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1. Introduction 

Superoxide anions are produced in the oxidation by 
molecular oxygen of a multitude of biomolecules [l] . 
Iron-sulfur flavoproteins like xanthine oxidase [2,3], 
flavoproteins as flavodoxin [4] , iron-sulfur proteins 
like spinach and clostridial ferrodoxins [5] , quinols 

as the reducedt?rm of menadione [4] and some 

cytostatic agents [6], glutathione [7] and other thiol 
containing molecules, etc., all of them are effective 
sources of superoxide radicals. These radical anions 
dismutate to Hz O2 either nonenzymatically or by the 
reaction catalyzed by superoxide dismutase, according 
to the MC Cord - Fridovich reaction: 

0; + 0; + 2H’ -Hz02 + O2 (1) 

We would like to report superoxide generation in 
submitochondrial particles and its relation with the 
production of mitochondrial hydrogen peroxide. 

It has been already reported that Hz O2 generation 
accounts for the antimycin insensitive oxygen consump- 
tion in pigeon heart mitochondria [8]. 

2. Material and methods 

Rat heart and beef heart mitochondria were isolated 
according to the procedures of Chance and Hagihara 
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[9] and Blair [lo] , respectively. Submitochondrial 

particles from rat and beef heart mitochondria were 
obtained by sonication in a MSE sonifier model 500 W 
(Measuring and Scientific Equip. Ltd., London) at an 
output of 0.7 mA. Cytochrome c type VI was 

purchased from Sigma Chem. Co. Saint Louis, MO., 

63178, USA and superoxide dismutase obtained from 
Miles Labs., Elkhart, Indiana 46514. USA. Cytochrome 
c peroxidase was a gift from Professor Takashi 
Yonetani, Johnson Research Foundation, Univ. of 
Pennsylvania. Dual wavelength spectrophotometry 

was performed in an Aminco-Chance double beam 
spectrophotometer (American Inst. Co., Silver 
Springs, Md., USA). 

3. Results 

To detect superoxide anions we have used the assay 
method based on reduction of added cytochrome c 
and its sensitivity to superoxide dismutase. Fig.l-A 
shows initially the oxidation of the small amount of 
reduced cytochrome c present in the externally added 
oxidized cytochrome c by submitochondrial particles 
supplemented with antimycin. Antimycin is used at a 

concentration higher than that utilized to inhibit 
respiration, in order to minimize electron leaks. After 
addition of succinate a rapid reduction of cytochrome 
c is observed. The initial rate of cytochrome c reduc- 
tion is directly proportional to the amount of submito- 
chondrial particles present, and also depends on the 
concentration of added cytochrome c. After 
approximately one minute, a steady state of cyto- 
chrome c reduction is reached. At this point, S-7% of 
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Fig.1. Production of superoxide anions by submitochondrial 

particles from beef heart mitochondria. Reaction medium: 

0.23 M mannitol, 0.07 M sucrose, 30 mM Tris-MOPS 

(morpholinopropane sulfonic acid) pH 8.2, 0.048 mg mito- 

chondrial protein/ml, 4 PM cytochrome c, 0.6 PM antimycin. 

A: no other additions. B: in the presence of 0.3 nM 

superoxide dismutase. 

the total cytochrome c has been nonenzymatically 
reduced via superoxide anions according to the 
reaction 

cyt c3+ t 0; + cyt c 2++o* (2) 

and via electron leaks through cytochromes b-cr 

cyt c3+ + cyt b2+ -cytc2++cytb3+ (3) 

and is oxidized by the cytochrome oxidase reaction: 

4cytc2++4H++02- 4cytc3++2Hz0 (4) 

The rate of cytochrome c oxidation to be 
considered for correction of the initial rates seems 
negligible at this high ratio of oxidized/reduced 
cytochrome c, as it can be seen from the initial part 
of the spectrophotometric trace before succinate 
addition, Thus, the reported inhibitory effect of 
oxidized cytochrome c in the isolated oxidase [ 1 l] 
probably also operates in the particulate oxidase 
tempering the oxidation of the reduced cytochrome 
c and making possible the attainement of a steady 

state. Fig. 1 -B illustrates the effect of superoxide 
dismutase that brings down the initial reduction rate 
from 8.2 to 2.9 nmol/min/mg protein. Therefore, the 
generation rate of superoxide radicals is calculated as 
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5.3 mol/min/mg protein. In our experiments 
approximately two thirds of the cytochrome c 
reduction rate are usually sensitive to superoxide 
dismutase and 0.2-0.3 yM dismutase are necessary 
to obtain maximal inhibition. From our concentration- 
effect curves it can be inferred that 0.05-0.1 PM 
dismutase equals 3 PM cytochrome c as a trapping 
agent for superoxide radicals. The efficiency of the 
dismutase utilized in this work in competing with 
cytochrome c for superoxide ions is about 25 times 

lower than the one reported by Forman and 
Fridovich [ 121, which we assume is due to the low 
specific activity of our enzyme. 

Fig.2 illustrates the dependence of the reduction 

rate on cytochrome c concentration. About 4 PM 
cytochrome c is required for half-maximal trapping 
efficiency. This figure agrees with a similar one given 

for the xanthine-oxidase generating system of 
superoxide anions [ 131. Fig.2 also shows an analysis 
of the inhibitory effect of superoxide dismutase on 
the cytochrome c reduction rate. The dismutase acts as 
a competitive inhibitor with respect to cytochrome c. 

u 3 6 9 12 

jrM cyt c3+ 

Fig.2. Effect of cytochrome c concentration and of super- 

oxide dismutase on the cytochrome c reduction rates. 
Submitochondrial particles from rat heart mitochondria 
(0.051 mg protein/ml). Other experimental conditions as in 

fig.1 (A) in the abscence of superoxide dismutase; (0) 0.05 PM 

superoxide dismutase; (0) 0.2 /IM superoxide dismutase. 
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PH 

Fig.3. pH dependence of the generation of superoxide anions 

and hydrogen peroxide by submitochondrial particles from 

rat heart mitochondria. Reaction medium as in fig.1, variable 

pH. For superoxide determinations: 0.06 mg mitochondrial 
protein/ml, 10 PM cytochrome c and 0.4 PM antimycin. For 

hydrogen peroxide determinations: 0.03 mg mitochondrial 

protein/ml, 0.2 PM antimycin and 0.4 PM yeast cytochrome 

c peroxidase. 

Superoxide dismutase catalizes the reaction (1) and 
decreases the steady state values of superoxide anions 
that effectively collide with oxidized cytochrome c to 
give reduced cytochrome c, according to reaction (2). 

When submitochondrial particles are assayed at 
different pH values for production of superoxide anions 
and of hydrogen peroxide (fig.3) parallel activity 
curves are obtained. Thus a considerable part of mito- 
chondrial hydrogen peroxide is originated via 
superoxide anions according to reaction (1) either 
involving mitochondrial superoxide dismutase [ 141 or 
independently of it. 

Table 1 gives cytochrome c reduction rates extra- 
polated at infinite cytochrome c concentration from 

double reciprocal plots in order to calculate super- 
oxide generation at the maximal efficiency of the 
assay system. The rates are corrected by substracting 
the percentage which is superoxide dismutase insensi- 
tive and compared with hydrogen peroxide production 
rates as measured by the cytochrome c peroxidase 
assay. Apparent stoichiometric relations of 1.6 to 2.1 
are observed. Rates lower than two could be explained 
both by superoxide dismutase contamination in the 
particles, maximally effective when the dismutase is 
trapped into the intravesicular space, and by the 

existence of an Hz 02 generator independent from the 
superoxide mechanism. Rates higher than two are due 
to electron leaks to cytochrome cl and erroneous rate 
calculations. Our measured rates of production of 
superoxide anions in submitochondrial particles 

(4.4-6.9 nmol/min/mg protein) in the presence of 
substrate and antimycin agree with similar value 
(4.1 nmol/min/mg prot.) previously reported by 
Loschen and Azzi [ 151 who utilized adrenochrome 
formation as the assay system for superoxide anions. 

4. Discussion 

The identity of the autoxidizable component of the 
respiratory chain that generates 0; is not established 
at the present time. Superoxide may be produced from 
the interaction of any of the components bracketed 
by the rotenone and the antimycin sensitive sites, i.e., 
succinate dehydrogenase, ubiquinol, cytochromes b 

and iron sulfur centers as indicated and discussed for 
hydrogen peroxide production by Boveris and Chance 
[i6].- - 

Hydrogen peroxide generation has been shown in a 
series of vertebrate mitochondria isolated from liver, 
heart, kidney, etc. [8,16,17] ; it has also been shown 
to occur in mitochondria from yeast [ 181 and 

Table 1 
Mitochondrial production of H,O, and 0; 

Submitochondrial 

particles from 

Rat heart 

Rat heart 

Beef heart 

nmoles cyt c2 +/ 

min/mg protein 

12.8 

8.0 

6.3 

Sensitivity to SOD 0; H,O, O;IH,O, 
(%J nmoles/min/mg protein 

54 6.9 3.2 2.1 

62 4.9 3.2 1.6 

70 4.4 2.5 1.7 

313 



Volume 54, number 3 FEBSLETTERS July 1975 

protozoa [ 191. Moreover, hydrogen peroxide produc- 
tion has been detected in perfused rat liver by 
monitoring the level of the ES-complex of endogenous 
catalase [20]. As far as it stands, it seems that hydrogen 
peroxide generation constitutes a physiological event 

in any aerobic mitochondria. In addition, there are 
other sources for hydrogen peroxide, as microsomes, 

peroxisomes and cytosol enzymes [21] that contribute 
to keep a cellular steady state of Hz OZ. Reaction with 
intracellular catalase or effusion from tissue to the 
blood stream constitute the main disappearance 
processes. 

The mitochondrial generation of superoxide 
anion, if proved to be a physiological event and not an 

artifact arising from the ultrasonic treatment of 
mitochondria, provides the second reactant for the 
Haber-Weiss reaction [22] 

H202 + 0; -OH-+OH’+O, (5) 

giving the toxic radical OH ’ with ability to destroy 
membranes, nucleic acids, etc. [23,24]. If we recall 
that mitochondrial hydrogen peroxide generation is 
highly dependent on pOZ values [ 161, then superoxide 
anions and hydrogen peroxide may constitute mole- 
cular links to explain oxygen toxicity. The role of 
0; and OH ’ in oxygen poisoning was advanced by 
Gerschman et al. [2.5] in 1954 on the basis of the 
effect of radioprotective agents and a sinergism in the 
deleterous actions of high oxygen tensions and X-rays 

It appears interesting to speculate about the role 
of this oxidation mechanism, producing 0;) OH ‘and 
Hz 02, which is ubiquitously located as mitochondria 
are. One possibility is that the continuously 
generated pulses of mutagenic radicals, modulated 
by metabolic conditions and by the protective 
activity of superoxide dismutase and catalase, may 
contribute to the normal mutation rate and thus to 

the plasticity of living matter. 
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