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a b s t r a c t

We study statistical versions of several types of convergence of sequences of functions
between two metric spaces. Special attention is devoted to statistical versions of recently
introduced notions of exhaustiveness (Gregoriades and Papanastassiou (2008) [4]) and
strong uniform convergence on a bornology (Beer and Levi (2009) [3]). We obtain a few
results about the continuity of the statistical pointwise limit of a sequence of functions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Our notation and terminology are standard, as in [1,2]. Throughout this work, X = (X, d) and Y = (Y , ρ) will always
denote metric spaces.

If x ∈ X, A ⊂ X and ε > 0 is a real number, we write

S(x, ε) = {y ∈ X : d(x, y) < ε},

Aε
:=


a∈A

S(a, ε),

to denote the open ε-ball with center x and the ε-enlargement of A.
Given spacesX and Y wedenote by Y X (resp.C(X, Y )) the set of all functions (resp. all continuous functions) fromX into Y .

The topology of pointwise convergence on these function spaces is denoted by τp, and the topology of uniform convergence
on compacta by τuc .

In this work we also consider a new topology on function spaces introduced recently in [3] and called the topology
of strong uniform convergence. In fact, we study statistical versions of this convergence and convergence with respect to
the aforementioned classical topologies and their relationships with statistical versions of two other recently introduced
notions, exhaustiveness and weak exhaustiveness [4]. Also, we give some results concerning continuity of the statistical
pointwise limit of a sequence of functions which are far-reaching generalizations and extensions of some results
in [4].

2. Preliminaries

In this section we familiarize the reader with the basic notions concerning statistical convergence and bornology.
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2.1. Statistical convergence

The idea of statistical convergence appeared, under the name of almost convergence, in the first edition (Warsaw, 1935)
of the celebrated monograph [5] of Zygmund. Explicitly, the notion of statistical convergence of sequences of real numbers
was introduced by Fast in [6] and Steinhaus in [7] and is based on the notion of asymptotic density of a set A ⊂ N. Statistical
convergence has many applications in different fields of mathematics: number theory, summability theory, trigonometric
series, probability theory, measure theory, optimization, approximation theory and so on. For more information see [8]
(where statistical convergence was generalized to sequences in topological and uniform spaces) and references therein. We
hope that the results in our article will find applications in the aforementioned areas of mathematics.

Let A ⊂ N and n ∈ N. Put A(n) := {k ∈ A : k ≤ n}. Then one defines

∂(A) := lim inf
n→∞

|A(n)|
n

,

∂(A) := lim sup
n→∞

|A(n)|
n

called the lower asymptotic density and upper asymptotic density of A, respectively. If ∂(A) = ∂(A), then

∂(A) = lim
n→∞

|A(n)|
n

is called the asymptotic (or natural) density of A.
All three densities, if they exist, are in [0, 1]. We recall also that ∂(N \ A) = 1 − ∂(A) for A ⊂ N. A set A ⊂ X is said to

be statistically dense if ∂(A) = 1. Let us mention that the union and intersection of two statistically dense sets in N are also
statistically dense.

A sequence (xn)n∈N in a topological space X is said to converge statistically (or for short, st-converge) to x ∈ X if for every
neighborhood U of x, ∂({n ∈ N : xn ∉ U}) = 0 [8]. This will be denoted by (xn)n∈N

st−τ
−→ x, where τ is a topology on X .

It was shown in [8, Theorem 2.2] (see [9,10] for X = R) that for the first countable spaces this definition is equivalent to
the following statement: there exists a subset A of N with ∂(A) = 1 such that the sequence (xn)n∈A converges to x.

2.2. Bornology

Recall that a bornology on ametric space (X, d) is a familyB of nonempty subsets of X which is closed under finite unions,
is hereditary (i.e. closed under taking nonempty subsets) and forms a cover of X [11,12]. A base for a bornology B on (X, d)
is a subfamily B0 of B which is cofinal in B with respect to the inclusion, i.e. for each B ∈ B there is B0 ∈ B0 such that
B ⊂ B0. A base is called closed (compact) if all its members are closed (compact) subsets of X . For example, the family F of
all nonempty finite subsets of X is a bornology on X; it is the smallest bornology on X and has a closed (in fact a compact)
base. Another bornology that will be used in this article is the collection Kr of all nonempty relatively compact subsets
(i.e. subsets with compact closure).

In [3], Beer and Levi defined a new topology τ s
B on the set Y X , named the topology of strong uniform convergence on a

bornologyB onX , and initiated the study of function spaces Y X andC(X, Y )with this new topology. This studywas continued
further in [13,14]. For a bornology B on X with closed base and for a function f ∈ (Y X , τ s

B), the standard local base at f is the
collection of sets

[B, ε]s(f ) = {g ∈ Y X
: ∃δ > 0, ρ(g(x), f (x)) < ε, ∀x ∈ Bδ

} (B ∈ B, ε > 0).
The topology τ s

B is stronger than the topology of uniform convergence on elements of B.

3. Statistical exhaustiveness

Recently Gregoriades and Papanastassiou [4, Def. 2.1] defined the notion of exhaustiveness (and its relatives) and studied,
among other things, its relations with certain types of convergence. The following definition is a statistical version of this
notion.

Definition 3.1. A sequence (fn)n∈N in Y X is said to be statistically exhaustive (or for short, st-exhaustive) at a point x ∈ X if
for each ε > 0 there are δ > 0 and a statistically dense setM ⊂ N such that for each y ∈ S(x, δ) we have ρ(fn(y), fn(x)) < ε
for each n ∈ M . The sequence (fn)n∈N is st-exhaustive if it is st-exhaustive at every x ∈ X .

Every exhaustive sequence (fn)n∈N is st-exhaustive. The converse need not be true as the following example shows.

Example 3.2. Let (fn)n∈N be the sequence of functions in RR defined in this way:

fn(x) =


−1 if x ≤ 0, n is prime,
1/n if x ≤ 0, n is not prime,
1 if x > 0, n is prime,
1/2n if x > 0, n is not prime.
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This sequence is st-exhaustive at 0. Indeed, the set P of prime natural numbers has asymptotic density 0, and so ∂(N\P) = 1.
Take ε > 0 and n0 ∈ N \ P such that 1/2n0 < ε. For each n ∈ (N \ P) ∩ {n ∈ N : n > n0} and each y ∈ (−1/2, 1/2) we have
|fn(y) − fn(0)| ≤ 1/2n < 1/2n0 < ε.

On the other hand, this sequence is not exhaustive at 0 because for every δ > 0 and every y ∈ (−δ, δ) we have
|fn(y) − fn(0)| = 1 for infinitely many n.

Notice that the subsequence (fm)m∈P of the sequence (fn)n∈N in the previous example is not st-exhaustive. However, the
following is true.

Lemma 3.3. A sequence (fn)n∈N in Y X is st-exhaustive if and only if each of its statistically dense subsequence is st-exhaustive.

Proof. We have only to prove that a statistically dense subsequence (fnk)k∈N (i.e. the setM = {nk : k ∈ N} has density 1) of
the st-exhaustive sequence (fn)n∈N is also st-exhaustive. Suppose not, and let x ∈ X and ε > 0 witness this fact. This means
that:

(∗) For each δ′ > 0 and each statistically dense subset T of N there exist y ∈ S(x, δ′) and t ∈ T such that ρ(ft(x), ft(y)) ≥ ε.

Since (fn)n∈N is st-exhaustive there are δ > 0 and a statistically dense K ⊂ N such that ρ(fk(x), fk(y)) < ε for each
y ∈ S(x, δ) and each k ∈ K . On the other hand, by applying (∗) to δ and the statistically dense set K ∩ M , we have that for
some y ∈ S(x, δ) and some k0 ∈ K ∩ M it holds that ρ(fk0(x), fk0(y)) ≥ ε. This is a contradiction. �

The next definition is a statistical version of the classical notion of α-convergence (known also as continuous
convergence [2, Chapt. 7]).

Definition 3.4. A sequence (fn)n∈N in Y X statistically α-converges to f ∈ Y X , denoted as (fn)n∈N
st−α
−→ f , if for every x ∈ X and

every sequence (xn)n∈N in X converging to x, the sequence (fn(xn))n∈N st-converges to f (x).

The following theorem describes relations of st-exhaustiveness to other types of st-convergence.

Theorem 3.5. For a sequence (fn)n∈N in Y X and a function f ∈ Y X the following are equivalent:

(1) (fn)n∈N
st−α
−→ f ;

(2) (fn)n∈N
st−τp
−→ f and (fn)n∈N is st-exhaustive;

(3) f is continuous and (fn)n∈N
st−τuc
−→ f .

If X is locally compact, then (1)–(3) are equivalent also to:

(4) f is continuous and (fn)n∈N
st−τ s

Kr
−→ f .

Proof. (1) ⇒ (2): It is obvious that (1) implies (fn)n∈N
st−τp
−→ f , so we have to prove that (fn)n∈N is st-exhaustive. Suppose

not. Then there are x ∈ X and ε > 0 such that:

( ) For each n ∈ N and each statistically dense set T ⊂ N there exists xn ∈ S(x, 1/n) and t ∈ T such that ρ(ft(xn),
ft(x)) ≥ ε.

Since (fn)n∈N st− α-converges to f and (xn)n∈N converges to x, it follows that (fn(xn))n∈N st-converges to f (x). So, there is
a statistically dense setM1 ⊂ N such that ρ(fm(xm), f (x)) < ε/2 for allm ∈ M1. On the other hand, since (fn)n∈N statistically
converges to f at x, there isM2 ⊂ Nwith ∂(M2) = 1 such thatρ(fm(x), f (x)) < ε/2 for allm ∈ M2. Thus for eachm ∈ M1∩M2
we have

ρ(fm(xm), fm(x)) ≤ ρ(fm(xm), f (x)) + ρ(f (x), fm(x)) < ε,

which contradicts ( ) because M1 ∩ M2 has density 1.
(2) ⇒ (3): First we prove that f is continuous. Let x ∈ X and ε > 0 be fixed. As (fn)n∈N is st-exhaustive at x, there is

δ > 0 and a set M1 ⊂ N with ∂(M1) = 1 such that for every y ∈ S(x, δ) we have ρ(fn(x), fn(y)) < ε/3 for all n ∈ M1. Fix
z ∈ S(x, δ). Since (fn(x))n∈N and (fn(z))n∈N st-converge to f (x) and f (z), respectively, there are statistically dense subsetsM2
and M3 of N such that ρ(fn(x), f (x)) < ε/3 for every n ∈ M2 and ρ(fn(z), f (z)) < ε/3 for each n ∈ M3. Pick an arbitrary
m ∈ M1 ∩ M2 ∩ M3. Then

ρ(f (x), f (z)) ≤ ρ(f (x), fm(x)) + ρ(fm(x), fm(z)) + ρ(fm(z), f (z)) < ε,

i.e. f is continuous at x.
Let now ε > 0 and let K be a compact subset of X . By continuity of f for every x ∈ K there is µx such that d(x, y) < µx

implies ρ(f (x), f (y)) < ε/3. Since (fn)n∈N is st-exhaustive at each x ∈ K , there exist δx > µx, x ∈ K , and sets Px ⊂ N of
asymptotic density 1 such that for each y ∈ S(x, δx) and each n ∈ Px one has ρ(fn(y), fn(x)) < ε/3. By compactness of K
there are finitely many x1, . . . , xk such that K ⊂

k
1=1 S(xi, δxi).
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As, by (2), (fn(xi))n∈N st-converges to f (xi) for every i ≤ k, there are sets Qi ⊂ N, i ≤ k, such that ∂(Qi) = 1
and ρ(fn(xi), f (xi)) < ε/3 for every n ∈ Qi. By continuity of f at every xi, there are δi > 0 such that for every
y ∈ S(xi, δi), ρ(f (xi), f (y)) < ε/3. Let M =

k
i=1(Pxi ∩ Qi) and δ = min{δx1 , . . . , δxk , δ1, . . . , δk}. Let z ∈ K be arbitrary.

Then z ∈ S(xi, δxi) for some i ≤ k and thus for every m ∈ M we have

ρ(fm(z), f (z)) ≤ ρ(fm(z), fm(xi)) + ρ(fm(xi), f (xi)) + ρ(f (xi), f (z)) < ε.

Thus (fn)n∈N uniformly converges to f on K .
(3) ⇒ (1): Let ε > 0 and x ∈ X be given. Suppose (xn)n∈N is a sequence in X converging to x. Since K = {xn : n ∈ N}∪{x}

is a compact set in X , by (3) there exists a set M0 ⊂ N such that ∂(M0) = 1 and for every z ∈ K and every m ∈ M0,
ρ(fm(z), f (z)) < ε/2. Since f is continuous at x, there is δ > 0 such that ρ(f (x), f (y)) < ε/2 for every y ∈ S(x, δ). Also,
(xn)n∈N converges to x and thus there is n0 ∈ N such that xn ∈ S(x, δ) for every n ≥ n0. The set M = M0 ∩ {n ∈ N : n ≥ n0}

is statistically dense in N and for eachm ∈ M we have

ρ(fm(xm), f (x)) ≤ ρ(fm(xm), f (xm)) + ρ(f (xm), f (x)) < ε.

(3) ⇔ (4): It follows from the known fact of [3, Theorem 6.2] that for a locally compact space X , τ s
Kr

coincides with the
compact–open topology on Y X . �

4. Weak statistical exhaustiveness

In [4], the notion of weak exhaustiveness of a sequence of functions was introduced, which turns out to be equivalent
to the continuity of the pointwise limit of such a sequence [4, Theorem 4.2.3]. In this section we give a statistical version of
this notion which is unexpectedly also equivalent to the continuity of the statistical pointwise limit of the sequence.

Definition 4.1. A sequence (fn)n∈N in Y X is said to be st-weakly exhaustive at x ∈ X if for every ε > 0 there is δ > 0 such
that for each y ∈ S(x, δ) there exists a statistically dense subset My of N, depending on y, such that for all n ∈ My we have
ρ(fn(y), fn(x)) < ε. The sequence (fn)n∈N is st-weakly exhaustive if it is st-weakly exhaustive at every x ∈ X .

Lemma 4.2. Let (fn)n∈N
st−τp
−→ f in Y X . Then (fn)n∈N is st-weakly exhaustive if and only if f is continuous.

Proof. (⇒): Let x ∈ X and ε > 0. Since (fn)n∈N is st-weakly exhaustive at x, there is δ > 0 such that for every y ∈ S(x, δ)

there is a set My ⊂ N such that ∂(My) = 1 and for every n ∈ My, ρ(fn(y), fn(x)) < ε/3. Also, since (fn)n∈N
st−τp
−→ f , there

is M0 ⊂ N with ∂(M0) = 1 such that ρ(fn(y), f (y)) < ε/3 and ρ(fn(x), f (x)) < ε/3 for every n ∈ M0. Pick an arbitrary
z ∈ S(x, δ) and anym ∈ M0 ∩ Mz . Then

ρ(f (z), f (x)) ≤ ρ(f (z), fm(z)) + ρ(fm(z), fm(x)) + ρ(fm(x), f (x)) < ε.

(⇐): Let x ∈ X and ε > 0. Since f is continuous at x there is δ > 0 such that for every y ∈ S(x, δ), ρ(f (y), f (x)) < ε/2.
The st-pointwise convergence of (fn)n∈N to f implies the existence of a set A ⊂ N with ∂(A) = 1 such that for every n ∈ A
we have ρ(fn(x), f (x)) < ε/4, ρ(fn(y), f (y)) < ε/4. Thus for every n ∈ A and every y ∈ S(x, δ) we have

ρ(fn(x), fn(y)) ≤ ρ(fn(x), f (x)) + ρ(f (x), f (y)) + ρ(f (y), fn(y)) < ε. �

Theorem 4.3. For a sequence (fn)n∈N in C(X, Y )st − τp-converging to a function f ∈ Y X the following are equivalent:
(1) (fn)n∈N is st-weakly exhaustive;

(2) (fn)n∈N
st−τ s

F
−→ f .

(3) f is continuous.

In order to display what we exactly prove we divide the proof of this theorem into the next two propositions.

Proposition 4.4. Let (fn)n∈N
st−τp
−→ f in Y X and let (fn)n∈N be st-weakly exhaustive. Then (fn)n∈N

st−τ s
F

−→ f .

Proof. Let F = {x1, . . . , xk} be a finite subset of X and ε > 0. By assumption, (fn)n∈N is st-weakly exhaustive at every
xi, , i ≤ k, so for i ≤ k there is a δi > 0 such that for every y ∈ S(xi, δi) there is a statistically dense subset My of N such
that ρ(fn(y), fn(xi)) < ε/3 for all n ∈ My. On the other hand, for every i ≤ k, the sequence (fn(xi))n∈Nst-converges to f (xi)
which implies the existence of statistically dense setsMi ⊂ N, i ≤ k, such that ρ(fn(xi), f (xi)) < ε/3 for all n ∈ Mi, i ≤ k. By
Lemma 4.2, f is continuous at every xi so there are δ′

i > 0, i ≤ k, such that y ∈ S(xi, δ′

i), i ≤ k, implies ρ(f (xi), f (y)) < ε/3.
Put δ = min{δ1, . . . , δk, δ

′

1, . . . , δ
′

k} and let z ∈ F δ; hence z ∈ S(xj, δ) for some j ≤ k. The set M = Mz ∩


i≤k Mi is
statistically dense in N and for everym ∈ M we have

ρ(fm(z), f (z)) ≤ ρ(fm(z), fm(xj)) + ρ(fm(xj), f (xj)) + ρ(f (xj), f (z)) < ε. �

Proposition 4.5. Let (fn)n∈N be a sequence in C(X, Y ) and f ∈ Y X such that (fn)n∈N
st−τ s

F
−→ f . Then (fn)n∈N

st−τp
−→ f and (fn)n∈N is

st-weakly exhaustive.
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Proof. By Lemma 4.2 it suffices to prove that f is continuous. Let x ∈ X, ε > 0. By assumption there is δx > 0 and a set
A ⊂ N with ∂(A) = 1 such that for every n ∈ A and every y ∈ S(x, δx) it holds that ρ(fn(y), f (y)) < ε/3. Every fn, n ∈ N,
is continuous and thus for every n ∈ A there is δn > 0 such that for every y ∈ S(x, δn), ρ(fn(x), fn(y)) < ε/3. Let m be an
arbitrary element in A and let δ = min{δm, δx}. Then for any z ∈ S(x, δ) we have

ρ(f (x), f (z)) ≤ ρ(f (x), fm(x)) + ρ(fm(x), fm(z)) + ρ(fm(z), f (z)) < ε,

what we wanted to prove. �

Example 4.6. There is an st-weakly exhaustive sequence of functions which is not st-exhaustive.
Let M be a statistically dense subset of N, say M = N \ P , where P is the set of prime numbers. Consider the sequence

(fn)n∈N of functions in RR defined as follows:
If n ∉ M , then fn(x) = 0 for each x ∈ R.
If n ∈ M , then

fn(x) =

0 if x ∈ (−∞, −1/n) ∪ {0} ∪ (1/n, ∞),
nx + 1 if x ∈ [−1/n, 0),
−nx + 1 if x ∈ (0, 1/n].

Then (fn)n∈N
st−τp
−→ 0, where 0 denotes the constantly zero function. By Lemma 4.2, the sequence (fn)n∈N is st-weakly

exhaustive.
Let us prove that (fn)n∈N is not st-exhaustive at 0 ∈ R. Let ε ∈ (0, 1) be given, and let K be any statistically dense subset

of N and δ > 0. Pick k ∈ K ∩ M . Let y ∈ (0, δ) be such that y < (1 − ε)/k. Then −ky + 1 > ε, i.e. |fk(y) − fk(0)| > ε. This
means that (fn)n∈N is not st-exhaustive at 0.

Another statistical convergence that gives continuity for st − τp-convergent sequences of functions in C(X, Y ) is a
statistical version of the classical Alexandroff convergence introduced in 1948 in [15] (see [13, Def. 2.8]).

Definition 4.7. A sequence (fn)n∈N in C(X, Y ) is said to be statistically Alexandroff convergent to f ∈ Y X , denoted by

(fn)n∈N
st−Al
−→ f , provided (fn)n∈N

st−τp
−→ f and for every ϵ > 0 and every statistically dense set A ⊂ N there exist an infinite

set MA = {n1 < n2 < · · · nk < · · ·} ⊂ A and an open cover U = {Un : n ∈ A} such that for every x ∈ Uk we have
ρ(fnk(x), f (x)) < ϵ.

Theorem 4.8. Let (fn)n∈N be a sequence in C(X, Y ) and f ∈ Y X . If (fn)n∈N
st−Al
−→ f , then f is continuous.

Proof. Let x ∈ X and let (xi)i∈N be a sequence converging to x. We prove that the sequence (f (xi))i∈N converges to f (x). Let
ε > 0 be given. Since (fn(x))n∈N

st
−→ f (x), there is a statistically dense set Bx ⊂ N such that ρ(fn(x), f (x)) < ε/3 for every

n ∈ Bx. By assumption there are an infinite setM = {n1 < n2 < · · · < nk < · · ·} ⊂ Bx and an open cover U = {Un : n ∈ Bx}

of X such that for every z ∈ Uk, ρ(fnk(z), f (z)) < ε/3. Let k be such that x ∈ Uk. Since fnk is continuous at x and (xi)i∈N
converges to x, there is i0 ∈ N such that for every i ≥ i0, xi ∈ Uk and ρ(fnk(xi), fnk(x)) < ε/3. Thus for i ≥ i0 we have

ρ(f (xi), f (x)) ≤ ρ(f (xi), fnk(xi)) + ρ(fnk(xi), fnk(x)) + ρ(fnk(x), f (x)) < ε,

which means that (f (xi))i∈N converges to f (x), i.e. f is continuous at x. �

Problem 4.9. Is the converse of the previous theorem true, i.e. does continuity of f imply (fn)n∈N
st−Al
−→ f ?
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