial cells as
intercellular Ca2+ waves [139], the propagation of which depends
on GJs as well as CxHCs. GJs directly pass IP3 to adjacent cells
whereas CxHCs provide a paracrine ATP-dependent Ca2+ signaling
route [140]. Our data indicate that the propagation of endothelial
intercellular Ca2+ waves is associated with high amplitude [Ca2+]i

changes and a large permeability increase, which is more pro-
nounced than the permeability increase associated with bradyki-
nin-induced Ca2+ oscillations [139]. Taken together, these
findings demonstrate that endothelial Ca2+ dynamics in concert
with Cx channels influence BBB function, with CxHCs contributing
to Ca2+ oscillations and CxHCs and GJs contributing to the spatial
spread of [Ca2+]i changes as intercellular Ca2+ waves [140].

The ECs of the inner retinal barrier express all vascular Cxs
(Cx37, Cx40 and Cx43) as well as murine Cx30.2 that shows 84%
similarity with human Cx31.9 [141–144] (Table 1). Recent evi-
dence points toward the importance of Cxs in vascular network
formation in the retina. RTEF-1 (related transcription enhancer fac-
tor-1) is a major player in the regulation of angiogenesis, the pro-
cess during which ECs proliferate, migrate and form networks as
primitive tubes mature into blood vessels. RTEF-1 was additionally
identified as a prime regulator of Cx37, Cx40, and most impor-
tantly, Cx43 expression in retinal ECs. The knock-down of RTEF-1
and of Cx43 gave similar effect profiles characterized by acellular
capillaries and disconnected vascular networks, indicating a role
in EC aggregation rather than proliferation [90]. Although an in-
crease in GJ-mediated intercellular communication was found to
accompany the increase in Cx expression, it is unknown whether
GJs are required for EC aggregation. Indeed, Cxs exert adhesive
properties that are not related to their channel function [73–77].
Knock-out of Cx43 and Cx30.2 results in EC apoptosis and vascular
lesions featured as acellular capillaries and pericyte loss in the ret-
inal tissue [142,145]. Exposure of cultured retinal ECs to high glu-
cose (30 mM) or injection of streptozotocin, mimicking diabetic
retinopathy respectively in vitro and in vivo, has similar effects.
Apoptosis does not simply result from a loss of Cx43, but from a
defective intercellular communication since Cx channel block
equally gives rise to EC death [144]. Different hypotheses exist to
explain the link between loss of cell–cell communication and
apoptosis. These include the impeded exchange of survival or
rescue signals as well as a compromised spatial clearing of toxic
molecules [146]. Interestingly, high glucose also reduced Cx43 lev-
els in the endothelial mitochondria [147]. Cx43 has been recently
revealed in the inner mitochondrial membrane of various cell
types, but its role remains mostly speculative. The downregulation
of mitochondrial Cx43 in retinal ECs is accompanied by a fragmen-
tation of the mitochondrial network and release of the apoptotic
mediator Cytochrome C [147]. In cells not experiencing cell death,
the reduction in Cx43 expression is accompanied by a downregu-
lation of ZO-1 and occludin, and hence, compromised TJs. The
exogenous expression of Cx43 in these conditions protects the cells
from high glucose-induced changes in occludin and ZO-1 and pre-
vents an increase in monolayer permeability [141]. Conversely, the
loss of retinal ECs observed with ischemia/reperfusion is ascribed
to an upregulation of Cx43 [148]. It is hypothesized that Cx43HCs
open as a result of deficient supply of oxygen and glucose, contrib-
uting to EC death. Vessel rupture, dye leakage, astrogliosis and
retinal ganglion cell loss accompanied the EC loss. Similar
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observations were also made in ischemic, excised optic nerves
[149]. Partial optic nerve transection, as a model for traumatic in-
jury, had no effect on Cx43 expression in the microvessel, but
unfortunately, Cx channel function was not investigated in the
ECs [150].

Finally, in a rodent model for traumatic spinal cord injury, a
significant elevation of Cx43 expression was observed in the walls
of small blood vessels, as early as 6 h after injury. This upregulation
was accompanied by vascular leakage of fluorescently-labelled
albumin and accumulation of blood–borne neutrophils. Preventing
Cx43 upregulation using antisense oligodeoxynucleotides, over-
came the vascular leak and neutrophil recruitment to the vessel
wall [151].

3.2. Cxs in the endothelial cell partners of the blood–brain interface

As described in chapter 1, the BBB is surrounded by barrier-
supportive astrocytes and pericytes that have an indisputable, be
it direct or trophic, influence on the barrier forming endothelium.
Astrocytes and pericytes have been far better characterized in
terms of Cx expression and Cx channel function as compared to
the ECs.

Astrocytes form extensive networks through which they dilute
glutamate and potassium ions taken up from the extracellular
space during neuronal action potential firing and synaptic activity.
In this way they prevent a build-up of potassium and glutamate,
protecting neurons from excitotoxic death. Through the release
of gliotransmitters they additionally modulate synaptic transmis-
sion while at the same time, astrocytes physically and functionally
connect neuronal synapses with the cerebral vasculature, helping
to adjust blood flow to metabolic demand. In all of these functions,
glial GJs and CxHCs, mostly made up of Cx30 and Cx43 (Table 1),
have been shown to fulfil important tasks [110]. In the retina,
Cx43 and Cx45 expressed in macroglial Müller cells seem to sup-
port comparable functions [152–154]. Despite the abundance of
Cxs in astrocytes and their well-known role in neuronal function-
ing, little is known on how glial, perivascular Cxs would contribute
to the endothelial barriers of the CNS. Glial endfeet enriched in
Cx30 and Cx43 appear around BBB capillaries 15–20 days after
birth, i.e. when the BBB is functional [155]. Under normal circum-
stances, Cx30�/� Cx43fl/fl/hGFAP-Cre dKO mice that have global
Cx30 knock-out combined with a glial-specific deletion of Cx43,
also display normal TJ morphology between ECs, and the BBB is
functionally intact. However, when vascular pressure is increased,
BBB permeability is largely elevated compared to wild type mice
[155]. Thus, it is suggested that glial endfeet Cxs strengthen the
barrier and preserve barrier function in case of stress.

Pericytes are vascular mural cells that share the basement
membrane with capillary ECs [156,157]. They are multifunctional
cells endowed with the regulation of endothelial TJ/AJ develop-
ment (see above), vascular stability and architecture, extracellular
matrix secretion, vessel diameter and they exhibit phagocytic
properties [158]. In areas where the basement membrane is ab-
sent, pericytes physically contact the EC monolayer via so called
peg-and-socket junctions (PSJs); reciprocal extrusions from one
cell that invaginate the other cell, leaving an intercellular gap of
�20 nm [159,160]. In comparison, the intercellular cleft at the level
of GJ plaques amounts only 3.5 nm [161]; therefore, direct cyto-
plasmic communication at the site of PSJs is inconceivable. Never-
theless, PSJs have been suggested to contain Cx channels [158,159],
which are most likely CxHCs that enable paracrine signaling at this
site. The primary building block of the pericytic CxHCs is Cx43, but
Cx37, Cx40 and Cx30.2 have also been identified [142,162]
(Table 1). Functionally, PSJs have been implicated in electric field
coupling [159] and paracrine growth factor signaling [157]. Out-
side PSJs, pericytes may form GJs with ECs since the differentiation
of mesenchymal cells into pericytes during embryonic develop-
ment is initiated by direct junctional contact with ECs that leads
to TGFb signaling [163]. Pericytes also respond to vasoconstrictors
by an increase in [Ca2+]i via GJs. This Ca2+ signal is further propa-
gated to smooth muscle cells that surround higher-order arterioles
and venules [164].

3.3. Cxs at the epithelial BCSFB and oBRB

Compared to the recently reviving interest in Cxs in endothelial
cerebral barriers, hardly anything is known on the role of Cxs in the
cells that constitute the blood–CSF interface.

In choroid plexus preparations consisting primarily of CPE (90%
purity), microarray analysis identified genes coding for Cx23,
Cx30.3, Cx31.1, Cx36 and Cx43 (Table 1). Note however, that
although ependymal cells constitute only a minority in this prepa-
ration, it cannot be excluded that the detection of Cxs in CPE by
qPCR is biased by the ependymal cell fraction. The expression of
these genes varied from the embryonic phase up to adulthood, with
Cx43 being the most relevant in adult tissue [165]. Non-punctate
expression of Cx50 as well as small and rare Cx26 punctae were
additionally identified in the CPE [125,166]. It has been suggested
that Cx43 in the CPE contributes to the autoimmune response that
forms the basis of myelin degradation in multiple sclerosis. Upon
induction of experimental autoimmune encephalomyelitis (EAE, a
mouse model of multiple sclerosis), the CPE undergoes numerous
morphological and functional changes, including the reorganiza-
tion of claudins [115]. In addition, EAE potentiates the expression
of Cx43 in CPE and increases the thickness of GJ plaques in atomic
force microscopy [167]. It is however unknown how this relates
to the progression of the disease.

Tanycytes have received a substantial interest related to their
Cx expression and function. Recent evidence suggests that tany-
cytes, similar to glial cells, signal among each other via changes
in [Ca2+]i rather than through changes in membrane potential.
The cells respond to several extracellular messengers, including
ATP, histamine and acetylcholine, by exhibiting a rapid and robust
[Ca2+]i increase that can propagate to neighboring cells with a
velocity similar to the propagation of intercellular Ca2+ waves in
other cell types. Tanycytes may also release ATP that functions as
a paracrine messenger for the propagation of Ca2+ waves. Thus, it
is plausible that tanycytes function, like astrocytes, as a network
coordinated by GJs and paracrine purinergic signaling [168–170].
Cx43 has been identified in tanycytes (Table 1), but there is no con-
sensus yet in which of the tanycyte subclasses it resides. Whereas
some find expression of Cx43 only in alpha1 tanycytes [61], others
identify Cx43 in beta1 cells [171]. Consistent with older data [172],
these beta1 cells effectively transfer micro-injected Lucifer yellow
to neighboring cells via GJs. They also take up the small MW dye
ethidium bromide when CxHC opening is stimulated by omission
of extracellular divalent ions in the bathing solution. Generally ta-
ken, tanycytes are thus equipped with functional GJs and CxHCs.
Cx43HCs were proposed to play a role in the glucosensing capacity
of the beta1 tanycytes. Glucose is taken up by tanycytes through
glucose transporters and is converted to ATP through glycolysis.
ATP is then released via Cx43HCs and acts in an autocrine manner
to stimulate an increase in [Ca2+]i [171], similar to observations
made in BBB ECs [129]. The increase in [Ca2+]i may further poten-
tiate CxHC opening so that they can contribute to glucose uptake.
Whether or not GJ channels are involved in the propagation of
glucose or Ca2+ waves to neighboring tanycytes remains to be
determined. ATP release by tanycytes may modulate neuronal
activity in hypothalamic areas associated with feeding behavior.
On the other hand, it was also demonstrated that blood glucose
levels do not differ between wild type and heterozygous Cx43+/�

mice [145], suggesting that Cx43 downregulation may not
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interfere with the overall glucosensing hypothalamic function.
However, residual expression in the heterozygous Cx43+/� mice
model may be sufficient to support hypothalamic function, pre-
cluding strong conclusions to be made.

Finally, GJs are abundant in developing and adult meninges
[173–176] with adult meningeal fibroblasts displaying intense
immunoreactivity for Cx26, Cx30 and Cx43 [166,174,177,178]
(Table 1). Cx26 has additionally been identified in leptomeningeal
cells [135,174], i.e., cells derived from the pial and arachnoid
membrane with fibroblast-like appearance. Meningeal projections
reach the lateral ventricles and the roof of the third ventricle and
are continuous with the stroma of the choroid plexus that is
separated from the CPE by a basal lamina [166]. Rat brain tissue
sections reveal abundant Cx26 punctae in these meningeal projec-
tions and in the choroid plexus stroma [166]. Cx26 and Cx30 may
form heterotypic channels and in Cx30 knock-out mice, where
Cx30 is deleted from the leptomeninges, Cx26 was lost as well
[136]. Leptomeningeal Cx43 expression was unaltered in Cx30
knock-out mice, but has been shown to disappear upon trypano-
some infection. Cx43 was deleted only from those cells that were
infiltrated with the parasites [117], but unfortunately, the func-
tional implications of this loss in Cx43 expression remain
unknown.

RPE cells of the oBRB, that prevent choroidal blood from access-
ing the neural retina (rods and cones), have been shown to contain
mRNA of Cx26, Cx32, Cx36, Cx43, Cx45 and Cx46, but of these, only
Cx43 and Cx46 appear at protein level [179]. An independent study
also identified Cx40 in RPE cells [180] (Table 1). GJs in the RPE cell
layer have been shown to be important for the secretion of the
aqueous humor that fills the anterior and posterior chamber of
the eye [180]. GJs are also implied in the spread of CytC-induced
apoptosis in the RPE [181] and in the production of the pro-angio-
genic factor VEGF (vascular endothelial growth factor) [182]. Final-
ly, ATP release from the RPE and the subsequent spread of
intercellular Ca2+ waves between RPEs is strictly dependent on
GJs and HCs composed of Cx43 and are indispensable for the devel-
opment of the neural retina (i.e., rods and cones) [183]. With re-
spect to a Cx contribution to the barrier function of the RPE,
fairly little is known. Cx43 knock-out in RPE has been associated
with leakiness of the BRB towards HRP [180]; yet, TJs remained in-
tact in this study suggesting other pathways like transcytosis. Fur-
ther work will thus be necessary to explain the contribution of Cxs
in the RPE barrier.

3.4. Cxs in the ependymal brain/CSF interface

Ependymal cells are situated between the brain and CSF but are
not barrier forming cells, allowing direct contact between the CSF
and the brain interstitial compartment. Ependymal cells are well-
coupled with one another and with underlying glial cells; GJs can
be made up of Cx26, Cx30, Cx43 or Cx45, all of which have been
identified in ependymal cells [53,138,156,184,185] (Table 1). Epen-
dymal cells secrete a multitude of growth factors via which they
have been suggested to play a part in the organization of the sub-
ventricular zone [53] and GJs may act to synchronize ependymal
cells in this process. Additionally, GJs assist in synchronizing the
beating of cilia which is important for bulk CSF flow [156]. Aquapo-
rin-4 deletion in ependymal cells has been shown to result in the
disappearance of Cx43 and in reduced CSF production, diminished
ventricle volume and increased brain water content [186]; how-
ever, whether this is directly related to aquaporin-4 knock-down
or Cx43 deficiency is uncertain. Importantly, a subset of ependymal
cells located in the central canal of the spinal cord have been as-
cribed stem cell properties. These cells are activated upon spinal
cord injury and proliferate towards the lesion site where they dif-
ferentiate into new neurons and oligodendrocytes, or into new
astrocytes, forming a glial scar [187,188]. GJs may contribute to
their transformation since they stimulate stem cell proliferation
[189]. Recent investigations of these specialized ependymal cells
indicate that they express Cxs, including Cx45, and that they are
well-coupled [53,158,187,190].
4. Pannexin channels

Pannexins (Panxs) constitute a second class of vertebrate, HC
forming proteins [191,192]. In the mouse and human genomes, 3
Panx genes, PANX1, PANX2 and PANX3 were described [170]. Unlike
Cxs, Panxs are highly glycosylated on the extracellular domains,
which negatively affects docking and GJ channel formation [159–
161]; Panxs are therefore suggested to only form HCs. Indeed, to-
day, ample evidence continues to support a role for PanxHCs in a
variety of cells and tissues [57].

Panx1 is ubiquitously expressed whereas Panx2 is confined to
the CNS. The expression of these Panxs in the cerebral vasculature
was only revealed recently [193]; Panx1 and Panx2 are expressed
in the rat middle cerebral artery where Panx1 was identified in
smooth muscle cells only, and Panx2 in ECs and smooth muscle
cells. Panx1 was additionally identified in bEnd5 brain endothelial
cells [132]. Using microarray analysis, PANX1 was also identified in
CPE [165]. Maslieieva and Thompson have recently revealed that
ATP release through Panx1 channels in the CPE recruits epiplexus
cells that are part of the central innate immune system [193]. In
tanycytes, where CxHCs are involved in the intracellular Ca2+ re-
sponse to increased levels of extracellular glucose (see above),
Panx1 channel blockers had no effect [171]. These data at least
indicate that Panx1 is not involved in the process; however, it does
not rule out a possible expression of Panx1 in tanycytes. Unfortu-
nately, up to date, we have no knowledge of any other reports that
pinpoint Panx expression and function in the barrier-forming cells
of the CNS, including BRB and BBB ECs, CPE and tanycytes.
5. Conclusions

Ion and metabolite homeostasis in the nervous tissue is strictly
controlled by a series of barriers interposed between the blood, CSF
and interstitial fluid. The BBB, iBRB and BSCB are endothelial barri-
ers that prevent the direct contact between the circulation and the
nervous tissue at the level of the brain, retina and spinal cord,
whereas an epithelial BCSFB wraps around the fenestrated, leaky
vessels in ventricles, meninges and secretory organs to shield-off
the blood from the CSF. TJs and AJs, that come together in a junc-
tional complex physically linking endothelial and epithelial cells,
are considered the main structural components of the barriers.
However, a third junctional partner, the Cx channels, are largely
overlooked. These proteins may not form true diffusion barriers
like TJs and AJs, but by forming CxHCs and GJs they may have
important regulatory functions. CxHCs allow contact between the
cytosol and the extracellular space whereas GJs, connective chan-
nels formed by two docked CxHCs, allow direct contact between
the cytoplasms of adjacent cells. These channels thus allow for
autocrine and paracrine signaling as well as the direct transfer of
nutrients and metabolites, second messengers, ions and signaling
molecules. Recent evidence, mostly coming from the endothelial
barriers, indicates that Cx channels are involved in EC aggregation,
adhesion and apoptosis and that they may regulate barrier perme-
ability in inflammatory conditions. The role of Cx channels in the
BCSFB remains however largely unexplored. In addition, there is
a large gap in our knowledge regarding the potential role of Cx
channels in signaling between the barrier forming cells and the
cells that surround them, i.e. astrocytes and pericytes, that express
high levels of Cxs and are known to exert strong influence on
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barrier tightness. We conclude that Cxs are an unexplored and
interesting target involved in barrier function as well as
dysfunction.
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