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Abstract While dealing with real world data for classification using ANNs, it is often difficult to

determine the optimal ANN classification model with fast convergence. Also, it is laborious to adjust

the set of weights of ANNs by using appropriate learning algorithm to obtain better classification

accuracy. In this paper, a variant ofHarmony Search (HS), calledGlobal-best Harmony Search along

with Gradient Descent Learning is used with Functional Link Artificial Neural Network (FLANN)

for classification task in data mining. The Global-best Harmony Search (GbHS) uses the concepts of

Particle Swarm Optimization from Swarm Intelligence to improve the qualities of harmonies. The

problem solving strategies of Global-best Harmony Search along with searching capabilities of

Gradient Descent Search are used to obtain optimal set of weight for FLANN. The proposedmethod

(GbHS-GDL-FLANN) is implemented in MATLAB and compared with other alternatives

(FLANN, GA based FLANN, PSO based FLANN, HS based FLANN, Improved HS based

FLANN, Self Adaptive HS based FLANN, MLP, SVM and FSN). The GbHS-GDL-FLANN is

tested on benchmark datasets fromUCIMachine Learning repository by using 5-fold cross validation

technique. The proposed method is analyzed under null-hypothesis by using Friedman Test, Holm

and Hochberg Procedure and Post-Hoc ANOVA Statistical Analysis (Tukey Test & Dunnett Test)

for statistical analysis and validity of results. Simulation results reveal that the performance of the

proposed GbHS-GDL-FLANN is better and statistically significant from other alternatives.
� 2015 Production and hosting by Elsevier B.V. on behalf of Faculty of Computers and Information,

Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Data Analysis is an analytical process of examining data to

discover useful information and draw conclusions which help
in decision making. It integrates diversified techniques under
Statistic, Engineering and Science. Since 1990, data are being
collected in numerous speed and in large volume in the area
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of web, business management, e-commerce, remote sensors,
microarrays gene expression, scientific simulations, production
control and engineering design, transactions, stocks and bioin-

formatics, etc. These explosive growths of data collection and
the need of automated extraction of novel, valid, unknown and
potentially useful information from the data in large databases

gave birth to many data analysis methodology, which includes
Data Mining and Business Intelligence.

Data mining is the process of identifying novel, understand-

able and previously unknown patterns in data which helps in
decision making. Most tricky and challenging decision making
processes in day to day human life is classification, which helps
to make decision from past experience. In data mining, the

Classification is defined as a variety of data analysis process
that can be used to assign important classes to unknown
patterns. Classification task predicts definite class labels and

constructs a model based on the training dataset which is used
to classify anonymous patterns.

In the recent years, many classification tasks have been

proposed in emerging areas of science and engineering which
includes document classification [1–3], Sentiment classification
[4–7], Fault classification [8–11], Text classification [12–14],

Image classification [15–18] and Gene Expression classification
and Bio Medical Data classification [19–23] and others [24–30],
which have given new shape, motivation and direction to
application of the classification task in data mining.

Although a number of traditional classification methods
are proposed by many researchers [31–35], first time, Zhang
et al. [34] realized that artificial neural network models are

alternative to various conventional classification methods
which are based on statistics. The artificial neural networks
(ANNs) are capable of generating complex mapping between

input and the output space; thus, they can form arbitrarily
complex nonlinear decision boundaries. Along the way, there
are already several artificial neural networks, each utilizing a

different form of learning or hybridization. As compared to
higher order neural network, the classical neural networks
(Example: MLP) are suffering from slow convergence and
unable to automatically decide the optimal model for classifi-

cation. In the last few years, to overcome the limitations of
conventional ANNs, some researchers have focused on higher
order neural network (HONN) models [36,37] for better

performance.
2. Literature survey

In this paper, it is an attempt to design higher order neural
network model with competitive learning based on new
meta-heuristic optimization algorithm for classification of

benchmark datasets from the well known machine learning
data repository.

Prior to this, a Chebyshev Functional Link Artificial
Neural Network model (Chebyshev-FLANN) with Chebyshev

polynomial functional expansion for prediction of financial
indices is proposed by Patra et al. [38]. The performance of
FLANN and chFLANN is found nearly equivalent and train-

ing time for FLANN and chFLANN is noticed as almost half
of the MLP. Among MLP, FLANN and Chebyshev-FLANN,
the chFLANN is found best among these three. Also it is

observed that FLANN and chFLANN are efficient and have
less complex architecture as compared to MLP.
Misra andDehuri [39] have proposed a classificationmethod
by using FLANN and simulation results show that proposed
FLANN model is capable to handle linearly non-separable

classes by increasing the dimension of input space through func-
tional expansion. The execution time and accuracy of this
model is found to be better than the other alternatives.

A hybrid functional link artificial neural network
(HFLANN) based on genetic algorithm (GA) for optimal
input feature selection by using functionally expanded selected

features is proposed by Dehuri et al. [40] which address nonlin-
ear nature of classification problems. Through experimental
results, the HFLANN is proven to be better in optimal set
feature selection as compared to RBFN and FLANN with

back propagation learning.
A comprehensive survey on FLANN is made and an

efficient PSO based back propagation learning is proposed

by Dehuri and Cho [41]. In this paper, the basic concept of
FLANN, associated basis functions, learning schemes and
development of FLANNs over time are discussed. Also the

authors have used PSO based back propagation learning
scheme on Chebyshev-FLANN for classification and the pro-
posed method is proved to be better as compared to FLANN

by testing with benchmark datasets.
An efficient FLANN for stock price prediction of the clos-

ing price of US stocks is suggested by Patra et al. [42] and
found to be better in performance in terms of more accurate

predictions of stock. In this paper, a FLANN with
trigonometric functional expansion (Trigonometric-FLANN)
is used and shown to be better result as compared to

MLP-based prediction model.
A FLANN based prediction model for prediction of

causing genes in gene diseases is proposed by Sun et al. [43].

In this study, three classifiers (i.e. MLP, SVM, FLANN) have
been implemented and compared. The performance of the
FLANN classifier is found to be better over MLP and SVM.

For better prediction of the stock market indices,
Chakravarty and Das [44] have proposed a Functional Link
Neural Fuzzy (FLNF) Model and compared with FLANN
based prediction model in terms of root mean square error.

The simulation results show that the FLNF performs better
over FLANN. Also the authors have addressed the issue of
falling in local minima in case of back propagation learning

by employing Particle Swarm Optimization.
A classification method based on FLANN is achieved by

Majhi et al. [45] for classification of online Indian customer

behavior and the proposed FLANN model found to be
superior in classification accuracy than other statistical
approach (discriminant analysis). Also authors have suggested
to use psychographic and cultural information for further

improvement of the proposed method.
An accurate hybrid FLANN classifier (HFLNN) is pro-

posed by Dehuri and Cho [46] by selecting an optimal subset

of favorable input features. This is achieved by eliminating fea-
tures with fewer or no predictive information. The proposed
method is found to be better as compared to FLANN and

RBFN.
Forecasting of stock exchange rates is achieved with

Genetic algorithm (GA) based FLANN model by Nayak

et al. [47] and proposed method is compared with MLP, GA
based MLP and GA based FLANN models. The authors have
claimed that the FLANN-GA is found better in almost all
cases.
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Bebarta et al. [48] have implemented few variants of
FLANN model (Power FLANN, Legendre FLANN, Cheby-
shev FLANN and Laguerre FLANN) for forecasting stock

price index and performances are measured in terms of stan-
dard deviation error, squared error, etc. All the four proposed
methods are implemented and found to be simple and efficient

to predict the various Indian stock data.
A Bat inspired optimization based FLANN classification

method is proposed by Mishra et al. [49]. The method is com-

pared with FLANN and hybrid PSO based FLANN classifica-
tion method. In this paper, bat algorithm is used to adjust the
weights of the FLANN efficiently which results in high accu-
racy for classification. The simulation results show that the

proposed method outperforms FLANN and hybrid PSO based
FLANN classifiers.

Various dimension reduction strategies are projected by

Mahapatra et al. [50] for the Chebyshev FLANN classifier
and have been used for cancer classification. The basic idea
Table 1 FLANN models and learning methods used for various ap

Author(s) Model used Learning m

Park and Pao [244] FLANN Back Prop

Patra and Kot [242] Chebyshev FLANN Back Prop

Abu-Mahfouz [247] FLANN Back Prop

Patra et al. [38] FLANN Back Prop

Patra et al. [38] Chebyshev FLANN Back Prop

Mishra and Dehuri [39] FLANN Back Prop

Dehuri et al. [40] FLANN GA + Ba

Patra et al. [42] FLANN Back Prop

Dehuri and Cho [41] FLANN PSO+ Ba

Abbas [250] FLANN Back Prop

Sun et al. [43] FLANN Back Prop

Nanda et al. [251] FLANN Back Prop

Chakravarty and Das [44] FLNF Back Prop

Majhi et al. [77] FLANN Gradient D

Majhi et al. [77] FLANN Recursive

Emrani et al. [253] FLANN PSO+ Ba

Majhi et al. [45] FLANN Back Prop

Dehuri and Cho [46] FLANN GA + Ba

Sicuranza and Carini [56] FLANN Back Prop

Nayak et al. [47] FLANN GA + Ba

Bebarta et al. [48] FLANN Back Prop

Bebarta et al. [48] Power FLANN Back Prop

Bebarta et al. [48] Laguerre FLANN Back Prop

Bebarta et al. [48] Legendre FLANN Back Prop

Bebarta et al. [48] Chebyshev FL ANN Back Prop

Mishra et al. [49] FLANN BO+ Bac

Mahapatra et al. [50] Chebyshev FL ANN Back Prop

Mishra et al. [51] FL ANN Back Prop

Dehuri et al. [52] FL ANN IPSO+ G

Sicuranza. and Carini [59] Recursive FLANN Back Prop

George and Panda [57] FLANN Back Prop

Mili and Hamdi [53] FLANN PSO+ Ba

Mili and Hamdi [53] FLANN DE+ Bac

Parija et al. [58] FLANN Back Prop

Ali and Haweel [60] Legendr-FLANN Back Prop

Durga and Tarun [61] FLANN Back Prop

Durga and Tarun [61] Legendre-FLANN Back Prop

Durga and Tarun [61] Chebyshev-FLANN Back Prop

Cui et al. [62] FLANN Back Prop

Naik et al. [54] FLANN PSO+ G

Naik et al. [55] FLANN HMBO+

Naik et al. [63] FLANN HS+Gra
used in this paper is to perform PCA, FA, DFT and DCT tech-
niques to reduce dimension of the data and then Chebyshev
FLANN classifier is applied for better classification. It is

observed that the combination of DCT feature reduction tech-
nique along with Chebyshev FLANN classifiers outperforms
other possible alternatives.

Mishra et al. [51] have developed MLP, FLANN and PSO-
FLANN classification models for classification of biomedical
data. In this paper, to extract important input features, an effi-

cient dynamic classifier fusion (DCF) is proposed along with
principal component analysis (PCA) scheme. After extraction
of optimal input features, LMS classifier is performed along
with PSO based Back propagation learning algorithm.

Although MLP is a traditional ANN, surprisingly, in this
study, PSO based Back propagation learning-MLP is found
to be better as compared to FLANN and PSO-FLANN.

An Improved PSO (IPSO) based FLANN classifier
(IPSO-FLANN) is proposed by Dehuri et al. [52] and
plications in recent years.

ethod employed Application

agation Pattern Recognition

agation System Identification

agation Detection of Gear Faults

agation Prediction

agation Prediction

agation Classification

ck Propagation Classification

agation Stock Price Prediction

ck Propagation Classification

agation System Identification

agation Disease Gene Prediction

agation Identification of MIMO Plants

agation Prediction of Stock Indices

escent Forecasting of Stock

Least Square Forecasting of stock

ck Propagation System Identification

agation Classification of Consumer Behaviour

ck Propagation Classification

agation Noise Control

ck Propagation Forecasting

agation Forecasting and Classification

agation Forecasting and Classification

agation Forecasting and Classification

agation Forecasting and Classification

agation Forecasting and Classification

k Propagation Classification of Microarray Data

agation Classification of Cancer Data

agation Classification of Bio-Medical Data

radient Descent Classification

agation Noise Control

agation Noise Control

ck Propagation Classification

k Propagation Classification

agation Location management

agation Channel Equalization

agation Wind Power Forecasting

agation Wind Power Forecasting

agation Wind Power Forecasting

agation Identification of Model

A + Gradient Descent Non-linear Data Classification

Gradient Descent Non-linear Data Classification

dient Descent Non-linear Data Classification
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compared with MLP, support vector machine (SVM), RBFN,
FLANN with gradient descent learning and Fuzzy Swarm Net
(FSN) model. Initially, IPSO is used to optimize the weight

value of Functional link ANN and finally, functionally
expanded (using trigonometric basis functions) input patterns
are supplied to FLANN for classification. The proposed

method is found to be simple and better as compared to
MLP, SVM, FLANN with gradient decent learning and FSN.

Mili and Hamdi [53] have developed a good number of

FLANN based classifier such as PSO based FLANN, GA
based FLANN and Differential Evolution (DE) based
FLANN for classification task. These classifiers are compared
and tested with various expansion functions. In their study, the

authors have concluded that the proposed methods are
performing better in terms of accuracy and convergence as
compared to traditional FLANN.

An efficient classification method based on FLANN and a
hybrid learning scheme based on PSO and GA have been
proposed by Naik et al. [54] and it is found to be relatively

better in performance as compared to other alternatives. The
PSO, GA and the gradient descent search are used iteratively
to adjust the parameters of FLANN until the error is less than

the required value, which helps the FLANN model to get
better classification accuracy.

Naik et al. [55] have designed a Honey Bee Mating
Optimization (HBMO) based learning scheme for FLANN

classifier and compared with FLANN, GA based FLANN
and PSO based FLANN classifiers. The proposed method
mimics the iterative mating process of honey bees and strate-

gies to select eligible drones for mating process, for selection
of best weights for FLANN classifiers.

Along with these applications, many recent applications of

FLANN model with various hybrid learning schemes from the
period 2000–2015 are listed in Table 1.

Table 1 represents various recent applications of FLANN

models with varieties of hybrid learning methods to solve real
life applications.

3. Background study of the proposed work

From all the FLANN models discussed in literature survey
(Table 1), few of them (Table 2) implement some form of
Table 2 Various FLANN models and learning methods used for d

Author(s) Model used Learnin

Mishra and Dehuri [39] FLANN Back Pr

Dehuri et al. [40] FLANN GA + B

Dehuri and Cho [41] FLANN PSO +

Majhi et al. [45] FLANN Back Pr

Dehuri and Cho [46] FLANN GA + B

Bebarta et al. [48] FLANN Back Pr

Nayak et al. [47] FLANN Back Pr

Mishra et al. [49] FLANN BO+ B

Mahapatra et al. [50] Chebyshev FL ANN Back Pr

Mishra et al. [51] FL ANN Back Pr

Dehuri et al. [52] FL ANN IPSO+

Dehuri et al. [52] MLP Back Pr

Dehuri et al. [52] SVM Back Pr

Dehuri et al. [52] FSN Back Pr

Naik et al. [55] FLANN HMBO

Naik et al. [63] FLANN HS+ G
learning methods which learns from past data in Classification
tasks in Data mining. Almost all the higher order ANNs
(HONNs) including functional link higher order ANN

(FLANN) are sensitive to random initialization of weight
and rely on the learning algorithm adopted. Although a
selection of efficient learning algorithm for HONNs helps to

improve the performance, initialization of weights with
optimized weights rather than random weights also plays
important roles in efficiency of HONNs.

In related works (Table 2), it is noticed that, all most all the
previously published works have addressed the issue of random
initialization of weight in FLANN by using various optimiza-
tion algorithms such as Genetic Algorithm (GA) [64,65], Parti-

cle Swarm Optimization (PSO) [66], and Honey-Bee Mating
Optimization (HBMO) [67,68]. In these papers, various opti-
mization algorithms (GA, PSO, Improved PSO, HMBO, etc.)

are used to select the best set of weight for FLANN models
for various nonlinear data classification. Although it is
reported that these optimization techniques are successfully

used in FLANN models for improved models such as GA
based FLANN (GA-FLANN) [40], PSO based FLANN
(PSO-FLANN) [41], IPSO based FLANN (IPSO-FLANN)

[52], HS based FLANN (HS-FLANN) [63] and HBMO based
FLANN [55] (HBMO-FLANN), the major negative aspects of
these implementations are the requirement of various
complicated mathematical operators such as (i) Mutation and

Crossover operator in GA in GA-FLANN, (ii) Position
and Velocity calculation in PSO in PSO-FLANN and
IPSO-FLANN and (iii) Crossover and Mutation in HBMO

in HBMO-FLANN. The performance of these models depends
upon the way of implementation of these mathematical opera-
tions (such as selection of crossover operation, mutation oper-

ation and mutation rate) and any changes in these factors may
lead to increase in time and space complexity of the algorithm.

Considering these, some new variants of Harmony Search

[69] are used in FLANN learning model with Gradient Des-
cent learning scheme for classification. Many researchers are
attracted toward the study of harmony search and its applica-
tions due to the fact that, HS algorithms have few mathemat-

ical requirements as compared to earlier meta-heuristic
optimization algorithms and can be easily used for optimiza-
tion problems. We have surveyed about 170 published papers
ata classification in recent years.

g method employed Application

opagation Classification

ack Propagation Classification

Back Propagation Classification

opagation Classification of Consumer Behaviour

ack Propagation Classification

opagation Forecasting and Classification

opagation Forecasting of Stocks

ack Propagation Classification of Microarray Data

opagation Classification of Cancer Data

opagation Classification of Bio-Medical Data

Gradient Descent Classification

opagation Classification

opagation Classification

opagation Classification

+ Gradient Descent Non-linear Data Classification

radient Descent Non-linear Data Classification
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on application of harmony Search algorithms till the year 2015
in the scientific databases of Elsevier, IEEE and Springer.

It is found that, various papers have been published in the
area of different application of HS (Fig. 1) which includes
Table 3 Various applications of harmony search algorithms.

References

Lee and Geem [70], Lee et al. [71], Saka [72,73], Zarei et al. [74], Kaveh

Fesanghary [77], Kaveh and Shakouri [78], Khazali et al. [79], Parizad et a

et al. [83], Nezhad et al. [84], Zhang and Hanzo [85], Gao et al. [86], Jaf

Zamanifar [88], Yadav et al. [89], Erdal et al. [90], Srinivasa et al. [91], Ku

et al. [94], Gao et al. [95], Bekda and Nigdeli [96], Harrou and Zeblah [97
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Ceylan et al. [147], Coelho et al. [148], Sui et al. [149], Sivasubramani an
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Sirjani et al. [157], Sirjani and Mohamed [158], Sirjani et al. [159], Javah

Geem [162], Alexandre et al. [163], Geem [164], Wang et al. [165], Diao [1

et al. [169], Alia et al. [170], Mandava et al. [171], Forsati and Mahdavi [17

[175], Yadav et al. [176], Wang et al. [177], Ayachi et al. [178], Ramos et

[181], Ahmed et al. [182], Yusof et al. [183], Ko and Sim [184], Li et al. [

Zhang [189], Jing et al. [190], Peiying et al. [191], Diao and Shen [192], K

Swarup [194], Li et al. [195], Hua et al. [196], Ahmad et al. [197], Habib et
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Bernert [207], Ma et al. [208], Zou et al. [209,210], Fourie et al. [211], Mo
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engineering (32.353%), water system management (4.118%),
medical (2.353%), robotics (1.765%), control (1.176%), power
and energy (12.353%), cross application (22.941%) and others

(22.941%). Starting from the development of HS, it has been a
keen interest among the diversified researchers and has been
used in various real life applications [70–239] (Table 3).

Inspired from successful applications of harmony Search
algorithms, in this paper, an attempt has been made to address
the intricacy in adjusting the set of weights of the FLANN

model by using appropriate learning algorithm. Here the prob-
lem solving approach of the Global-best Harmony Search
along with learning ability of the Gradient Descent Learning
(GDL) is used to obtain the optimal set of weight of FLANN

model. The objective is to design an Ease-of-use FLANN
model with Global-best Harmony Search technique which
requires very few mathematical operation as compared to

other meta-heuristics.
In this paper, an attempted has been made to design a

FLANN model with hybrid Global-best Harmony Search

(GbHS) and Gradient descent search based learning method
for classification. The performance in terms of classification
accuracy of the proposed method is compared with some of

the existing popular methods such as MLP, SVM, and FSN
and found that the results are exceeding over others.
Application area
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The remaining part of this paper is organized as follows:
Preliminaries in Section 4, proposed method in Section 5,
experimental setup in Section 6, simulation results and perfor-

mance comparisons in Section 7, proof of statistical signifi-
cance in Section 8, conclusion in Section 9 and references.

4. Preliminaries

4.1. Functional link artificial neural network architecture

The Functional Link Artificial Neural Network (FLANN)
[240] is a class of Higher Order Neural Networks that make

use of higher combination of its inputs [241,242] and has been
successfully used in many applications such as pattern recogni-
tion [243,244], classification [245–247], channel equalization

[248], system identification [249–253] and prediction [254].
Even if it has a single-layer network, still it is capable to handle
nonlinear separable classification task as compared to MLP.
Functional
Expansion

Functional
Expansion

Functional
Expansion
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Figure 2 Functional link artificia
In FLANN, the dimension of input pattern increases artifi-
cially through the functional expansion and then the extended
and transformed input data are used to train the feed forward

network. During functional expansion, various mathematical
functions, such as sine, cosine, and log, are used to transform
an original input pattern to its extended version. The number

of input terms during functional expansion depends upon the
number of attribute of an input pattern. The basic structure
of FLANN is depicted in Fig. 2.

The functionally expanded values for dataset x can be gen-
erated by using Eq. (1), where xiðjÞ stands for jth attribute
value of ith pattern and ‘x’ is a dataset in a form of matrix
of order m � n.

u xiðjÞð Þ ¼ fxiðjÞ; cosPxiðjÞ; sinPxiðjÞ; cos 2PxiðjÞ;
sin 2PxiðjÞ . . . cos nPxiðjÞ; sin nPxiðjÞg ð1Þ

Total 2n + 1 number of functionally expanded values are gen-
erated for an input attribute value xiðjÞ of a pattern xi, intern,
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(n * (2n+ 1)) number of expanded values are generated for a

single input pattern xi. In Eq. (1), value for i and j can be ran-
ged from i = 1,2 . . .m and j= 1,2 . . .n, where m and n are
number of input pattern and number of attribute values of

each input pattern respectively except class level (probably last
column of dataset x). Hence, the complete functionally
expanded values for dataset x is represented using Eq. (2).

u ¼ ffu x1ð1Þð Þ;u x1 2ð Þð Þ . . .u x1 nð Þð ÞgT;
u x2ð1Þð Þ;u x2 2ð Þð Þ . . .u x2 nð Þð Þf gT . . .
fu xmð1Þð Þ;u xm 2ð Þð Þ . . .u xm nð Þð ÞgTg ð2Þ

The weights of FLANN are set randomly prior to the above
functionally expanded values ‘/’ are the input to FLANN clas-

sifier. Total n * (2n + 1) number of weights are set for each
individual pattern, as each input pattern is transformed to
n * (2n + 1) number of functionally expanded values. Random

initialization of weight-set for each individual pattern can be
visualized as Eq. (3).

Wi ¼ fwi;1;wi;2; . . .wi;2nþ1g; for i ¼ 1; 2 . . . n ð3Þ

where Wi is the weight vector initialized randomly for a single
input pattern. Hence, initialization of set of weight for input
patterns of dataset ‘x’ can be viewed as a weight vector

W ¼ fW1;W2 . . .WmgT, where Wi is the set of weight for ith
pattern in the dataset x. The dataset ‘x’ is supplied to FLANN

in terms of functionally expanded values ‘/’ and the net output
is obtained as follows.

� First, values of S is calculated as S ¼ uXW ¼ fs1; s2 . . . smg.
� Then, the net output Y is computed as Y ¼ f Sð Þ ¼
ff s1ð Þ;f s2ð Þ...f smð Þg = fy1;y2 ...ymg = ftanh s1ð Þ; tanh s2ð Þ
...tanh smð Þg. Here tanh is used as activation function and
net output yi is for input pattern xi.

Based on net output yi and given target value ti, error of
FLANN is calculated and a suitable learning method is
adopted to adjust weight values of FLANN.

4.2. Gradient descent learning scheme

Gradient descent learning is the most commonly used training
methods in which weights are changed in such a way that

network error is declined as rapidly as possible. The learning
of FLANN model using Gradient descent method with error
of the network is described below.

� Error of kth input pattern is generated as e kð Þ ¼ Y kð Þ � tðkÞ
which is used to compute error term d kð Þ ¼ 1�y2k

2

� �
� e kð Þ,

for k= 1,2 . . .m, where m is the number of input pattern
in a dataset.

� Then, weight factor of ‘DW ’ can be computed as

DW q =

PL

i¼1
2�l�ui�di

L

� �
, for q ¼ 1; 2 . . . L� ð2nþ 1Þ.

Where u ¼ ðu1;u2 . . .uLÞ, e ¼ e1; e2 . . . eLð Þ and
d ¼ ðd1; d2 . . . dLÞ are the vector which represent sets

of functional expansion, set of error and set of error
term respectively where L is the number of input
patterns.
� Finally, weight updation is done as wnew ¼ wþ DW
where w ¼ ðw1;w2 . . .wL�ð2nþ1ÞÞ and DW ¼ ðDW 1;DW 2 . . .

DW L�ð2nþ1ÞÞ.

Basically, a better learning algorithm helps the ANN model

for fast convergence. Further, a use of competitive optimiza-
tion technique can, not only improve the convergence of a
learning algorithm, but also enhance accuracy of an ANN
based classifier. In the next subsection, a new meta-heuristic

optimization technique, known as Harmony Search technique
and its variants have been described.

4.3. Variants of harmony search

The Harmony Search (HS) [69] is a meta-heuristic algorithm
inspired by musical process of searching for a perfect shape of

harmony. The algorithm is based on natural musical processes
in which a musician searches for a better state of harmony by
tuning pitch of eachmusical instrument, such as jazz improvisa-
tion. The music improvisation by pitch adjustment in the

Harmony Search is analogous to local and global search process
to find better solution in any optimization techniques.

4.3.1. Harmony search

This section contains brief review on working procedure of the
harmony search algorithm. In general, basic steps of harmony
search can be expressed as follows:

Step 1 Initialize a harmony memory (HM) with randomly
generated solution vectors (Harmonies)

Step 2 Repeat Steps 3 and 4 until no further significant growth in

fitness of solution vector is noticed or the maximum number of

iterations is reached

Step 3 Improvise HM to get New Harmony Memory (NHM)

Step 4 Update the HM based on comparison between solution

vectors of HM and NHM in terms of fitness. If any harmony in

HM is less fit than harmony in NHM, then harmony in HM is

excluded by adding harmony from NHM

Step 5 Exit

Basically, the harmony memory (HM) is a group of pre-
defined number of solution vectors similar to a population of

particle in PSO or chromosome in GA. Initially HM is initial-
ized with random solution vectors and gradually, solution
vectors in HM are improved by using Step-3 of harmony

search procedure known as HM improvisation step. This step
is entirely controlled by the parameters: Harmony Memory
Consideration Rate (HMCR), Pitch Adjustment Rate (PAR)
and Bandwidth (bw).

In HS, the HMCR controls the balance between exploration
and exploitation and it is set between 0 and 1. The searching
procedure behaves as purely random search, if the HMCR is

set to 0 and a value 1 for HMCR specifies 100% of previous
solution vectors from HM are taken into consideration for next
generation, which means, there is no chance to improve the

harmony from outside the HM. In this way, HMCR keeps
the balance between exploration and exploitation. Another
parameter PAR determines the rate of adjustment of solution

vectors based on the bandwidth (bw) which is usually a
variable, and behaves as step size.
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The HMCR and PAR determine Memory Consideration
Probability (MCP), Pitch Adjustment Probability (PAP) and
Random Probability (RP) as follows:

MCP ¼ HMCR � ð1� PARÞ � 100
PAP ¼ HMCR � PAR � 100
RP ¼ 100�MCP� PAP

Basically, Improvisation of HM is governed by these parame-
ters (MCP, PAP, and RP).

Example: If HMCR= 0.99 and PAR= 0.45 then

MCP= 0.9 * (1 � 0.45) * 100 = 49.5 and PAP = 0.9 *
0.45 * 100 = 40.5 and RP = 100 � 49.5 � 40.5 = 10. Which
means, during harmony improvisation phase (Step-3), 49.5%

of solution vectors are migrated (without any changes) from
previous harmony memory (HM) to New Harmony Memory
(NHM), 40.5% of solution vectors are gone through pitch

adjustment and then included into NHM and 10% of solution
vectors are gone through modification by adding randomly
generated values with existing solution vector in HM.

In HS, the bw and PAR are fixed and pitch adjustment is
done according to Eq. (4).

HMiðtþ 1Þ

¼
HMiðtþ 1Þ ¼HMjðtÞ � randð1Þ � bw if randð1Þ < 0:5

HMiðtþ 1Þ ¼HMjðtÞ þ randð1Þ � bw if randð1Þ > 0:5

( )

ð4Þ
In Eq. (4), HMiðtþ 1Þ is the next ith harmony at time t+ 1
and HMjðtÞ is the jth randomly selected harmony for pitch

adjustment at time t.
In recent years, many Harmony Search variants (Fig. 3)

have been proposed by the researchers by incorporating some

modifications to the original HS algorithm [69]. Further, these
variants are some modifications of three major variations of
HS and those are Improved HS, Global-best HS and Self

Adaptive HS. These variants have some common steps and
are different in strategies of solving optimization problem.
Overall strategies and steps involved with these variants of

Harmony Search have been demonstrated in Fig. 3.

4.3.2. Improved harmony search

The Improved Harmony Search (IHS) [255] is an initial variant

of HS, which employs a novel strategy for generation of new
solution vectors that not only enhances accuracy but also
improves the convergence rate of basic HS algorithm. The

authors have claimed the better performance of IHS over HS
by eliminating constant parameters (bw, PAR) in HS
algorithm and incorporating dynamically changes in PAR
and bw with iteration number.

The IHS is free from the fixed values of PAR and bw in the
HS algorithm by decreasing bw and increasing PAR with an
iteration number and found considerable influence on the

quality of solutions. The mechanism of dynamically decreasing
HMiðtþ 1Þ ¼ HMiðtþ 1Þ ¼ HMjðtÞ þ max HMð Þ �HMjðtÞ
� ��

HMiðtþ 1Þ ¼ HMjðtÞ � HMjðtÞ �min HMð Þ� ��
(

of bw with iteration is inspired from the strategy of decreasing
the learning rate of neural networks dynamically [256].

Unlike HS, the bw and PAR are not fixed and this value

changes according to HS iterations which is achieved by using
Eqs. (5) and (6).

bwðiterÞ ¼ bwmax � exp
ln bwmin

bwmax

N
� iter

 !
ð5Þ

In Eq. (5), bwðiterÞ is the bandwidth in particular iteration

‘iter’, bwmin and bwmax are the minimum and maximum band-
width respectively and N is the number of solution vector in
the population.

PARðiterÞ ¼ PARmin þ PARmax � PARmin

N
� iter ð6Þ

In Eq. (6), PARðiterÞ is the pitch adjustment rate in particular
iteration ‘iter’, PARmin and PARmax are the minimum and

maximum pitch adjustment rate and N is the number of solu-
tion vector in the population.

4.3.3. Global-best Harmony Search

Inspired from successful use of PSO in numerous applications,
Omran and Mahdavi [257] have developed Global best Har-
mony Search (GbHS), which borrowed the concepts from

PSO to enhance its performance of HS optimization. Instead
of dynamically increasing PAR, authors have suggested to
employ the small constant PAR which may prevent overshoot-
ing and oscillation that normally occurs in IHS.

In GbHS, it eliminates the difficulties of selecting appropri-
ate bandwidth (bw) by directly adopting the current best pitch
(Global best) from the harmony memory and adjusting other

solution vectors to improve their qualities in the HM without
pitch adjustment step. This process of HM improvisation is
analogous to selection of local best (LBest) and global best

(GBest) particle (In PSO) from population based on which,
changing of position of particles is obtained. The performance
of GbHS is found to be significantly better than HS and IHS in

terms of quality of solution and convergence rate.

4.3.4. Self adaptive harmony search

In, SAHS [258], the pitch adjustment step in IHS has been

modified to incorporate better utilization of its own experi-
ences, by updating the new harmony according to the maxi-
mum and minimum values in the HM. Here, the objective is

to simplify pitch adjustment step by introducing a new strategy
of adjusting new harmony by using maximum and minimum
values in HM encountered so far, thereby eliminating bw
altogether from HS procedure.

Like IHS, in SAHS, the bw and PAR change with HS iter-
ations. The SAHS is different from IHS in pitch adjustment
mechanism as illustrated in Eq. (7).

Let minHM and maxHM denote the lowest and the highest
values of the ith variable in the HM respectively and then har-
mony in HM is further adjusted by the following Equations:
randð1Þ if randð1Þ < 0:5

randð1Þ if randð1Þ > 0:5

)
ð7Þ
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Figure 3 Harmony search variants.
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where HMiðtþ 1Þ is the next ith harmony at time t+ 1,
HMjðtÞ is the jth randomly selected harmony for pitch adjust-

ment at time t, min(HM) and max(HM) are the minimum and
maximum values of entire harmony memory (HM) and rand
(1) is a uniform number in the [0,1] range without 1.
5. Proposed method

In this section, we have considered four FLANN classifiers
with Gradient descent learning based on four variants of
Harmony Search algorithm. In this paper, a deep experimental
analysis on Harmony Search algorithm and its different vari-

ants (i.e. Improved HS, Global-best HS and Self Adaptive
HS) has been done and an attempt has been made to use the
problem solving strategies of these variants to improve perfor-

mance of FLANN classifiers. Here the objective is to select the
best set of weight (Weight-set) from a set of randomly selected
weight-sets (Population) for FLANN model for classification
task. This paper mainly focused on Global-best HS based
Gradient Descent Learning-FLANN model (GbHS-GDL-

FLANN) for classification and the objective is to investigate
the performances of Global-best HS (GbHS) to enhance clas-
sification accuracy of FLANN classifier as compared to basic

HS (HS), Improved HS (IHS) and Self Adaptive HS (SAHS).
Also, the performance of GbHS-GDL-FLANN is compared
with other meta-heuristic algorithm (GA based FLANN and

PSO based FLANN) to get generalized performance. The
pseudo codes developed during implementation of proposed
GbHS based Gradient descent learning FLANN (GbHS-
GDL-FLANN) are presented in Section 5.1. The simulation

results and the comparisons of performance of these
hybrid FLANN classifiers (FLANN, GA-GDL-FLANN,
PSO-GDL-FLANN, HS-GDL-FLANN, IHS-GDL-FLANN,

GbHS-GDL-FLANN and SAHS-GDL-FLANN), MLP, SVM
and FSN are discussed in Section 7.
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5.1. Global-best Harmony Search based Gradient Descent
Learning-FLANN (GbHS-GDL-FLANN)

Initially (Fig. 4), the population of weight-sets (HM) is

randomly initialized. Each weight-set is a possible candidate
set of weight of FLANN for classification of the dataset. Each

individual weight-set in HM can be defined as follows:

Wi ¼ wi;1;wi;2 . . .wm�n� 2�kþ1ð Þ
� 	 ð8Þ

In Eq. (8), the 2� kþ 1ð Þ is the number of functionally
expanded values for a single value in input pattern (for a cho-

sen value of k), n is the number of values (features) in a single
input pattern and m is the number of patterns in the dataset.
HM

FLANN Model Dataset 
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Stop 

Yes 

Glob

No 

Ini�alize HMS, HMCR, PAR & bw.  
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HM. (For 1st itera�on only)

Figure 4 Overview of
The set of weight-sets in the HM (population) is represented

as Eq. (9).

HM ¼ W1;W2 . . .Wmð Þ ð9Þ
The objective of this study is to improve the quality of weight-

sets by using Global-best HS and to find the best weight-set
from the population (HM). The problem solving strategies of
Global-best HS are used here to improve the qualities of
harmonies in harmony memory (HM) and the complete flow

of execution can be realized by using Fig. 4 and pseudo codes
(Algorithms 1–4). Initially, the harmony memory (HM) is
initialized with ‘n’ numbers of weight-sets for FLANN. Each

weight-set Wi is set to FLANN and the FLANN model is
trained with a particular dataset. Based on output of the
Fitness 

=
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proposed scheme.
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FLANN and given target value, error of the network is

obtained. For a specific dataset, the root mean square error
(RMSE) (Eq. (10)) for each Weight-set Wi is computed by
using output of the FLANN (Algorithm 4) and given target

value. Based on RMSEs, fitness of the weight-sets is computed
by using Eq. (11).

The Root Mean Square Error (RMSE) of predicted output
values ŷi of a target variable yi is computed for n different pre-

dictions as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi � ŷið Þ2
n

s
ð10Þ

FWi
¼ 1=RMSEi ð11Þ

In Eq. (11), Wi is the ith weight-sets in the population, RMSEi

is the root mean square error of ith weight-set and FWi
is the

fitness of ith weight-set Wi.
After evaluation of fitness values for each weight-set in

HM, the HM goes through HM improvisation process based
on Global-best Harmony Search (GbHS). During this, the
parameters: HMS (Harmony Memory Size), HMCR (Har-

mony Memory Consideration Rate), PAR (Pitch Adjustment
Rate) and bw (Bandwidth) are set and based on which MCP
(Memory Consideration Probability), PAP (Pitch Adjustment
Probability) & RP (Random Probability) are computed (Algo-

rithm 1). Basically, the Harmony Search procedure is governed
by these parameters.

Algorithm 2 represents pseudo-codes for HarmonyMemory

improvisation in which, initially, among all weight-sets (har-
monies) in HM, some are randomly selected with a probability
of MCP (Memory Consideration Probability) and included

into New Harmony Memory (NHM). Here the objective is to
migrate some weight-sets (harmonies) from HM into NHM
without any changes on them, which serve as new harmonies.

For the improvement of weight-sets through pitch adjustment,
some weight-sets are selected randomly from HM with a prob-
ability of PAP and then they are adjusted based on the variable
distance bandwidth (bw) which is similar to the local search

method with a step size bw. Similarly, with a probability of
Random Probability (RP), some weight-sets are selected ran-
domly and added to NHM by suitably adding or subtracting

a random value on it. Although Global-best Harmony Search
is suggested to bypass the pitch adjustment step, better result
also can be obtained through pitch adjustment of harmonies.

After the generation of harmonies NHM from HM through
Harmonic Memory Consideration, Pitch Adjustment and
Random Selection phases with probabilities of MCP, PAP
and RP respectively, all the harmonies in NHM are treated

as local best particles (LBest) from which the harmony with
best fitness is chosen as global best particle (GBest). Here,
the population of harmonies in HM is analogous to popula-

tion of particles in PSO. The next velocities (Vnew) of har-
monies (particles) is computed by using V (Initial Velocity),
LBest and Gbest from Eq. (12). After obtaining next velocity

Vnew, the next position of harmonies in NHM is computed
from Eq. (13) (Algorithm 2).

Viðtþ 1Þ ¼ ViðtÞ þ c1 � randð1Þ � lbesti � Xi tð Þð Þ
þ c2 � randð1Þ � gbesti � Xi tð Þð Þ ð12Þ

Xiðtþ 1Þ ¼ XiðtÞ þ Viðtþ 1Þ ð13Þ
After improvisation of HM by using Glabal-best Harmony

Search optimization, the HM is updated by based on
comparison of fitness of weight-sets in HM and NHM. If the
fitness of ith weight-set in HM is less than fitness of ith

weight-set in NHM, then HM(i,:) will be replaced by NHM
(i,:) else HM(i,:) serves as new harmony for next iteration.
The pseudo codes for HM updation procedure are represented
in Algorithm 3. These processes are continued iteratively until

maximum iteration is reached or increase in fitness of
weight-sets in HM in subsequent iteration is not significant.
The complete schemes of the proposed method can be realized

in Fig. 4.

Algorithm 1. Global-best-Harmony-Search-GDL-FLANN
(GbHS-GDL-FLANN) Procedure

% HMS: Harmony Memory Size, HMCR: Harmony Memory
Consideration Rate, PAR: Pitch Adjustment Rate.

% Randomly initialize a harmony memory (HM) with size HMS.

HM= �1 + (1 � �1).*(rand (m, l));

% Where m is the number of weight-set in population

and l is the length of each weight-set.

% Initialization of HMS, HMCR and PAR.

HMS=40;

HMCR=0.9;

PAR=0.3;

bw=zeros(1,l)+0.0001;

% Compute MCP(memory consideration probability), PAP(pitch

adjustment probability) and RP(randomization probability).

MCP=HMCR*(1-PAR)*100;

PAP=HMCR*PAR*100;

RP=100-MCP-PAP;

Iter = 0;

While (1)

% Improvisation of Harmony Based on Global-best HS

Optimization

Function NHM= ImprovizationOfHarmonyMemory

(HM, HMS, MCP, PAP, RP, bw);

% Updation of HM

Function HM= UpdateHarmonyMemory(HM,NHM);

% Check for Termination Criteria.

if (iter>=MAX_ITERATION)

break;

end if

iter=iter+1;

End While

Algorithm 2. ImprovizationOfHarmonyMemory Procedure

FunctionNHM= ImprovizationOfHarmonyMemory(HM, HMS,
MCP, PAP, RP, bw)

for i=1:1:HMS

r=rand(1)*100;

% Select jth weight-set randomly from

harmony memory with memory consideration

probability (MCP) which serve as New

Harmony Memory (NHM).

(continued on next page)
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If (1<=r && r<=MCP)

j=floor (mod((rand(1)*1000),

HMS))+1;

NHM(i,:)=HM(j,:);

Endif

% Select jth weight-set randomly from

harmony memory with a probability of

PAR for pitch adjustment to improve

quality of weight-set in HM which serves

as new harmony memory (NHM). The

PAR and appropriate bandwidth (bw)

serve the purpose. It is similar to the local

search method with step size of variable

distance bandwidth.

If (MCP+1<=r && r<=MCP+PAP)

j=floor(mod((rand(1)*1000),HMS))

+1;

r1=rand(1);

If (r1<=0.5)

for k=1:1:lbw, where lbw is the

length of bw

NHM(i,k)=HM(j,k) �
rand(1)*bw(1,k);

End

Else

for k=1:1:lbw, where lbw is the

length of bw

NHM(i,k)=HM(j,k)

+ rand(1)*bw(1,k);

End

End

endif

% Select jth weight-set randomly from

harmony memory with a probability of RP

which serve as new harmony memory

(NHM). In this phase, a jthweight-set is

selected randomly from HM and added to

NHM by suitably adding or subtracting a

random value from it.

If (MCP+PAP+1<=r && r<=MCP

+PAP+RP)

j=floor(mod((rand(1)*1000),

HMS))+1;

NHM(i,:)=HM(j,:)+(�0.1

+(0.1 � �0.1).*rand(1));

Endif

% Global best Harmony ‘gbest’ Selection:

Select best harmony (weight-sets) from

population having highest fitness among all

weight-sets in the population (HM).

lbest=NHM; for i=1:1:HMS

w=lbest(i,:);

Flbest(i,1)=fitfromtrain

(u,w, t,l);

end

[mx,mxi]=max(Flbest);

gbest=lbest(mxi,:);

% Compute next velocity ‘Vnew’:

Compute next velocity Vnew from lbest,

gbest, NHM and current velocity V.

c1=2; c2=2;

For i=1:1:rlbest, where rlbest is the

number of row in lbest
For j=1:1:clbest, where clbest is

the number of column in lbest

Vnew(i,j) = V(i,j) +

rand(1)*c1*(lbest(i,j)

� HM(i,j)) + rand

(1)*c2*(gbest(1,j) �
HM(i,j);

End

End

% Generate next position of harmony

NHM from old NHM and new velocity

‘Vnew’.

NHM= HM+Vnew;

endfor

end
Algorithm 3. UpdateHarmonyMemory Procedure

Function HM = UpdateHarmonyMemory (HM, NHM)
% Update the HM: If the new harmony

(weight-sets) in NHM is better than the

harmony in the HM, then add the new

harmony into the HM by excluding the worst

harmony from the HM.

for i=1:1:HMS

w=HM(i,:);

F1(i,1)=fitfromtrain (u,w, t,l);

endfor

for i=1:1:HMS

w=NHM(i,:);

F2(i,1)=fitfromtrain (u,w, t,l);

endfor

lf=length(F1);

for i=1:1:lf

if (F1(i,1)<F2(i,1))

HM(i,:)=NHM(i,1);

end if

endfor

end
Algorithm 4. fitfromtrain Procedure

function F = fitfromtrain (u;w; t; lÞ

S= u � w
Y= tanh(S);

If u ¼ ðu1;u2 . . .uLÞ, e ¼ e1; e2 . . . eLð Þ and
d ¼ ðd1; d2 . . . dLÞ are vector which represent set of

functional expansion, set of error and set of error tern

respectively, then the weight factor of w ‘DW’ is

Computed as follows: DWq ¼
PL

i¼1
2�l�ui�di
L

� �
.

Compute error term d kð Þ ¼ 1�y2
k

2

� �
� e kð Þ, for

k = 1,2 . . .L where L is the number of pattern.

e= t � y;

Compute root mean square error (RMSE) by using Eq.

(10) from target value and output.

F= 1/RMSE, where F is fitness of the of FLANN

model.

end
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6. Experimental setup
In this section, the environment for simulation, the dataset
used for training & testing phase and the parameter setting

for proposed methods during simulation are presented.
All the classification methods (FLANN, GA-FLANN,

PSO-FLANN, HS-FLANN, IHS-FLANN, SAHS-FLANN

and GbHS-FLANN) are implemented in Matlab (Version
9.0) in a system with Window XP operating system. After
obtaining the results of simulation, statistical analysis has been
carried out using SPSS statistical tool (Version 16.0).

The benchmark datasets (Table 4) used for classification are
originated from UCI machine learning repository [259] and
processed by KEEL software [260].

Table 4 represents the list of benchmark datasets which is
used to evaluate the models. All the datasets are presented
along with their number of patterns, number of attributes

(without class attribute) and number of classes.
The detail descriptions about all these dataset can be

obtained at ‘http://archive.ics.uci.edu/ml/’ and ‘http://keel.es/’.

6.1. Parameters setting used for simulation

6.1.1. FLANN parameter

During the learning of the FLANN model, the gradient des-
cent learning method is used by setting ‘l’ to 0.13. The value
of ‘l’ is obtained by testing the models in the range 0–3. Each

value in the input pattern is expanded to 11 number of func-
tionally expanded input values by setting n= 5. (As FLANN
model suggests to generate 2n+ 1 number of functionally

expanded input values for a single value in the input pattern.)

6.1.2. Harmony search parameter

Harmony Memory Size (HMS): 40
Harmony Memory Consideration Rate (HMCR): 0.9

Pitch Adjustment Rate (PAR): 0.3
Bandwidth (bw): 0.0001

6.1.3. Improved harmony search parameter

Harmony Memory Size (HMS): 40
Harmony Memory Consideration Rate (HMCR): 0.9
Table 4 Dataset information.

Dataset Number of

pattern

Number of features

(excluding class label)

Number

of classes

Monk 2 256 06 02

Iris 150 04 03

Heart 256 13 02

Hayesroth 160 04 03

Wine 178 13 03

Ionosphere 351 33 02

Hepatitis 80 19 02

Pima 768 08 02

New Thyroid 215 05 03

Bupa 345 06 02

Dermatology 256 34 06
Pitch Adjustment Rate (PAR): PARmin = 0.01,

PARmax = 0.9

Bandwidth (bw): bwmin = 0.0001, bwmax =
1

20� UB�LBð Þ
6.1.4. Global-best Harmony Search parameter

Harmony Memory Size (HMS): 40

Harmony Memory Consideration Rate (HMCR): 0.9
Pitch Adjustment Rate (PAR): 0.3
Bandwidth (bw): 0.0001
6.1.5. Self adaptive harmony search parameter

Harmony Memory Size (HMS): 40

Harmony Memory Consideration Rate (HMCR): 0.9
Pitch Adjustment Rate (PAR): PARmin = 0.01,
PARmax = 0.9

7. Results and comparisons

In this section, the classification accuracies (Eq. (14)) obtained
from various methods for all benchmark datasets with their
comparison results are represented. These classification

accuracies (Tables 6–8) are observed individually for training
and testing phase.

Classification accuracy ¼
Pn

i¼1

Pm
j¼1;
i¼j
CMi;jPn

i¼1

Pm
j¼1 CMi;j

� 100 ð14Þ

In Eq. (14), the CM is the confusion matrix which represents
number of well classified and miss classified pattern after
classification operation.

Here n and m are no. of row and no. of column of CM
respectively and they are supposed to be equal (i.e. n= m).

7.1. Cross validation

The Cross-Validation [261] is a statistical method to estimate
generalized performance of the learned model from data which

compare learning algorithms by dividing data into two seg-
ments: training set & testing set, which are used to train and
evaluate the model respectively. In k-fold cross-validation
[262], the data are partitioned into k equally or nearly equally

sized fragments on which training and validation are per-
formed such that, in each test different fold of the data is used
for training and validation.

In this paper, all the datasets used for classification are pre-
pared for cross validation by using 5-folds cross validation
technique. During the preparation of datasets for 5-fold cross

validation, 5 pairs of dataset sample are created and each pair
contains datasets for training and testing phase.

Table 5 represents 5-fold cross validated Newthyroid data-
set in which dataset is divided into 5 pair datasets. Each pair

contains dataset for training and testing which are used to
train and test the models respectively.

For example (Table 5), the ‘newthyroid-5-1tra.dat’ and ‘n

ewthyroid-5-1tst.dat’ data are a pair of datasets sample of
New Thyroid dataset which is used for training and testing
phase for a single run respectively. As 5-fold cross validation

http://archive.ics.uci.edu/ml/
http://keel.es/
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is employed, the New Thyroid datasets contains 5 such pair of
dataset sample for training and testing the algorithms.

The 5-fold cross validated dataset for NEW THYROID

dataset is presented in Table 5. All other datasets are prepared
for 5-fold cross validation in the same fashion and collected
from KEEL Dataset Repository [260]. The average classifica-

tion accuracies on 5-fold cross validation dataset during train-
ing and testing phase are listed in Tables 6–8. In Tables 6–8,
the average of classification accuracies of algorithms on ‘new

thyroid-5-1tra.dat’, ‘newthyroid-5-2tra.dat’, ‘newthyroid-5-3tr
a.dat’, ‘newthyroid-5-4tra.dat’ and ‘newthyroid-5-5tra.dat’ is
posted as the classification accuracy in training phase for
New Thyroid dataset. Similarly, the average of classification

accuracies of algorithms on ‘newthyroid-5-1tst.dat’, ‘newthyr
oid-5-2tst.dat’, ‘newthyroid-5-3tst.dat’, ‘newthyroid-5-4tst.da
t’ and ‘newthyroid-5-5tst.dat’ is posted as the classification

accuracy in testing phase.
Table 6 describes the comparison of classification accura-

cies of FLANN, GA based FLANN (GA-FLANN), PSO

based FLANN (PSO-FLANN) and HS based FLANN (HS-
FLANN) classifiers and Table 7 represents comparison of
other 4 classifiers: HS based FLANN (HS-FLANN),

Improved HS based FLANN (IHS-FLANN), Self-Adaptive
HS based FLANN (SAHS-FLANN) and Global-best HS
based FLANN (GbHS-FLANN), which are based of variants
of Harmony Search technique.
Table 5 Datasets in 5-fold for cross validation.

Dataset Data files Number of pattern Task

New Thyroid newthyroid-5-1tra.dat 172 Training

newthyroid-5-1tst.dat 43 Testing

newthyroid-5-2tra.dat 172 Training

newthyroid-5-2tst.dat 43 Testing

newthyroid-5-3tra.dat 172 Training

newthyroid-5-3tst.dat 43 Testing

newthyroid-5-4tra.dat 172 Training

newthyroid-5-4tst.dat 43 Testing

newthyroid-5-5tra.dat 172 Training

newthyroid-5-5tst.dat 43 Testing

Table 6 Comparison of results among FLANN, GA-FLANN, PSO

Datasets Classification accuracies of classifiers in %

FLANN GA-FLANN

Training Testing Training Te

Monk 2 93.828 92.043 96.545 93.

Iris 96.847 97.368 97.13 98.

Heart 88.963 78.481 89.407 79.

Hayesroth 90.359 82.313 91.063 83.

Wine 92.76 93.186 94.368 95.

Ionosphere 79.482 80.927 87.336 89.

Hepatitis 73.519 70.593 80.275 75.

Pima 78.416 78.76 78.64 78.

Thyroid 93.918 76.558 94.198 77.

Bupa 72.16 72.76 74.321 75.

Dermatology 96.358 92.442 96.946 93.
After comparison of proposed method with hybrid models
(Tables 6 and 7), we have made some comparison with other
similar approaches in the same area. The projected method

(GbHS-FLANN) is compared with Multi-Layer Perceptron
[52], Support Vector Machine [52] and Fuzzy System Nets
[52]. Table 8 represents the average classification accuracies

of the GbHS-FLANN, MLP, SVM and FSN for both training
and testing phase. The average of training and testing accura-
cies on the datasets are listed in Table 9. The overall statistic

on performance of all the methods in this study is shown in
Fig. 5. From the simulation results (Table 9), it clearly indi-
cates that the proposed GbHS-FLANN outperforms over
the other results in all the tested datasets.

In this study, the performance of GA, PSO, HS, IHS,
SAHS and GbHS is analyzed in order to know the improve-
ment of harmonies (weight-sets) in the population by these

algorithms in different generation. The changes in fitness of
weight-sets in different generations are observed in all the 11
number of datasets and Figs. 6–16 demonstrate the improve-

ments of fitness of weight-sets in the population.

8. Proof of statistical significance

In this section, the statistical comparison of classifiers over
multiple datasets [263] is presented to argue the projected
method is statistically better and significantly different from
Number of pattern

in class-1

Number of pattern

in class-2

Number of pattern

in class-3

120 28 24

30 07 06

120 28 24

30 07 06

120 28 24

30 07 06

120 28 24

30 07 06

120 28 24

30 07 06

-FLANN and HS-FLANN.

PSO-FLANN HS-FLANN

sting Training Testing Training Testing

199 97.453 95.466 97.914 96.537

166 97.352 98.65 97.857 99.472

074 89.778 79.852 89.917 80.222

562 91.266 83.937 91.547 85.063

536 97.762 95.627 97.597 95.570

152 92.372 90.18 91.552 90.069

826 80.028 75.42 82.481 76.273

80 80.126 79.47 80.683 80.581

535 94.302 78.791 94.407 79.256

5 76.384 76.75 76.318 76.358

859 97.011 94.08 97 93.872



Table 7 Comparison of results among HS-FLANN, IHS-FLANN, SAHS-FLANN and GbHS-FLANN.

Datasets Classification accuracies of classifiers in %

HS-FLANN IHS-FLANN SAHS-FLANN GbHS-FLANN

Training Testing Training Testing Training Testing Training Testing

Monk 2 97.914 96.537 97.929 96.552 98 96.634 98.019 96.692

Iris 97.857 99.472 97.871 99.695 97.869 99.541 98.164 99.58

Heart 89.917 80.222 89.924 80.275 89.932 80.295 89.95 80.361

Hayesroth 91.547 85.063 91.557 85.193 91.602 85.26 91.582 85.247

Wine 97.597 95.570 97.902 95.63 97.927 95.783 98.152 95.923

Ionosphere 91.552 90.069 91.893 90.173 92.735 90.672 92.95 91.363

Hepatitis 82.481 76.273 82.638 76.334 82.533 76.294 82.586 76.306

Pima 80.683 80.581 80.835 80.593 80.738 80.587 82.733 81.53

Thyroid 94.407 79.256 94.437 79.263 94.426 79.261 94.804 79.335

Bupa 76.318 76.358 76.475 76.925 76.618 77.426 78.236 78.754

Dermatology 97 93.872 97.046 94.382 97.176 94.762 97.369 95.442

Table 8 Comparison of results among MLP, SVM, FSN and GbHS-FLANN.

Datasets Classification accuracies of classifiers in %

MLP SVM FSN GbHS-FLANN

Training Testing Training Testing Training Testing Training Testing

Iris 98.15 94.00 91.69 91.70 97.182 96.00 98.164 99.58

Heart 82.63 80.42 85.20 84.19 85.19 84.86 89.95 80.361

Wine 96.14 92.29 79.06 73.66 97.87 93.69 98.152 95.923

Ionosphere 74.61 73.28 83.74 83.74 90.54 87.5 92.95 91.363

Hepatitis 60.42 60.83 76.27 63.18 76.57 72.52 82.586 76.306

Pima 76.61 77.19 79.68 75.37 75.27 76.39 82.733 81.53

Thyroid 79.78 79.77 90.70 90.76 96.74 94.39 94.804 79.335

Bupa 67.52 67.39 74.57 68.53 65.19 65.00 78.236 78.754

Dermatology 86.78 80.63 95.49 87.65 96.28 90.65 97.369 95.442

Table 9 Comparison of average classification accuracy of

MLP, SVM, FSN and GbHS-FLANN.

Datasets Average classification accuracies of classifiers in %

MLP SVM FSN GbHS-FLANN

Iris 96.075 91.695 96.591 98.872

Heart 81.525 84.695 85.025 85.1555

Wine 94.215 76.36 95.78 97.0375

Ionosphere 73.945 83.74 89.02 92.1565

Hepatitis 60.625 69.725 74.545 79.446

Pima 76.9 77.525 75.83 82.1315

Thyroid 79.775 90.73 95.565 87.0695

Bupa 67.455 71.55 65.095 78.495

Dermatology 83.705 91.57 93.465 96.4055

79.358 % 

81.954 % 

85.657 % 

84.083 % 

86.448 % 
87.440 % 87.75 % 87.91 % 88.032 % 

88.53 % 

1 2 3 4 5 6 7 8 9 10 

Average Classifica�on Accuracies in % 

Figure 5 Comparisons of results of proposed method with all

related work.
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other alternative classifiers by using Friedman test [264,265].

List of datasets on which these tests have been carried out
and the assigned ranks to each of the considered methods is
presented in Table 10.

8.1. Friedman test

The Friedman test is a nonparametric statistical method which
computes average ranks of algorithms (Eq. (15)) and compares
them. In Eq. (15), r ji is the rank of the jth of k number of clas-
sifiers on ith of N number of datasets.

In Table 10, all the classification models are ranked based
on their performance on datasets. Each classifier is assigned
with a rank which is mentioned with brackets. The models

with lowest and highest rank are considered to be models hav-
ing best and worst performance respectively.



Figure 6 Improvements in fitness of population in different iterations observed in MONK2 dataset.

Figure 7 Improvements in fitness of population in different iterations observed in IRIS dataset.
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In Table 10, the ranks of each classifier on various datasets

are shown in brackets. Based on r ji , the average ranks of seven

classifier is found from Eq. (15).

Rj ¼ 1

N

X
i

r ji ð15Þ

The average ranks for all classifiers are found as follows:
R1 ¼ 7;R2 ¼ 5:91;R3 ¼ 4:636;R4 ¼ 4:364;R5 ¼ 2:636;f
R6 ¼ 2:273;R7 ¼ 1:182g

The X2
F value is computed from the average rank Rj of each

classifier by using Eq. (16). In this study, we got the value

of X2
F as 61.232. From the value of X2

F, the Friedman

statistics FF is computed by Eq. (17) and found as 128.42281.



Figure 8 Improvements in fitness of population in different iterations observed in HEART dataset.

Figure 9 Improvements in fitness of population in different iterations observed in HAYESROTH dataset.
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The Friedman statistic is distributed according to X2
F with

(k � 1) degree of freedom under the null-hypothesis (H0Þ
and the critical value of the F-distribution can be obtained
from FF with (k � 1) and (k � 1) * (N � 1) degree of

freedom. In our case, for the 7 number of classifiers and 11
number of datasets, FF = 128.42281 with 7 � 1 = 6 and
(7 � 1) * (11 � 1) = 60 degrees of freedom, a crucial
value = 3.12 is obtained from suitably selecting a = 0.01.
Density plot for degree of freedom (6,60) is obtained and

displayed in Fig. 17.
The null-hypothesis is clearly rejected as critical value 3.12

is less than FF statistic 128.42281.



Figure 10 Improvements in fitness of population in different iterations observed in WINE dataset.

Figure 11 Improvements in fitness of population in different iterations observed in IONOSPHERE dataset.
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H0: All the classifier has same rank, hence they are
equivalent.

X2
F ¼ 12N=kðkþ 1Þð Þ

X
j

R2
j �

kðkþ 1Þ2
4

 !
ð16Þ
FF ¼ N� 1ð ÞX2
F

� 	�
N K� 1ð Þ � X2

F

� 	 ð17Þ
After the rejection of null-hypothesis from Friedman test, in
order to evaluate performance by pairwise comparison of pro-
posed classifier with another classifier based on z-score value



Figure 12 Improvements in fitness of population in different iterations observed in HEPATITIS dataset.

Figure 13 Improvements in fitness of population in different iterations observed in PIMA dataset.
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Figure 14 Improvements in fitness of population in different iterations observed in NEW THYROID dataset.

Figure 15 Improvements in fitness of population in different iterations observed in BUPA dataset.
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Figure 16 Improvements in fitness of population in different iterations observed in DERMATOLOGY dataset.

Table 10 Ranks of classifiers on various datasets based on the classification accuracy on train and test set.

Datasets Average classification accuracies of classifiers in %

FLANN GA-FLANN PSO-FLANN HS-FLANN IHS-FLANN SAHS-FLANN GbHS-FLANN

Monk 2 92.9355 (7) 94.872 (6) 96.4595 (5) 97.2255 (4) 97.2405 (3) 97.317 (2) 97.3555 (1)

Iris 97.1075 (7) 97.648 (6) 98.001 (5) 98.6645 (4) 98.783 (2) 98.705 (3) 98.872 (1)

Heart 83.722 (7) 84.2405 (6) 84.815 (5) 85.0695 (4) 85.0995 (3) 85.1135 (2) 85.1555 (1)

Hayesroth 86.336 (7) 87.3125 (6) 87.6015 (5) 88.305 (4) 88.375 (3) 88.431 (1) 88.4145 (2)

Wine 92.973 (7) 94.952 (6) 96.6945 (4) 96.5835 (5) 96.766 (3) 96.855 (2) 97.0375 (1)

Ionosphere 80.2045 (7) 88.244 (6) 91.276 (3) 90.8105 (5) 91.033 (4) 91.7035 (2) 92.1565 (1)

Hepatitis 72.056 (7) 78.0505 (5) 77.724 (6) 79.377 (4) 79.486 (1) 79.4135 (3) 79.446 (2)

Pima 78.588 (7) 78.72 (6) 79.798 (5) 80.632 (4) 80.714 (2) 80.6625 (3) 82.1315 (1)

Thyroid 85.238 (7) 85.8665 (6) 86.5465 (5) 86.8315 (4) 86.85 (2) 86.8435 (3) 87.0695 (1)

Bupa 72.46 (7) 74.9105 (6) 76.567 (4) 76.338 (5) 76.7 (3) 77.022 (2) 78.495 (1)

Dermatology 94.4 (7) 95.4025 (6) 95.5455 (4) 95.436 (5) 95.714 (3) 95.969 (2) 96.4055 (1)

Friedman’s rank in average 7 5.91 4.636 4.364 2.636 2.273 1.182

Figure 17 Density plot.
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Table 11 Result of Holm and Hochberg procedure.

i Classifiers z-values p-values a=ðk� iÞ
1 GbHS-GDL-FLANN: GDL-FLANN 6.31616 0 0.001667

2 GbHS-GDL-FLANN: GA-GDL-FLANN 5.13283 1.427543e�7 0.002

3 GbHS-GDL-FLANN: PSO-GDL-FLANN 3.74974 0.000089 0.0025

4 GbHS-GDL-FLANN: HS-GDL-FLANN 3.45445 0.000276 0.003333

5 GbHS-GDL-FLANN: IHS-GDL-FLANN 1.5785 0.057225 0.005

6 GbHS-GDL-FLANN: SAHS-GDL-FLANN 1.18441 0.118125 0.01

Table 12 Tukey test results.

Multiple comparisons

(I) Algorithm (J) Algorithm Mean difference (I–J) Std. error Sig. 90% confidence interval

Lower bound Upper bound

Sample: Tukey HSD

FLANN GA-FLANN �2.19986 1.02109 .322 �4.9552 .5554

PSO-FLANN �3.18255 1.02109 .031 �5.9378 �.4272

HS-FLANN �3.56841 1.02109 .009 �6.3237 �.8131

IHS-FLANN �3.70368 1.02109 .006 �6.4590 �.9484

SAHS-FLANN �3.81955 1.02109 .004 �6.5748 �1.0642

GbHS-FLANN �4.22895 1.02109 .001 �6.9843 �1.4737

GA-FLANN FLANN 2.19986 1.02109 .322 �.5554 4.9552

PSO-FLANN �.98268 1.02109 .962 �3.7380 1.7726

HS-FLANN �1.36855 1.02109 .833 �4.1238 1.3868

IHS-FLANN �1.50382 1.02109 .761 �4.2591 1.2515

SAHS-FLANN �1.61968 1.02109 .691 �4.3750 1.1356

GbHS-FLANN �2.02909 1.02109 .424 �4.7844 .7262

PSO-FLANN FLANN 3.18255 1.02109 .031 .4272 5.9378

GA-FLANN .98268 1.02109 .962 �1.7726 3.7380

HS-FLANN �.38586 1.02109 1.000 �3.1412 2.3694

IHS-FLANN �.52114 1.02109 .999 �3.2764 2.2342

SAHS-FLANN �.63700 1.02109 .996 �3.3923 2.1183

GbHS-FLANN �1.04641 1.02109 .948 �3.8017 1.7089

HS-FLANN FLANN 3.56841 1.02109 .009 .8131 6.3237

GA-FLANN 1.36855 1.02109 .833 �1.3868 4.1238

PSO-FLANN .38586 1.02109 1.000 �2.3694 3.1412

IHS-FLANN �.13527 1.02109 1.000 �2.8906 2.6200

SAHS-FLANN �.25114 1.02109 1.000 �3.0064 2.5042

GbHS-FLANN �1.0211 1.02109 .995 �3.4158 2.0948

IHS-FLANN FLANN 3.70368 1.02109 .006 .9484 6.4590

GA-FLANN 1.50382 1.02109 .761 �1.2515 4.2591

PSO-FLANN .52114 1.02109 .999 �2.2342 3.2764

HS-FLANN .13527 1.02109 1.000 �2.6200 2.8906

SAHS-FLANN �.11586 1.02109 1.000 �2.8712 2.6394

GbHS-FLANN �.52527 1.02109 .999 �3.2806 2.2300

SAHS-FLANN FLANN 3.81955 1.02109 .004 1.0642 6.5748

GA-FLANN 1.61968 1.02109 .691 �1.1356 4.3750

PSO-FLANN .63700 1.02109 .996 �2.1183 3.3923

HS-FLANN .25114 1.02109 1.000 �2.5042 3.0064

IHS-FLANN .11586 1.02109 1.000 �2.6394 2.8712

GbHS-FLANN �.40941 1.02109 1.000 �3.1647 2.3459

GbHS-FLANN FLANN 4.22895 1.02109 .001 1.4737 6.9843

GA-FLANN 2.02909 1.02109 .424 �.7262 4.7844

PSO-FLANN 1.04641 1.02109 .948 �1.7089 3.8017

HS-FLANN 1.0211 1.02109 .995 �2.0948 3.4158

IHS-FLANN .52527 1.02109 .999 �2.2300 3.2806

SAHS-FLANN .40941 1.02109 1.000 �2.3459 3.1647
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and p-value, the post-hoc test has been carried out by using the

Holm procedure [263,266,267].

8.2. Holm and Hochberg procedure

In this section, the Holm [268] and Hochberg [269] procedure
is used to compare classifiers with their p-value and a=ðk� iÞ.
During this test, the z-value is obtained from Eq. (18) and
based on z-value, p-value is computed from the table of the

normal distribution.

z ¼ Ri � Rj

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r,
ð18Þ

where z is the z-score value, k is the number of classifiers, N is
the number of datasets and Ri and Rj are average rank of ith

and jth classifier respectively.
Table 11 presents comparison of All 7 classifier based on

z-value, p-value and a=ðk� iÞ, where ‘i’ is the classifier’s number.
In the Holm [268] and Hochberg [269] procedure, the

null-hypothesis (H0) is rejected if pi – value is less than the

corresponding value of a=ðk� iÞ. In Table 11, all classifiers
are compared with proposed method with respect to pi – value
and a=ðk� iÞ values. For example, while comparing between

GbHS-FLANN and PSO-FLANN, the pi – value 3.74974 is less
than a=ðk� iÞ value 0.000089. Hence the null-hypothesis is
rejected in this case.

By using theHolm test, whenwe compared the pi – valuewith
a=ðk� iÞ, it was observed that, in almost all the cases pi – values
is less than a=ðk� iÞ values. Hence, it is clear that the
null-hypothesis is rejected. Thus, the proposed classifier

‘GbHS-FLANN’ is statistically better and significantly different
fromother classifiers (except IHS-FLANNandSAHS-FLANN)
in performance on cross validated data and outperforms other

classifiers. In a more close observation, while comparison with
IHS-FLANNand SAHS-FLANN, theGbHS-FLANN is found
better than IHS-FLANN and SAHS-FLANN in performance

but it is not much significantly different.

8.3. Post-Hoc ANOVA Statistical Analysis (Tukey Test &
Dunnett Test)

After the rejection of the null-hypothesis from Friedman test
in Section 8.1 and Holm procedure in Section 8.2, in this
section, the Post-Hoc ANOVA Statistical Analysis has been

carried out by using Tukey Test [270] & Dunnett Test [271]
to get generalized statistic on the performance of all classifiers.
Table 13 Dunnett test results.

Multiple comparisons

(I) Algorithm (J) Algorithm Mean difference (I–J)

Sample: Dunnett t (2-sided)

FLANN GbHS-FLANN �4.22895

GA-FLANN GbHS-FLANN �2.02909

PSO-FLANN GbHS-FLANN �1.04641

HS-FLANN GbHS-FLANN �1.0211

IHS-FLANN GbHS-FLANN �.52527

SAHS-FLANN GbHS-FLANN �.40941
The ANOVA [272] is the general statistical technique for
testing the differences between more than two related perfor-
mances of the classifiers measured on the same datasets for

training and testing. During ANOVA test, the null-hypothesis
is to be considered is that: ‘‘all classifiers are same in perfor-
mances and differences in performances are simply random”.

In ANOVA test, total variability in classifier’s performances
is investigated and classified into three categories: between-
classifiers variability, between the datasets variability and

between-error variability. It divides the total variation into
the variability between the classifiers, variability between the
datasets and the residual (error) variability. The null-
hypothesis can be rejected if and only if, the between-

classifiers variability is larger than the between-error variability.
In this paper, the statistics on all classifier’s performance is

computed under post-hoc-ANOVA test by using SPSS

(Version: 16.0) statistical tool. All the methods are executed
for 10 numbers of runs on each dataset. The test has been
carried out with 90% confidence interval, 0.1 significant level

and linear polynomial contrast. To get the differences between
the performances of classifiers, we have used post-hoc
ANOVA test by using mostly used Tukey test and Dunnett

test. The Tukey test is carried out for comparisons of perfor-
mance of all classifiers with each other and the Dunnett test
for comparisons of all classifiers with base classifier (proposed
classifier). The results from Tukey test and Dunnett test are

presented in Tables 12 and 13 respectively.
In Tukey test (Table 12), all the methods are compared

pairwise with respect to mean difference, standard error and

level of significance. The null-hypothesis is rejected if the
between-classifiers variability is larger than the between-error
variability. For example, while comparing the proposed

method (GbHS-FLANN) with PSO-FLANN, we noticed
that, the between-classifiers variability (1.04641) is larger than
the between-error variability (1.02109). Hence, the null-

hypothesis is rejected in this case. According to this observa-
tion, we found the rejection of null-hypothesis in all most all
cases (4 out of 6).

In Dunnett test (Table 13), only the proposed method is

compared with other alternative methods with respect to mean
difference, standard error and level of significance. The criteria
for the rejection of null-hypothesis are same as Tukey test.

For example, while comparing the proposed method
(GbHS-FLANN) with GA-FLANN, we notice that,
between-classifiers variability (2.02909) is larger than the

between-error variability (1.02109). Hence, the null-
hypothesis is rejected in this case. The rejection of null-
hypothesis is noticed in all most all cases.
Std. error Sig. 90% confidence interval

Lower bound Upper bound

1.02109 .000 �6.5736 �1.8843

1.02109 .197 �4.3737 .3156

1.02109 .806 �3.3911 1.2982

1.02109 .971 �3.0052 1.6841

1.02109 .991 �2.8699 1.8194

1.02109 .998 �2.7541 1.9352
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As a conclusion of these tests, we noticed that, the mean
differences (between-classifiers variability) among classifiers
are larger than the standard errors (between-error variability)

(except between GbHS-FLANN & IHS-FLANN and GbHS-
FLANN & SAHS-FLANN) (Table 12). Also in Dunnett test
(Table 13), while comparing GbHS-FLANN with other classi-

fiers, we observed same as that of Tukey test. In both Tukey
test and Dunnett test, the rejection of null-hypothesis holds
for all most all classifier (out of 6 classifiers, rejection of

null-hypothesis holds for 4 classifiers). Hence, as a whole, the
null-hypothesis can be rejected.

9. Conclusion

From multiple comparison of classifiers by using Tukey test
and Dunnett test (Tables 12 and 13), and rejection of the

null-hypothesis of post-hoc test, clearly the proposed method
is found significantly better and different from other methods.
This is because, in all most all the cases, we noticed that, the
mean differences (between-classifiers variability) among classi-

fiers are larger than the standard errors (between-error vari-
ability). In Friedman test, the null-hypothesis is rejected as
the critical value of the F-distribution is found less than FF

statistic, which proves the proposed classifier is statistically sig-
nificant from other classifiers. After the rejection of the null-
hypothesis in Friedman test, all classifiers are compared pair-

wise in terms of the z-values, p-values and a=ðk� iÞ from the
ANOVA post-hoc test by using the Holm procedure (Table 11).
We observed that, in all most all the cases, p-values are less
than a=ðk� iÞ values thereby rejection of null-hypothesis.

From rigorous test under well known statistical methods
(Friedman test, Post-hoc test by Holm and Hochberg proce-
dure, Tukey test and Dunnett test), we claim the proposed

GbHS-FLANN classifier is better and outperforms other alter-
natives (FLANN, GA-FLANN, PSO-FLANN, HS-FLANN,
IHS-FLANN, SAHS-FLANN). Also it can be computed with

a low cost due to less complex architecture of FLANN and
Global-best HS requires less mathematical computation and
is free from complicated operators (like crossover in GA)

and parameters (like c1, c2 in PSO). The future work is com-
prised of integration of other improved variants of HS with
other higher order neural network in diverse applications of
data mining.
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