
Discrete Mathematics 27 (1979) 11 l-116 
@ North-Holland Publishing Company 

ON THE CWLOMATIC NUMBER OF A HYPERGRAPH 

B.D. ACHARYA 

The Mehta Research Institute of Mathematics and Mathematical Physics, 26, Dilkusha, New 
Katra, Allahabad UP 211002, India 

Received 25 January 1978 
Revised 6 March 1979 

This note generalizes the notion of cyclomatic number (or cycle rank) from Graph Theory to 
Hypergraph Theory and links it up with the concept of planarity in hypergraphs which was 
recently introducea by R.P. Jones. Sharp bounds are obtained for the cyclomatic number of the 
planar hypergraphs and, further, it is shown that the upper bound is attainable if, ?nd only if the 
hypergraph satisfies Krewera’s condition. 

By a hypergrupfi H we mean an ordered pair (X, %), where X is a finite set 
whose elements are called vertices and 8 is a collection of nonempty subsets E of 
X called edges; we then write N = (X, Z), X=X(H) and % = %(h!) for the 
hypergraph H, its vertex set and its edge set, respectively. The vertices in the set 
Y(H) = X(H)- u E&(H) E are called the isofafes of H. All the hypergraphs If 
treated in [3] are isolate-free in the sense that Y(H) I= (b. 

Multiplicity of a set S of vertices of a hypergraph 11, denoted m (ST H), is the 
number of times S appears as an edge of I-I. Clearly, for any edge E of M one has 
m(E, H)a 1; E is said to be simp’e (multiple) if m(E, H) = 1 (m(E, H)> I). A 
simple hypergraph is one in which c~ ery edge is simple. A mu&graph (graph) is a 
hypergraph H = (X, $) such that /El = 2 and m(E, H)s 1 (m(E, H) = 1) for every 
edge E in H. 

For terms in Hypergraph Theory and Graph Theory, not specifically defined 
here, we refer the reader to Berge [3] and Harary [7], respectively. 

This note is mainly concerned with investigations on a new invariant of a 
hypergraph, called its cyclomatic number, and its links with the notion of planarity 
in hypergraphs which was recently introduced in [S]. 

Let H = (X, 8) be a hypergraph. The intersection multigraph (or shortly, IM- 
graph) G(H) of H is defined (see [9]) as follows: The vertex set of G(H) is the 
edge set 8(H) of H x(E, E’) is defined to be an edge of G( 

vertices representing e edges E and E’ of H if, and only ii x E E n E’ in H. 
111 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82720482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


l?;? B. D. Achatya 

Ciearly, every edge of G(H) may be regarded as labeled by the vertex of H it is 
associated with. Further, H and G(H) have the same number of componentc and 
the representative graph Z.(H) of H, as defined by Berge (see [3, p. 4001). is a 
spanning subgraph of G(H). In particular, if H is an isolate-free graph then G(H) 
is isomorphic to the well known line-graph L(H) of H (i.e. G(H) = L(H)). Some 
special classes of IM-graphs, viz. that of designs, are recently treated in [4. S]. 

A cycle C= (.~E,x~&~ 9 l x,E,x,), of length q, in a hypergraph H is said to be 
significant if q a3 (see [9]). A multi-forest is a multigraph without significant 
cycles and a multi-tree is a connected multiforest. A maximal spanning multiforest 
(tnultitrep) of a multigraph is a spanning submultiforest (multitree) of that graph 
having maximum number of edges. 

Now, given a simple hypergraph H = (X, 8) its cyclomatic number y!H) is 
defined’ as 

(1) 

where e(T) denotes the number of edges in a maximal spanning multiforest of 
G(H). Clearly, if H is isolate-free then we have 

7W)= 1 IEI-/Xl-e(T) 
EC'%(H) 

and, further, if H has k = k(H) components N,, H,, . . . , Hk then 

(3) 

The ream! for calling y(H), defined as in ( l), the ‘cyclomatic number of H‘ is 
the iact r[hat when I-I is given to be a graph, the expression for y(H) given in (1) 
reduce? tc Gus--lX(H)I+ k(H) which is the usual cyclomatic number (or cycle 
rauk) ck~ IN Ior the graph (see [3, Chapter 21; and [7, p. 391). For a graph H, 
. 

sirrcc ,‘t k-i j = (%(H)I - IX(H)[ t k(H) gives the number of cycles in a basis for the 
cycle space of H (see [7, p. 391) one is naturally led to expect such an 
interpretation for y(H) when H is given to be a simple hypergraph in general. 
Thcqh such an interpretation for y(H) in the case of simple hypergraphs which 
arc rot Traphs is not known so far, some progress has already been made in this 
direction by determining simple hypergraphs H for which y(H) = 0 (see [ 11). 

atic number versus planarity in hypeqgr 

In this section, we shall link up the nlstions of planarity and cyclomatic 
nu!;lbftr for the simple hypergraphs. In Graph Theory such a relation aiready 
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exists. For a planar graph H with V vertices, E edges, and k components it is well 

known that y(H) = F- 1, where F is given by the famous Euler Polyhedron 
Formula V- E + F = k + 1 and is nothing but the number of faces in a plane 
imbedding of H (see [7, p. 1043). 

The idea of planarity in hypergraphs was recently introduced by R.P. Jones in 
[S] as follows: Represent the vertices of a simple hypergraph each by its own 
distinct point in the plane and then represent each edge by a subset of the plane 
homesmorphic to a closed disc containing all those points representing vertices 
contained in that edge. If in such a representation the subsets representing any 
two edges intersect only in points representing vertices common to both the 
edges, then the representation is called a plane imbedding of the hypergraph. 
Further, a simple hypergraph is said to be planar if it has a p!ane imbedding. For 
instance, the hypergraph 

H=({LZ3,4}, {{1,2,3), {2,X4}}) 

has a plane imbedding which is shown in Fig. 1 and therefore H is a planar 
hypergraph by definition. 

In a plane imbedding of a planar hypergraph H, we shall regard the portions of 
the plane that represent the edges of H as shaded (as shown in Fig. 1) with 
vertices of H in a given edge appearing as black nodes on the boundary of the 
region representing that edge. Then the unshaded regions of the plane, including 
the infinite portion of the plane (also unshaded as our hypergraphs are finite by 
definition), are called the faces of E. Note that the infinite unshaded portion of 
the plane in a plane imbedding of H is also counted as a face of H because we 
may regard this portion as having been ‘folded over’ homeomorphically into a 
finite closed disc. Thus, for example, there are two faces for the planar hyper- 
graph H shown in Fig. 1. 

Not every hypergraph is planar. yor example, the famous ‘Fano plane’ (see [3, 

p. 4281) is nonplanar. 

Fig. 1. A planar hypergraph W with F = 2. 
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Several characterizations of planar hypergraphs were obtained in [8]. Among 
many interesting results established therein the following is useful to US here. 

Theorem 1. (RP. Jones). Let H = (X, %) be a planar simple hypergraph with 
F = F(*H) faces and k = k(H) components. Then 

F+\.X\+I%(=l+k+ c IEI. 
EEFg 

(4) 

Using this theorem, we can get an expression for the cyclomatic number r(H) 
of a planar simple hypergraph H in general as follows. 

Theorem 2. For any planar simple hypergraph H, 

y(H)=lS?(H)I+F(H)-(e(T)+k(H)+l) 

where e(T) is as defined in (1). 

(5) 

Proof. This follows from (1) and (4). 

Theorems 1 and 2 show how the concepts of cyclomatic number and planarity 
in hypergraphs are interrelated1 

We now establish bounds for the cyciomatic number r(H) of a planar simple 
hypergraph H in terms of basic parameters of H. In what follows we shall say that 
a given hypergraph H satisfies Krewera’s condition whenever any two edges of H 
have at most one vertex in common (see [6]). We shall need the following lemma 
whose proof is quite straightforward and, therefore, will be omitted. 

Lemma. Let H = (X, 8) be a simple hypergraph and T be a maximal spanning 
rnultifnnst of G(H). Then 

cW)%I8(H)I--k(H), 

where qt 1 .!litv ;lolds if. and only 

(6) 

if H satisfies Krewera’s condition. 

3. Let H = (X, 8) be a planar simple hypergraph such that any two 
in ~g edges have at most t vertices in colnnuon. Then 

(F- l)-\t-l)(l+k(H))q(H)sF- 1 (7) 

where the bounds are attainable. Further, r(H) = F- 1 if, and only if H satisfies 
Krewera ‘s condition. 

roof. Let T be any maximal spanning multiforest of G(H). Then by the Lemma 
we have e(T)a(%(- k(H). Invoking this fact in (5) we get r(H)< F- 1, the right 
hand jnequality in (7). Further, since e(T) = I%I- k if, and only if H satisfies 
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Krewera’s condition (by the mma) it follows from Theorem 2 that y(H) = F- 1 
if, and only if N satisfies Krewera’s condition. The existence of such hypergraphs 
follows from the truth of this relation (viz. y = F- 1) for all planar graphs and the 
fact that there exist infinitely many planar graphs. Moreover, there do exist 
infinitely many planar hypergraphs which are not graphs and which satisfy 
Krewera’s condition (for instance, any acyclic hypergraph would be one such). 
Thus, it follows that the upper bound for y(H) in (7) is attainable (in fact, we have 
obtained a characterization of planar hypergraphs satisfying the relation y = 
F- 1). 

We now turn to the lower bound for y(H) claimed in (7). Again, let T be any 
maximal spanning multiforest of G(H). Then it is easy to see that e(T) s t(1%1- k) 
and that e(T) = ?(I%1 - k) if, and only if any two intersecting edges of H have 
exactly t vertices in common. Invoking this fact in (5) we obtain fhz lower bound 
for y in (7). It is also clear that 

. 
r(H)=(F-l)-(t-l)(I’CSI-k) 03) 

if, and only if any two intersecting edges of H have exactly t vertice:s in common. 
It only remains to show the existence of planar hypergraphs satisfying (8). We 

give below one such infinite family of planar hypergraphs: 
Let q and t be integers such that q 2 2 and t 2 1. Consider the 2t-uniform 

hypercycle H = H(q, 2t) defined ?s follows. 

(i) H has qt vertices and exactly q edges El, E2, . . . , Eq. 

(ii) lEil=2t for all i~{1,2,. . . ,t~). 

(iii) IEinEi+,I=JE,nE,I=t for ail je{l,2,. . .,q-1). 
(iv) EinEj=@ for all i,jE{1,2,...,q} with li-ila2. 
(v) Every vertex of H is contained in exactly two edges of H. 

It is easy to see that H(q, 2t) has a plane imbedding, hence it is a planar 
hypergraph. It has q(t- 1)+ 2 faces. Therefore, 

On the other hand, since any maximal spanning multiforest T of G(H) k a 
multigraph in which multiplicity of each edge is t so that e(T) = t(q - l)* one has 

y(H)= c IEI-IX(H)I-e(T) 

=q(2r)-qt-t(q-l)= t. 

Thus H(q, 2t) is a planar hypergraph for which y attains the lower bound given in 

(7). 
This completes the proof. 

Corollary 3.1. For every nonnegative integer n there exist infinitely many planar 
simple hypergraphs N such that y(H) = n. 



116 B.D. Achatya 

Proof. If n is a positive integer, the result follows from the last part of the proof 
of Theorem 3. If n = 0 then one may consider any simple hypergraph H without 
significant cycles. All such hypergraphs are planar. Moreover, it is known that 
r(H) = 0 for these hypergraphs (see [g]). 

Also, we mention here that for every positive integer n the existence of 
in_fin.itely many nonplanar simple hypergraphs H for which r(H) = tl is known 
(s$e [2]) 
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