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0. Introduction and preliminaries

The question of the description of the invariants of a linear transformations group on C" which naturally acts on the
algebra of polynomials is a typical problem of the classical Invariant Theory. Such invariants form algebras of symmetric
polynomials with respect to given groups and have been investigated in the classical cases (see e.g.[1,2]). It is very important
for these studies to describe the spectra of the algebras of invariants. The cases when a group (or even a semigroup) of
symmetry acts on infinite-dimensional Banach spaces were considered in [3-6]. For the infinite-dimensional case we need
to work with a natural completion of the algebra of continuous polynomials, that is, the algebra of analytic functions of
bounded type. In this case, we can use some methods and ideas developed in [7,8].

Aron et al. introduced in [7] a convolution operation in the spectrum of the algebra H, (X) of analytic functions of bounded
type defined on a complex Banach space X. This convolution is defined relying on translations on X. Later Aron et al. [8]
discussed the commutativity of that convolution and proved that for X = £,, it is not commutative.

By a symmetric function on £, we mean a function which is invariant under any reordering of the sequence in £,. The
algebra of symmetric analytic functions of bounded type with the topology of the uniform convergence on bounded sets will
be denoted by #(¢). We denote by My (£,) its spectrum, that is the set of all continuous scalar valued homomorphisms.

When dealing with symmetric analytic functions the translation operators are not well defined anymore. This is why
in [6] the authors introduced the so-called “intertwining” operators that lead them to define a “symmetric” convolution
operation as is described in the next section. We prove that an endomorphism of #s(¢,) commutes with all intertwining
operators if and only if it is a convolution operator. The results in this paper show that, contrary to the non-symmetric
case, the symmetric convolution is indeed commutative. Also a representation of Mpys(¢;) in terms of entire functions
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of exponential type is obtained. Such representation allows us to determine the invertible elements in Mjs(¢1) for such
symmetric convolution. Finally we present a description of the elements in the spectrum through certain points in ZT.
In [3] it is proved that, similarly to the classical finite dimensional case, the polynomials

Fe) =Y %, k=1[pl,[pl+1- (0.1)
i=1

form an algebraic basis - named the power series basis - in the algebra of all symmetric polynomials on £, (here [p]
is the smallest integer that is greater than or equal to p). This means that for every symmetric polynomial P of degree
[p1 +n — 1,n > 1 there is a polynomial g on C" such that P(x) = q(Fjp(X), ..., Fip4n—1(x)). Actually, g is unique as
pointed out in [5].

For background on analytic functions on infinite-dimensional spaces, we refer the reader to [9] or to [10].

1. The symmetric convolution

Remark 1.1. Thereisno w € £,, w # 0, such that g(x) = f(x 4+ w) is symmetric for every symmetric f € Hs(£p).

Proof. Thereisiy € N, such that |w,| < %ifn > ip. Assume that f (-+w) belongs to #ys(£,) for every symmetricf € Hps(€}).
Then for every fixed permutation o and each element in the basis of £, f (e, + w) = g(e,)) = g(e) = f(e; + w), Vf €
Hps(£p). Thus e,y + w is a permutation of e; + w, that is, 1 + w, ;) = wj, for some index j; € N.

Since o is a bijection, the set {o (i) > io} is infinite, so there are infinite terms wj;, with absolute value greater that %
Impossible. O

Next we recall some definitions.

Definition 1.2 ([6]). Let x,y € £,,Xx = (X1,X,...,) andy = (¥1,¥2,...,). We define the intertwining x ¢ y € £,
according to

Xey = (X1,¥1,X2,¥2,.-.,)-

The mapping f +— T;(f) where T;(f)(x) = f(x e y) will be referred as to the intertwining operator. Observe that
T; o T; = T,f.y = T; o T;: Indeed, [T} o T}f](f)(z) = T;[T;(f)](z) = T;(f)(z oX) = f((zex) oy = f(ze(xe}y)),
since f is symmetric.

The above remark explains why we are led to use the intertwining operators to define the convolution in Mps(€,).

Definition 1.3 ([6]). Givenf € J#;(¢,) and 6 € Hs(£p)’, its symmetric convolution 6 xf is defined by (6 f)(x) = O[T (f)].

As pointed out in [6], it turns out that 6 x f € Hps({p).

Definition 1.4 ([6]). For any ¢ and 6 in #,(£,,)’, its symmetric convolution is defined according to

(@ *0)(f) = (0 xf) = p(y = O(T)f)).

Corollary 1.5 ([6]). If ¢, 0 € Mps(€,), then ¢ x 6 € Mps(£)p).

Theorem 1.6. (a) Forevery ¢, 6 € Mys({p) the following holds:

(¢ * 0)(F) = @(Fi) + 6(Fo). (1.1)
(b) The semigroup (Mps(£p), *) is commutative, the evaluation at 0, 8y, is its identity and the cancellation law holds.
Proof. Observe that for each element Fy in the algebraic basis of polynomials, {F;}, we have

(0 x F) () = 0(T(F)) = 0(Fk(x) + Fi) = Fe(x) + 6 (Fe).
Therefore,

(@ * 0)(Fi) = @(Fi + 0 (F)) = @(F) + 0 (Fo).

To check that the convolution is commutative, that is, ¢ * 0 = 6 « ¢, it suffices to prove it for symmetric polynomials,
hence for the basis {F;}. Bearing in mind (1.1) and also by exchanging parameters (8 x ¢)(Fy) = 0(F) + ¢(Fr) = (¢ x0)(Fy)
as we wanted.

It also follows from (1.1) that the cancellation rule is valid for this convolution: If ¢ x & = ¢ x 6, then ¢(F,) + 0 (F,) =
¥ (Fi) + 60 (Fi), hence ¢ (F) = ¥ (F), and thus, ¢ = ¢. O
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Example 1.7. There exist nontrivial invertible elements in the semigroup (Mps(£p), *):

In [5, Example 3.1] it was constructed a continuous homomorphism ¢ = ¥ on the uniform algebra A,s(By,) such that
¢(F,) = 1and ¢(F}) = Oforalli > p.In a similar way, given A € C we can construct a continuous homomorphism
;. on the uniform algebra Ays(|A|Bg,) such that ¥, (F,) = A and W, (F;) = 0 foralli > p: It suffices to consider for

eachn € N, the element v, = (%)1/11 (e1 + - -+ + ey) for which F,(v,) = A, and lim, Fj(v,) = 0. Now, the sequence
{y,} has an accumulation point ¥; in the spectrum of A,s(|A|Bg,). We use the notation v, for the restriction of ¥, to
the subalgebra #5(¢,) of Ays(|A|By,). It turns out that ¥, * ¥, = & since for all elements F; in the algebraic basis,
(W x Y ) (F) = ¥ (F) + ¥ (F) = 0 = §o(F).

Therefore, we obtain a complex line of invertible elements {y;,: A € C}.

As in the non-symmetric case [7, Theorem 5.5], the following holds:

Proposition 1.8. Every ¢ € My(£p) lies in a schlicht complex line through &.

Proof. For every z € C, consider the composition operator L,: #ys(€,) — Hps({p) defined according to L, (f)((x,)) =
f((zxn)), and then, the restriction L} to Mys(£,) of its transpose map. Now put ¢* = Li(¢) = ¢ o L,. Observe that

¢*(F) = ¢ o L(F) = ¢((Fi(z-))) = Z¢(Fy). Also, ¢° = &.

Foreachf € #ys(£,) the self-map of C defined according toz ~ ¢ (f) is entire by Aron et al. [7, Lemma 5.4(i)]. Therefore,
the mapping z € C ~ ¢* € Mys({p) is analytic.

Since ¢ # Jy, the set X' := {k € N: ¢(F;) # 0} is non-empty. Let m be the first element of X, so that ¢ (F,) # 0. Then if

¢* = ¢", one has zmp(F,;) = w™p(Fy), hence z™ = w™. Taking the principal branch of the mth root, the map & ~ ¢ VE s
one-to-one. [

Recall that a linear operator T: H#;(£p) — Hps(£p) is said to be a convolution operator if there is @ € Mys(£p) such that
Tf = 0 x f. Let us denote Heony (£p) := {T € L(Hps(£p)): T is a convolution operator}.

Proposition 1.9. A continuous homomorphism T: #Hys(€,) — Hps(€,) is a convolution operator if and only if it commutes with
all intertwining operators T;, y € £p,.

Proof. Assume thereisf € Mps(€,) such that Tf = 6 xf.Fixy € £,. Then [T oT;](f)(x) = [T(Tys(f))](x) =10 *T;(f)](x) =
OIT(T; ()] = O[T, (f)]. On the other hand, [T} o TI(f)(x) = [T;(T)](x) = Tf (x e y) = (0 xf)(x e y) = O[T, ()]

Conversely, set @ = 8y o T. Clearly, 8 € Mys(€,). Let us check that Tf = 6  f: Indeed, (6 x f)(x) = O[T;(f)] =
[T(T;(FNIO0) = [T(T(ENIO0) =Tf(0ex) =Tf(x). O

Consider the mapping A defined by A(6)(f) = 6 « f, that is,

A eMbs(gp) —> Heony (gp)

0> f~0xf=A0O){).
It is, clearly, bijective. Moreover we obtain a representation of the convolution semigroup
Proposition 1.10. The mapping A is an isomorphism from (Mps(€,), %) into (Heony(£p), 0) where o denotes the usual
composition operation.
Proof. First, notice that using the above proposition,

Alp*)(F)(X) = [(p*0) xf1(x) = (¢ x O)(T;f) = 9O * Tef)

= p[AO)(T)] = [(A©B) o T)(H)] = [(T; 0 A@))()].

On the other hand,

[A(p) 0 A (x) = A@I[AO)H)]X) = [p x AB)()IX) = @[T, (AB)()].
Thus the statement follows. O

As a consequence, the homomorphism 6 is invertible in (Mps(€;), %), if and only if the convolution operator A(6) is an
algebraic isomorphism. Observe also that for v € Mp(£p), one has

Yo AB) =y %0,
because [y o A)]() = ¥ [A@))] =¥ (@ xf) = (¥ xO) ().

Next we address the question of solving the equation ¢ = v * 6 for given ¢, 0 € Mps(£,). We begin with a general
lemma.

Lemma 1.11. Let A, B be Fréchet algebras and T: A — B an onto homomorphism. Then T maps (closed) maximal ideals onto
(closed) maximal ideals.
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Proof. Since T is onto, it maps ideals in A onto ideals in B. Let § C A be a maximal ideal. We prove that T(g) is a maximal
ideal in B: If £ is another ideal with T(§) C 4 C B, it turns out that for the ideal T~1(4), § € T~(T(4)) C T~!(4), hence
either § = T~!(4),or A = T~!(4). That is, either T(§) = 4, 0or B = {.

Let now ¢ € M(A) and § = Ker(¢), be a closed maximal ideal. Then T () is a maximal ideal in B, so there is a character
¥ on B such that Ker (y) = T(g). Then Ker(¢) C Ker(y o T), because if ¢(a) = 0, thatis, a € &, we have T(a) € Ker(y).
By the maximality, either ¢ = ¥ o T,or ¥ o T = 0, hence v = 0. In the former case, i is also continuous since
being T an open mapping, if (b,) is a null sequence in B, there is a null sequence (a,) C A such that T(a,) = by; thus
lim, ¥ (b,) = lim, ¥ o T(a,) = lim, ¢(a,) =0. O

Remark 1.12. Let A, B be Fréchet algebras and T: A — B be an onto homomorphism. If T(Ker(¢)) is a proper ideal, then
there is a unique ¢ € M(B) suchthatg = ¢ o T.

Corollary 1.13. Let 6 € Ms(£p). Assume that A() is onto. If A(6)(Kerg) is a proper ideal, then the equation ¢ =  x 6 has
a unique solution. In case A(9)(Kerp) = Hys(£p), then the equation ¢ = v x 6 has no solution.

Proof. The first statement is just an application of the remark, since ¢ x 6 = 1 o A(8) = ¢. For the second statement, if
some solution v exists, then again ¥y o A(0) = ¥ *0 = ¢, S0 Y (Hps(€p)) = (Y 0 A(0))((Kerp)) = ¢(Kergp) = 0. Therefore,
thenalsop =0. O

2. A weak polynomial topology on /Mps(£p)

Let us denote by w, the topology in My (£,) generated by the following neighborhood basis:
Us i,k (W) = {¥ * 019 € Mps(€p) and |@(F)| < &,j=1,...,n}.
It is easy to check that the convolution operation is continuous for the w, topology, since thanks to (1.1),
Ue/2,k1,.den (@) * Uepa iy oteg (W) C Ug iy, (0 % ).
We say that a function f € H)s(£,) is finitely generated if there are a finite number of the basis functions {F;} and an
entire function g such that f = q(Fy, ..., F).
Theorem 2.1. A function f € Hs(£p) is wy-continuous if and only if it is finitely generated.

Proof. Clearly, every finitely generated function is wp-continuous. Let us denote by V,, the finite dimensional subspace in £,
spanned by the basis vectors {eq, ..., e,}. First we observe that if there is a positive integer m such that the restriction f|vn
of f to V, is generated by the restrictions of Fy, . . ., Fy, to V, for every n > m, then f is finitely generated. Indeed, for given
n > k > m we can write

Sy ®) = q1(F1x), ..., Fn(x)) and fi, %) = @2(F1(x), ..., Fa(X))
for some entire functions gq; and g, on C". Since
{(Fi(0), ..., Fn(®)):x € Vi} = C"

(see e.g. [5]) and f|y, is an extension of f|y, we have q;(t1, ..., t;) = q2(t1, ..., t;). Hence f(x) = q1(F1(%), ..., Fr(x)) on
£, because f (x) coincides with q;(F; (%), . .., Fn(x)) on the dense subset _J,, Vy.

.....

€, ..., |Fn(X)| < e}.Foragivenn > mlet

flvn @) =q(F1(0), ..., Fn (%))

be the representation of f|y, (x) for some entire function g on C". Since {(F;(x), ..., Fa(X)):x € V,} = C™, q(t1,...,ty)
must be bounded on the set {|t;| < ¢, ..., |tn| < &}. The Liouville Theorem implies q(t1, ..., t;) = q(t1, ..., tn,0...,0),
that is, f1y, is generated by F, ..., Fy. Since it is true for every n, f is finitely generated. O

For example f(x) = >0, & "n(!") is not wp-continuous.

Proposition 2.2. The topology w,, is Hausdor{f.
Proof. If ¢ # 1, then there is a number k such that

lp(F) — ¥ (F)| = p > 0.
Let ¢ = p/3. Then for every 64 and 6, in U, x(0),

(@ % 01)(F) — (@ % 62) (F)| = [(@(F) — ¥ (F) — (02(F) — 61(F)| = p/3. D
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Proposition 2.3. On bounded sets of My(£p) the topology wy, is finer than the weak-star topology w(Mps(£p), Hps(£p)).

Proof. Since (Mps(£p,), wp) is a first-countable space, it suffices to verify that for a bounded sequence (¢;); which is w,
convergent to some y, we have lim; ¢;(f) = ¥ (f) for each f € #;(¢p): Indeed, by the Banach-Steinhaus theorem, it
is enough to see that lim; ¢;(P) = ¥ (P) for each symmetric polynomial P. Being {F;} an algebraic basis for the symmetric
polynomials, this will follow once we check that lim; ¢;(F,) = v (Fy) for each Fy.. To see this, notice that givene > 0, ¢; € U,
for i large enough, that is, there is 6; such that ¢; = ¥ » 6; with |0;(F,)| < €. Then, |¢;(Fy) — ¥ (Fy)| = |6;(Fx)| < ¢ forilarge
enough. O

Proposition 2.4. If (Mps(£p), %) is a group, then w, coincides with the weakest topology on Mps(£,) such that for every
polynomial P € #,5(£,) the Gelfand extension P is continuous on Mps(£p).

Proof. The sets F,j](B(Fk(w), ¢£)) generate the weakest topology such that all P are continuous. Let 6 & Mps(€,) be such
that |F,(6) — Fe(¥)| < &.Set ¢ = O x~'. Then |F(¢)| = |Fr(0) — F(¥)| <eand§ =y . O

3. Representations of the convolution semigroup (Mps(€1), %)

In this section we consider the case #s(£,). This algebra admits besides the power series basis {F,}, another natural
basis that is useful for us: It is given by the sequence {G,} defined by G, = 1, and

o0
G = Y Xy Xy

kq<---<kn

and we refer to it as the basis of elementary symmetric polynomials.

Lemma 3.1. We have that ||G,|| = 1/n!

Proof. To calculate the norm, it is enough to deal with vectors in the unit ball of £; whose components are non-negative.
And we may restrict ourselves to calculate it on L, the linear span of {eq, ..., e;;} for m > n. We do the calculation in an
inductive way over m.

Since C"ILm is homogeneous, its norm is achieved at points of norm 1. If m = n, then G, is the product x; - - - x,. By
using the Lagrange multipliers rule, we deduce that the maximum is attained at points with equal coordinates, that is at
L(ey+ - +ep). Thus [Gy(2, .7, 1 0,.. ) =1/n" < L.

e

Now form > n,and x € L,;, we have G,(x) = Zkl kg <m Xy Xy - Again the Lagrange multipliers rule leads to either

some of the coordinates vanish or they are all equal, hence they have the same value % In the first case, we are led back
to some the previous inductive steps, with L, with k < m, so the aimed inequality holds. While in the second one, we have

1T m 1 __[m 1 1
Ga(h e 2.0, = (1) i =

Moreover, ||G,|| > limp, <':) 1 = L This completes the proof. O

mn n!*

Let C{t} be the space of all power series over C. We denote by ¥ and § the following maps from Ms(¢;) into C{t}

o0

Flp)=y t"'p(F) and G(p) =Y "p(Gy).
n=0

n=1

Let us recall that every element ¢ € Mps(€1) has a radius-function
. 1
R(p) = limsup [y || < oo,
n—oo
where ¢, is the restriction of ¢ to the subspace of n-homogeneous polynomials [6].

Proposition 3.2. The mapping ¢ € Mps(£1) —9> 9(¢) € H(C) is one-to-one and ranges into the subspace of entire functions on
C of exponential type. The type of G (¢) is less than or equal to R(¢p).

Proof. Using Lemma 3.1,

limsup v/n!{gn(Gyp)| < limsup y/n!llgn [l |Gyl = limsup v/[l¢nll = R(p) < o0,

n—oo n—oo n—oo

hence 4 (¢) is entire and of exponential type less than or equal to R(¢). That § is one-to-one follows from the fact {G,} is a
basis. O
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Theorem 3.3. The following identities hold:

(1) Flp*0) = F(p) + F(0).
(2) §(o % 0) = §(0)§0).

Proof. The first statement is a trivial corollary of the properties of the convolution. To prove the second we observe that
n
Gr(x ) =Y Ge(X)Grr(y).
k=0

Thus

k=0 k=0

(O % G)(X) = O(TS(Gy)) = 0 (Z Gk(x>cn_k) =Y GX®)OGnp)-

Therefore,

k=0 k=0

(@*0)G) =¢ (Z Gk(xw(cn_k)) =Y 9(GIO(Gnr).

Hence, being the series absolutely convergent,

o0

9@)96) = Y t'p(G) Y "G =D Y t"0(GYO(Gn)
k=0 m=0

n=0 k+m=n

=Y 1" > 9(GOGn) = Zot"(go*excn) =g(p0). O

n=0 k+m=n
Example 3.4. Let ¥, be as defined in Example 1.7. We know that F (¥;,) = . To find (v, ) note that

AN\ (n Ak
Gi(vp) = <E> (k) ,hence ¢(Gy) = li,gn Gi(vn) = E

and so

n n K
GW® = lim > (0,6 = lim 3 OO _ e
k=0

k!

According to well-known Newton'’s formula we can write for x € ¢4,

nGa(X) = Fi(0)Gp—1(X) = ()G 2(0) + -+ + (="' (x). (3.1)

Moreover, if £ is a complex homomorphism (not necessarily continuous) on the space of symmetric polynomials $;(¢1),
then

n (Gn) = E(FDE(Gpo1) — E(F)E(Gn2) + -+ - + (=D& (Fy). (32)
Next we point out the limitations of the construction’s technique described in 1.7.
Remark 3.5. Let £ be a complex homomorphism on $(¢) such that &(F,,) = ¢ # 0 for some m > 2 and & (F,;) = O for
n # m. Then £ is not continuous.
Proof. Using formula (3.2) we can see that

mi1 & Fn)& (Gk—1ym)
km

S(ka) = (_1)

and & (G,) = 0if n # km for some k € N. By induction we have

-1 m+1 k
S(Glcm) = 7(( ) Kl C/m)

and so

00 ((_1)m+1 ctm)k

m
=1 B ——
k! + ; k!

o (Come/m)’

GEO =1+
k=1

= e<(_1)m+l %)'
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Hence 4(§)(t) = e*(ffr? =e" = ™ Sincem > 2, g(£) is not of exponential type. So if £ were continuous, it could be

extended to an element in My;(€1), leading to a contradiction with Proposition 3.2. O

According to the Hadamard Factorization Theorem (see [11, p. 27]) the function of exponential type 4 (¢)(t) is of the
form

G@) 0 =] (1 - a%) e'/a%, (3.3)

k=1

where {a,} are the zeros of §(p)(t). If >_ |ax|~' < oo, then this representation can be reduced to

9wxw=&11<v—i). (34)

k=1
Recall how v, was defined in Example 1.7.

Proposition 3.6. If ¢ € (Mys(£1), %) is invertible, then ¢ = r; for some M. In particular, the semigroup (Mys(€1), %) is not a
group.
Proof. If ¢ is invertible then ¢(¢)(t) is an invertible entire function of exponential type and so has no zeros. By Hadamard’s

factorization (3.3) we have that §(¢)(t) = e for some complex number A. Hence ¢ = v, by Proposition 3.2.
The evaluation §(1,0,...,0,..) does not coincide with any v, since, for instance, ¥, (F,) =0 # 1= 6§(10,..0,.)(F). O

Another consequence of our analysis is the following remark.

Corollary 3.7. Let @ be a homomorphism of $s(¢4) to itself such that @ (Fy) = —F,, for every k. Then @ is discontinuous.

Proof. If @ is continuous it may be extended to a continuous homomorphism @ of Hps(£1). Then for x = (1,
0,...,0,...), we have §, x (64, 0 @) = §o. However, this is impossible since &, is not invertible. O

We close this section by analyzing further the relationship established by the mapping §.
It is known from Combinatorics (see e.g. [12, pp. 3,4]) that

(o] (o]
Xk
Sy)(t) = 1+ x¢t) and F(S)(t) = 35
530 g(+m B(0) ;rﬂu (35)
for every x € coo. Formula (3.5) for §(8y) is true for every x € £;: Indeed, for fixed t, both the infinite product and § (dx)(t)
are analytic functions on £;.

Taking into account formula (3.5) we can see that the zeros of §.(,) (t) are ay = —1/x for x, % 0. Conversely, if f (t) is an
entire function of exponential type which is equal to the right hand side of (3.4) with }_ |a,|~! < oo, then for ¢ € Mps(€;)
given by ¢ = ¥, x §y, where x € £1, x, = —1/a, and ¥, as defined in Example 1.7, it turns out that §(¢)(t) = f(t). So we
just have to examine entire functions of exponential type with Hadamard canonical product

o0 t
_ _ t/ag
f) = | | <1 . )e (3.6)

k=1 k

with 3~ |a,|~! = oo. Note first that the growth order of f (t) is not greater than 1. According to Borel’s theorem [11, p. 30]
the series

>
pot a1+
converges for every d > 0. Let
. n . 1
Ay = limsup —, nf = limsup —
n—o00 |an| r>oo | g2y dn
n

and y;y = max(4y, ). Due to Lindel6f’s theorem [11, p. 33] the type o of f and y; simultaneously are equal either to zero,
or to infinity, or to positive numbers. Hence f (t) of the form (3.6) is a function of exponential type if and only if ) _ lag| =1
converges for every d > 0 and y; is finite.

Corollary 3.8. If a sequence (x,) & £, for some p > 1, then there is no ¢ € Mys(£1) such that

o0
p(F) =Y xk
n=1

for all k.
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Letx = (X1, ..., Xn, ...) be a sequence of complex numbers such that x € ¢, 4 for everyd > 0,
lim sup n|x,| < oo, lim sup Z Xn| < 00 (3.7)
n—-oo r—1 1

e <T
[xXn|

and A € C. Let us denote by §x,») a homomorphism on the algebra of symmetric polynomials $s(¢1) of the form

o0
Sy (F) =x,  Seay(F) =Y _x k> 1.
n=1

Proposition 3.9. Let ¢ € Mys(£1). Then the restriction of ¢ to $s(£1) coincides with 8 ;) for some A € C and x satisfying (3.7).
Proof. Consider the exponential type function 4(¢) given by (3.3) and the corresponding sequence x = (;—:).

If x € £4, then according to (3.4), ¢ = ¥, % 8. If x & £1, then G(p)(t) = e H;’il (l + rxn)e*”‘" and, on the other hand,
G)(0) =332 (Gut™.

We have
o0 ! o0
(e“ 1_[ 1+ tx,) e”‘") = st 1_[ (14 tx,) e ™
n=1 t n=1
+et <—txﬁe”‘1 1_[ (1 + txy) e ™ — toe™ ™ l_[ (14 txy)e ™ — .. )
n#1 n£2
[o¢] o0
= reM 1_[ (1 + txy) e~ — te?t Zxﬁe’”‘k 1_[ (14 txy) e ™
n=1 k=1 n#k
and

= A.
t=0

(eM H (14 txy) e_“‘")
n=1

So by the uniqueness of the Taylor coefficients, ¢(G;) = ¢(F1) = A.

Now
00 " 00 / 00 i
(eM H (14 tx,) e‘”‘") = <AeM H (14 tx,) e‘”‘") - (te’“ Zxke_”k H (14 txy) e_fx")

n=1 t n=1 t k=1 n#k ¢

o0 o0
= A2 1_[ (1+ tx,) e — pte Zxﬁe’”‘" l_[ (14 tx,) e ™n
n=1 k=1 n#k
o0 o0 !
—eM Zxﬁe‘”‘k 1_[ (14 tx,) e ™ —¢ (e“ X:xke‘t’"< H (14 txy) e‘”‘")
k=1 n#k k=1 n#k ¢
and

o0 ” o0
At —tx; 2 2
e 1+txp)e ™ =A" — Xi.
( [Ta+m) )mo D%

n=1
Then
A2 —F F1))? —F
oGy = RO _ @) —RB®
2 2
On the other hand,

9(F}) — ¢(F)
2

0(Gy) =
and we have

o (F) = R (x).

Now using induction we obtain the required result. O
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Question 3.10. Does the map § act onto the space of entire functions of exponential type?
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