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a b s t r a c t

Deciding whether a graph can be embedded in a grid using only unit-length edges is
NP-complete, even when restricted to binary trees. However, it is not difficult to devise
a number of graph classes for which the problem is polynomial, even trivial. A natural
step, outstanding thus far, was to provide a broad classification of graphs that make for
polynomial or NP-complete instances. We provide such a classification based on the set of
allowed vertex degrees in the input graphs, yielding a full dichotomy on the complexity
of the problem. As byproducts, the previous NP-completeness result for binary trees was
strengthened to strictly binary trees, and the three-dimensional version of the problemwas
for the first time proven to be NP-complete. Our results weremade possible by introducing
the concepts of consistent orientations and robust gadgets, and by showing how the former
allows NP-completeness proofs by local replacement even in the absence of the latter.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A grid GM×N has vertex set V (GM×N) = {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, and edge set E(GM×N) = {(i, j)(k, l) :
|i − k| + |j − l| = 1, (i, j), (k, l) ∈ V (GM×N)}. Grids are often thought of in terms of their usual graphical representation,
where vertices are the intersection points of lines that cross over each other in a regular pattern, as illustrated in Fig. 1(a).
Grids are planar bipartite graphs.

A unit-length embedding (or embedding, for short, throughout the whole text) is a mapping from the vertex set of a graph
G to a subset of the points of a grid, along with an incidence-preserving assignment of the edges of G to unit-length grid
segments. We refer to such set of points and unit-length segments as a grid drawing. Two embeddings are equal if they
correspond to the same drawing, short of rotation, translation and reflection.

A partial grid is any subgraph (not necessarily induced) of a grid, and can also be characterized as a graph that admits
a unit-length embedding. Grid embeddings are widely studied due to applications in VLSI design [12] and simulation of
parallel architectures [9]. Unfortunately, deciding whether a graph admits a unit-length embedding is NP-complete [1],
evenwhen restricted to binary trees [8]. Indeed the so-called logic engine paradigm for proving the NP-hardness of problems
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Fig. 1. (a) The grid G3,5 . (b) Unit-length embedding for a {1,2,4}-tree.

Fig. 2.Grid embedding for Bhatt and Cosmadakis’s extended skeleton Sϕ associatedwith the 3CNF formula ϕ = (x2∨x3∨x4)∧(x1∨x2∨x4)∧(x1∨x3∨x4).
The existence of such embedding for Sϕ relates to the existence of a satisfying assignment for ϕ, namely (x1, x2, x3, x4) = (T , T , T , F).

in Graph Drawing is described in [5], where the seminal references [1,8] and further applications [6,7] are discussed. On the
other hand, in the context of Graph Theory, the recognition of partial grid graphs is often stated as an open problem [2,3].

LetG be a graph. The vertex and edge sets ofG are denoted by V (G) and E(G), respectively, and dG(v) stands for the degree
of vertex v in G. Now let D be a set of integers. We say G is a D-graph if, for all v ∈ V (G), we have dG(v) ∈ D, e.g. paths are
{1,2}-graphs, cycles are {2}-graphs, a complete graph on n vertices is a {n− 1}-graph, etc. Fig. 1(b) illustrates a {1,2,4}-tree.

The Partial Grid Recognition problem (PGR) asks whether a graph G is a partial grid. In this paper, we establish the
problem’s complexity dichotomy into polynomial and NP-complete when the input is restricted to D-graphs, for every
D ⊆ {1, 2, 3, 4}, thus exhausting all possible sets whose elements can be found as vertex degrees in partial grid graphs.
All graphs we consider are connected, since the problem can be solved independently for each connected component of a
disconnected graph. Moreover, we will certainly use the facts that, (i) if the problem is NP-complete for D-trees, then it is
also NP-complete for D′-trees, D′ ⊃ D, and for D-graphs and D′-graphs – allowing cycles – as well (superset property); and,
analogously, if the problem is polynomial for D-graphs, then it is also polynomial for D′-graphs, D′ ⊂ D, and for D-trees and
D′-trees as well (subset property).

In Section 2, we revisit the seminal NP-completeness proofs and define the basic concepts for the sections to come.
Section 3 is the core of the present paper, addressing the complexity of each outstanding case—we either prove its NP-

completeness, or state its triviality, or give a polynomial-time algorithm when applicable.
Additionally, motivated by recent advances in three-dimensional chip manufacturing [4,10,11], we consider the natural

three-dimensional version of the problem in Section 4. We then illustrate the power of our techniques by proving simple
theorems that settle the complexity classes of recognizing 3d partial grids for the vast majority of acceptable input degrees.

Section 5 closes the paper with concluding remarks and open problems.

2. Consistent orientations and immersibility

Let G be a graph. We say fG : E(G) → {0, 1} is a consistent orientation for G when it holds that, if G is a partial grid,
then there is an embedding for G where every edge in {xy ∈ E(G) : fG(xy) = 0} is drawn horizontally, and every edge in
{xy ∈ E(G) : fG(xy) = 1} is drawn vertically on the grid. Note that, if G is not a partial grid, then any boolean function is a
consistent orientation for G.

We say two graphs G1,G2 have the same immersibility if (i) both G1 and G2 are partial grids, or (ii) neither G1 or G2 is a
partial grid.

In [1], Bhatt and Cosmadakis proved that deciding the existence of unit-length embeddings for arbitrary trees is NP-
complete. Their proof was based on the reduction of the well-known NP-complete problem Not-All-Equal 3CNF SAT (not-
all-equal conjunctive-normal-form satisfiability with 3 literals per clause) to the problem of deciding the existence of a unit-
length embedding for a special {1,2,4}-tree they define, called the extended skeleton (see Fig. 2). This problem is referred to
as the Bhatt–Cosmadakis problem.

Though we will not give the details of such a special tree here, the following fact is of utmost importance:

Fact 1. If Sϕ is an extended skeleton, then a consistent orientation for Sϕ can be determined in polynomial time.
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Extended_Skeleton_Consistent_Orientation (Sϕ : extended skeleton)

1. for each uv in E(Sϕ) do
1.1. fSϕ (uv)←−1 // mark the orientation of all edges as undefined
2. F ← {uv ∈ E(Sϕ) : dSϕ (u) = 1, dSϕ (v) = 2} // flags
3. Zϕ ← Sϕ \ F // skeleton
4. P ← {p : p is a maximal path of 4-degree vertices in Zϕ}

5. let m be the only path in P containing some vertex with two
2-degree neighbors in Zϕ // main spinal cord

6. T ← P \ {m} // transversal spinal cords
7. for each uv in m do
7.1. fSϕ (uv)← 0 // main spinal cord oriented horizontally
8. for each t in T do
8.1. for each uv in t do
8.1.1 fSϕ (uv)← 1 // transversal spinal cords oriented vertically
9. for each uv in Zϕ s.t. dZϕ (u) = 2 do
9.1. fSϕ (uv)← 1 // edges connecting transversal to main spinal cords

// oriented vertically
10. for each uv in E(Zϕ) s.t. dZϕ (u) = 4, fSϕ (uv) = −1 do
10.1. if there exist w, z ∈ V (Zϕ) s.t. fSϕ (uw) = 0, fSϕ (uz) = 0 then
10.1.1 fSϕ (uv)← 1 // at most two horizontal edges allowed!
10.2. else
10.2.1 fSϕ (uv)← 0
11. for each uv in F do
11.1. fSϕ (uv)← 0 // flags oriented horizontally
12. return fSϕ

Fig. 3. Algorithm to determine consistent orientations for extended skeletons.

Proof. An extended skeleton Sϕ comprises a subgraph Zϕ , called skeleton, and a set of edges in Sϕ \ Zϕ , called flags (flags are
shown in bold lines, in Fig. 2). The skeleton is itself a partial grid which cannot accept two distinct embeddings, due to the
rigidity granted by its main and transversal spinal cords (themain spinal cord can be easily pinpointed in Fig. 2—it comprises
the long path of 4-degree vertices drawn in a straight horizontal line). The flags, on their turn, can only be embeddedwith the
same orientation as the edges in themain spinal cord. On these grounds, the algorithm in Fig. 3 gives a consistent orientation
for Sϕ in polynomial time, and Fact 1 follows. �

The seminal proof of Bhatt and Cosmadakis shows that it is NP-complete to decide whether an extended skeleton is a
partial grid, hence PGR is NP-complete for {1,2,4}-trees and, consequently, for {1,2,3,4}-trees.

The NP-completeness for {1,2,3}-trees (binary trees) was demonstrated by Gregori [8], who conceived an ingenious
binary tree called theU-tree. U-trees can be linked to one another by an edge between two of their vertices. Such vertices can
be selected among four special vertices (in each U-tree), called the U-tree’s interconnectors. The U-tree is illustrated in Fig. 4,
where the horizontal interconnectors x, z and the vertical interconnectors y, w are indicated. Gregori proved that, by replacing
each vertex of an extended skeleton Sϕ with a U-tree, the resulting {1,2,3}-treeU(Sϕ) is a partial grid if and only if the original
{1,2,3}-tree Sϕ is. We call such an operation the U-tree substitution, and its output is the U-tree-transformed skeleton. The
U-tree substitution therefore preserves the immersibility of extended skeletons, and the NP-completeness result followed.
(We remark that Fact 1 was used implicitly in Gregori’s NP-completeness proof by local replacement, since a consistent
orientation for the extended skeleton Sϕ is needed in [8] to ensure that U(Sϕ) has the same immersibility as Sϕ .)

Again, since the reader can find all the details of the U-tree substitution in the referenced paper, we underline the one
single fact we will later depend upon:

Fact 2. If U(Sϕ) is a U-tree-transformed skeleton, then a consistent orientation for U(Sϕ) can be determined in polynomial time.

Proof. Let U be the U-tree graph and let Sϕ be the extended skeleton that ought to be submitted to a U-tree substitution.
Unlike extended skeletons, whose elements conform with some associated boolean formula, U is a fixed, predefined graph
that accepts a small number of well-known embeddings (e.g. the one given in Fig. 4). Thus, a consistent orientation
fU : E(U) → {0, 1} is known. Now, a U-tree-transformed skeleton U(Sϕ) is entirely made of interconnected U-trees, one
for each vertex in the extended skeleton Sϕ being transformed. Thus, any edge uv ∈ U(Sϕ) is either an internal edge and
belongs to some copy of U or is an external edge linking two adjacent copies of U . It happens that, when Sϕ is submitted to a
U-tree substitution, every edge of Sϕ that is horizontal, according to some (polynomially obtainable) consistent orientation
fSϕ : E(Sϕ)→ {0, 1}, yields also a horizontal alignment of the U-trees that replace its incident vertices. In other words, the
vertices u and v between which a horizontal external edge exists in U(Sϕ) will have been selected among the horizontal
interconnectors of the U-trees they belong to. Analogously, if the original edge in Sϕ has a vertical orientation according to
fSϕ , then the corresponding U-trees will be tied to one another via vertical interconnectors as well (and they will be linked
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Fig. 4. Grid embedding for Gregori’s U-tree.

to one another by a vertical external edge). This way, 90◦-rotations of U-trees shall never take place, keeping the orientation
of the internal edges untouched in U(Sϕ), exactly as given by fU .

The function defined below combines both fU and fSϕ to obtain a consistent orientation fU(Sϕ ) : E(U(Sϕ)) → {0, 1} for
U(Sϕ), completing the proof.

fU(Sϕ )(uv) =


fU(uv) if uv is internal,
fSϕ (s(u)s(v)) if uv is external.

In the expression above, vertices s(u), s(v) ∈ Sϕ are those which were substituted by the U-trees that contain u, v ∈
U(Sϕ), respectively. �

3. Complexity dichotomy

In the first part of this section, we prove that PGR is NP-complete for some input degree sets. The second part is devoted
to the polynomially decidable cases. For the sake of clarity, in both parts we start the approach to each new case by stating
the degree set under consideration thenceforth.

3.1. NP-complete cases

In the forthcoming proofs, we take for granted that PGR belongs to NP, regardless of the restrictions imposed to its input,
as one can always check the soundness of a given embedding in polynomial time.

Let G be a partial grid, sv, vt ∈ E(G). If edges sv and vt appear as two consecutive segments of the same grid line (row
or column) in some embedding of G, we say they constitute a pair of collinear edges. Analogously, if there is an embedding
of G in which sv and vt appear with a 90◦ angle between them, we say they form a pair of orthogonal edges.

{2,3}-graphs

In this section, we introduce a special {2,3}-graph called the double ladder. Fig. 5(a) presents its only existing embedding,
where vertices x, y, z, w are again seen as interconnectors, since edges connecting different double ladders can only be
incident to two such vertices. We mark that the circular ordering of the interconnectors is fixed, that is, they cannot switch
positions among themselves. For this reason, we say x, z (and w, y as well) constitute a pair of opposed interconnectors,
whereas all other pairs of interconnectors are consecutive.

Let G be a graph. We define the double-ladder substitution as the linear-time operation that obtains the graph L(G) such
that: (i) there is a bijection between each vertex v in G and a double ladder l(v) in L(G); and (ii) there is a bijection between
each edge uv in G and an edge linking an interconnector of l(u) to an interconnector of l(v) in L(G). Such interconnectors are
said to have become active. Fig. 5(b) illustrates the result of a double-ladder substitution applied to the highlighted subgraph
in Fig. 2.

The double-ladder substitution does not necessarily preserve the immersibility of the original graph when the active
interconnectors are chosen arbitrarily. The problem with structures like the double ladder, which present a fixed
permutation of the interconnectors, is that theymight not mimic the exact behavior of the original vertex they are meant to
emulate. Indeed, if a pair of opposed (respectively, consecutive) interconnectors of l(v) are chosen to link l(v) to l(s) and l(t)
during the double-ladder substitution, then the resulting graph L(G) will only possibly admit embeddings in which those
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Fig. 5. (a) The {2,3} gadget (double ladder). (b) Double-ladder substitution.

double ladders appear collinearly (resp. orthogonally), thus destroying the equivalence between the immersibility of G and
that of L(G) in case sv, vt ∈ G happen not to be collinear (resp. orthogonal) edges.

In order to preserve the immersibility of the original graph, it is mandatory that the choice of interconnectors match
some feasible relative positioning of its edges, in case the graph is a partial grid. Although it may not be always easy to tell
collinear from orthogonal pairs of edges in a given graph, Fact 1 makes that a trivial task for extended skeletons.

Lemma 3. Double-ladder substitution – with appropriately chosen interconnectors – preserves the immersibility of extended
skeletons.

Proof. Let Sϕ be an extended skeleton. By Fact 1, a consistent orientation fSϕ for all the edges of Sϕ can be determined
in polynomial time. That is to say fSϕ provides us with a trustworthy relative positioning (collinear/orthogonal) of all edges
incident to a commonvertex. In order tomatch that positioning, it suffices that, for sv, vt ∈ G, the double-ladder substitution
on graph G employs a pair of opposed (resp. consecutive) interconnectors of l(v) to have it linked to l(s) and l(t) if sv, vt are
collinear (resp. orthogonal).

Since a double ladder occupies a perfect 5 × 5 grid square in any unit-length embedding, the placement of the double-
ladder graphs in some embedding for L(Sϕ) shall always be met by a corresponding placement of Sϕ ’s vertices on a grid that
is 5 times smaller. Edges linking one double ladder to another always occur between two adjacent 5× 5 squares in the grid,
therefore only edges of unit length will be required in the reduced grid. For the converse, we argue that, since the choice of
interconnectors never disagrees with some consistent orientation of the edges of the extended skeleton, an embedding for
an extended skeleton Sϕ will always lead to an embedding for L(Sϕ) in a grid that is 5 times larger. �

Theorem 4. PGR is NP-complete for {2,3}- and {2,3,4}-graphs.

Proof. Since Bhatt–Cosmadakis is NP-complete and it can be polynomially reduced – via double-ladder substitution on its
input – to PGR restricted to {2,3}-graphs, the latter problem is NP-complete as well. The NP-completeness for {2,3,4}-graphs
follows. �

The acyclic case does not apply, for there are no trees without leaves.

{2,4}-graphs

To prove the NP-completeness of the problem for {2,4}-graphs, our strategy will be identical to that just seen for {2,3}-
graphs. We introduce an appropriate substitution procedure that preserves the immersibility of the extended skeleton.

The replacement structure we use is a simple C4, or square (shown in Fig. 6(a), in solid lines), whose vertices are regarded
as interconnectors. Surprisingly, the C4 shall replace both vertices and edges of the original graph, in what we call the square
substitution. In the square substitution, each vertex v of the original graph G gives rise to a square q(v) in the resulting
graph Q (G), and each edge uv ∈ G corresponds to another C4, call it q(uv), in Q (G), linking q(v) to q(u) using opposed
interconnectors of q(uv). Fig. 6(c) shows the result of the square substitution applied to the highlighted subgraph in Fig. 2.
Notice that it looks as though the original graph had been rotated 45◦, as depicted in Fig. 6(b).

Lemma 5. Square substitution – with appropriately chosen interconnectors – preserves the immersibility of extended skeletons.

Proof. Here again, despite the fixed circular permutation of the interconnectors of a C4, the foreknowledge of consistent
orientations for extended skeletons (Fact 1) allows active interconnectors to be suitably chosen in q(v). Let Sϕ be an extended
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Fig. 6. (a) The {2,4} gadget (C4). (b) Rotation of 45◦ . (c) Square substitution.

Fig. 7. The {1,3} gadget (three-plug tree).

skeleton and let Q (Sϕ) be the result of some such orientation-aware square substitution. We want to prove that Sϕ admits
a unit-length embedding if and only if Q (Sϕ) does.

Suppose Sϕ is a partial grid graph. Then, there is a unit-length embedding Γ for Sϕ such that the relative position of
every pair of edges sv, vt ∈ Sϕ matches the (only) relative position of q(sv), q(vt) allowed by that particular choice of
interconnectors of q(v). Now, it is always possible to obtain a unit-length embeddingΓ ′ forQ (Sϕ) as follows. For each vertex
v located at a grid point with coordinates (i, j) in Γ , place the topmost, leftmost vertex of q(v) at h(i, j) = (2i+2j,−2i+2j).
Now place q(uv), for every edge uv ∈ Sϕ , at the unit-area square that intersects both q(u) and q(v).

For the converse, suppose Γ ′ is a unit-length embedding for Q (Sϕ). We will show that this implies the existence of a
unit-length embedding Γ for Sϕ . Without loss of generality, let the topmost vertex in the leftmost column of Γ be located
at the grid’s origin. The function h : Z2

→ Z2 just defined is clearly bijective. Then, for each square q(v) located at a unit-
area square whose topmost, leftmost corner has coordinates (i, j), i, j even (for these are, by construction, the C4 associated
with vertices, not edges, of Sϕ), place vertex v at coordinates h−1(i, j) = (

i−j
4 ,

i+j
4 ) of an initially empty embedding Γ . Now

link vertices u, v by a unitary segment, in Γ , if there is a C4 in Γ ′ intersecting both q(u) and q(v), and Γ is a unit-length
embedding for Sϕ . �

Theorem 6. PGR is NP-complete for {2,4}-graphs.

Proof. By Lemma 5, Bhatt–Cosmadakis reduces to PGR for {2,4}-graphs, hence the latter is NP-complete. �

Again, since there are no trees without degree-1 vertices, the problem on {2,4}-graphs cannot be restricted to trees.

{1,3}-graphs

The idea is basically the same.We introduce an appropriate gadget (one that is a {1,3}-tree, in this case) and an associated
transformation that, given an extended skeleton Sϕ , produces a {1,3}-tree Q (Sϕ) with the same immersibility.

The gadget we employ is the one shown in Fig. 7. We call it the three-plug tree. As usual, interconnectors are the labeled
vertices in the figure.

Wedefine the three-plug substitution analogously to the double-ladder substitution, only replacing the double ladderwith
the three-plug tree. The three-plug substitution has an odd characteristic, though. Since the three-plug tree only presents
3 interconnectors, the input of a three-plug substitution is restricted to graphs with maximum degree not greater than 3.
We want to show that Bhatt–Cosmadakis reduces polynomially to the problem of deciding whether a {1,3}-tree is a partial
grid. But extended skeletons, which are the input of the Bhatt–Cosmadakis problem, present degree-4 vertices, hence the
three-plug substitution cannot be applied to extended skeletons directly.

This apparent hindrance is solved by first transforming the extended skeleton into a {1,2,3}-tree – with its same
immersibility – via Gregori’s U-tree substitution. Then, the resulting U-tree-transformed skeleton U(Sϕ), which has no 4-
degree vertices, can be submitted to the three-plug substitution uneventfully, obtaining a {1,3}-tree T (U(Sϕ)), still with the
same original immersibility.
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Fig. 8. Proof of Theorem 11: examples of incomplete unit-area squares σ present in connected, non-grid, partial grids.

Lemma 7. Three-plug substitution – with appropriately chosen interconnectors – preserves the immersibility of U-tree-
transformed extended skeletons.
Proof. Just like in the double ladder, interconnectors in the three-plug tree will always appear in the same circular
permutation. This could have posed a problem to the desired immersibility preservation of the process, were it not for the
fact that we know of a consistent orientation for U-tree-transformed skeletons (by Fact 2). Thus, with active interconnectors
of the three-plug trees chosen appropriately, and because two adjacent three-plug trees will always occupy a rigid 7 × 14
rectangle, the graph T (U(Sϕ)) resulting from a three-plug substitution on U(Sϕ) will admit a unit-length embedding if and
only if U(Sϕ) does. �

Theorem 8. PGR is NP-complete for {1,3}- and {1,3,4}-trees.
Proof. Same strategy here. By Lemma 7 and the fact that U-tree substitution preserves the immersibility of extended
skeletons (proved by Gregori [8]), Bhatt–Cosmadakis reduces to PGR for {1,3}-trees, hence the latter problem is NP-
complete. The NP-completeness for {1,3,4}-trees follows, by the superset property. �

Theorem 9. PGR is NP-complete for strictly binary trees.
Proof. A strictly binary tree is a connected, acyclic graph whose vertices fall in one of three categories: (i) 1-degree vertices
(the tree’s leafs); (ii) a single 2-degree vertex (the tree’s root); and (iii) 3-degree vertices (the internal vertices). After
transforming an extended skeleton Sϕ into T (U(Sϕ)) via three-plug substitution, the resulting graph comprises a series of
interconnected three-plug trees. Take any 1-degree vertex v that sits next to a non-used grid point in the known embedding
of the three-plug tree (say, for example, the topmost vertex in Fig. 7) and give it a new neighbor w not yet in the graph.
Vertex v has become a 2-degree vertex, and the whole graph T (U(Sϕ)) is now a strictly binary tree, rooted in v, with the
same immersibility as Sϕ . This completes the proof. �

3.2. Polynomial cases

{1,2}-graphs
Trivial. A path on n vertices can always be laid out on a straight line of a 1× n grid, and any even cycle on 2k vertices can

be embedded on a 2× k grid. Odd cycles are not bipartite and therefore cannot be partial grids.

{3,4}-graphs

Theorem 10. No unit-length embedding exists for {3}-, {4}- or {3,4}-graphs.
Proof. Suppose there is a unit-length embeddingΓ for a graphwith no vertices of degree 1 or 2. Let v be the topmost vertex
in the leftmost column of Γ . Since all other vertices are placed below or to the right of v, v can have at most 2 neighbors, a
contradiction. �

{1,4}-graphs

Theorem 11. A {1,4}-graph is a partial grid if and only if its degree-4 vertices induce a grid. PGR is therefore polynomial for
{1,4}-graphs.

Proof. Let G be a connected {1,4}-graph. If the subgraph of G induced by all its vertices of degree 4 is a grid, then there is
always a unit-length embedding for G, in which the degree-4 vertices occupy all points of an M × N rectangle, surrounded
by the 2(M + N) degree-1 vertices, which are necessarily adjacent to the vertices in the boundaries of such a rectangle.

Now, let Γ be a unit-length embedding for G, and let G′ be the graph induced by all degree-4 vertices of G. Since G is a
partial grid, G′ is a partial grid as well. Moreover, G′ must be connected, since G is itself connected and the vertices in G \ G′
have degree 1. Suppose, by contradiction, that G′ is a connected partial grid that is not a grid graph (i.e. the image of its grid
mapping does not correspond to all the points and segments of anM ×N rectangle in the grid). This hypothesis implies the
existence of some unit-area square σ (see Fig. 8), in Γ , containing at least 2 but no more than 3 edges of G′. Without loss
of generality, let u, v ∈ G′ be incident to two such edges and placed at the extremes of a diagonal of σ . Since u and v have
degree 4 in G, the two other diagonally opposed corners of σ must correspond to vertices s, t ∈ G which are necessarily
adjacent to both u and v. Thus, the degree of s and t , in G, is at least 2, hence exactly 4, therefore s and t must belong to G′ as
well. As a result, σ contains 4 edges us, sv, vt, tu of G′, a contradiction.

A polynomial-time recognition of grids can be achieved as follows. First, locate the 4 vertices of degree 2 and the
2(M + N)− 4 vertices of degree 3 present in the graph. They define the boundaries of anM × N rectangle in the grid. Now,
recursively place each degree-4 vertex at the fourth point of a unit-area square already containing two of its neighbors
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Fig. 9. A partial grid and its corresponding prism.

(diagonally opposed in the grid) and one of its non-neighbors. Repeat this procedure inwardly, starting from the rectangle
corners, until the vertices of degree 4 have matched the inner points of the rectangle (in which case the graph is a grid) or
until such matching does not exist (in which case it is not). �

4. Three-dimensional partial grids

A 3d grid GK×L×M has as vertex set the points {1, . . . , K} × {1, . . . , L} × {1, . . . ,M}. Two vertices are adjacent if their
distance is exactly 1. A 3d partial grid is any subgraph (not necessarily induced) of a 3d grid. The 3d grids and 3d partial grids
are bipartite, but not necessarily planar. The 3d Partial Grid Recognition problem (3d-PGR) consists of deciding whether
a given graph is a 3d partial grid. Its NP-completeness was previously unknown.

Vertices of a 3d grid have degree at most 6. Thus, a complete dichotomy would need to consider 26
− 1 = 63 possible

nonempty subsets. Although providing a complete dichotomy for three-dimensional partial grids is beyond the scope of this
paper, it is perhaps surprising that the techniques developed for the two-dimensional case settle the complexity of all but
13 out of those 63 cases, as we show next.

We define the prism of a graph G as the simple graph with vertices V (G)× {0, 1} and edge (u, i)(v, j) if (i) u = v or (ii)
i = j and uv ∈ E(G). A partial grid and the corresponding prism are illustrated in Fig. 9. The following theorem uses the
prism operator to interrelate the immersibilities of partial grids and 3d partial grids.

Theorem 12. A graph G is a partial grid if and only if the prism of G is a 3d partial grid.

Proof. IfG is a partial grid, then the prism ofG is a 3d partial grid because the three-dimensional embedding can be obtained
by placing two copies of the two-dimensional embedding on adjacent parallel planes. To prove the converse, we note that
the C4 graphs sharing opposing edges form a rigid structure that can only be embedded in a 3d grid space as two copies of
G on parallel planes. �

The previous theorem, along with the superset property, can leverage our previous (two-dimensional) results to show
that 32 out of the 63 nonempty subsets of {1, 2, 3, 4, 5, 6} are NP-complete.

Given a set D and a positive integer k, we define D+ k = {d+ k : d ∈ D}.

Corollary 13. If PGR is NP-complete for D-graphs then 3d-PGR is NP-complete for (D+ 1)-graphs.

Proof. The problem is clearly in NP, since the embedding provides a polynomial certificate. To prove the NP-hardness we
reduce PGR to 3d-PGR using the prism graph. Note that if G is a D-graph, then the prism of G is a (D+ 1)-graph. Correctness
follows from Theorem 12. �

Next, we present an extension of Corollary 13, which proves the NP-completeness of 7 additional subsets.

Corollary 14. If PGR is NP-complete for (D1 ∪D2)-graphs then 3d-PGR is NP-complete for ({1} ∪ (D1+ 1)∪ (D2+ 2))-graphs.

Proof. The proof follows from the prism construction with new vertices of degree 1 appended to the vertices with degree
in D2. �

Graphs with degree at most 2 are trivial. The following theorem is analogous to Theorem 10 and shows that the problem
is polynomial for graphs where all vertices have degree 4 and above.

Theorem 15. A 3d partial grid has some vertex of degree at most 3.

Proof. Suppose there is a unit-length embedding Γ for a graph with no vertices of degree 1, 2 or 3. Let v be the topmost
vertex in the leftmost column of the front most plane of Γ . Vertex v can have at most 3 neighbors, a contradiction. �

The three-dimensional version of {1,6}-graphs can be decided polynomially.

Theorem 16. A {1,6}-graph is a 3d partial grid if and only if its degree-6 vertices induce a 3d grid. Thus, 3d-PGR is polynomial
for {1,6}-graphs.

Proof. The proof is analogous to that for {1,4}-graphs in the two-dimensional case. Here, if we suppose that a {1,6}-graph
G is a 3d partial grid but its degree-6 vertices induce a graph which is certainly a partial 3d grid but not actually a 3d grid,
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Table 1
Full complexity dichotomy for PGR (NPC:NP-complete; P: polynomial;
—: the corresponding input does not exist). Bold letters indicate the
base cases, wherefrom the other cases derived (by the superset/subset
property).
D D-graphs D-trees D D-graphs D-trees
{1} P P {2,4} NPC –
{2} P – {3,4} P –
{3} P – {1,2,3} NPC [8] NPC [8]
{4} P – {1,2,4} NPC [1] NPC [1]
{1,2} P P {1,3,4} NPC NPC
{1,3} NPC NPC {2,3,4} NPC –
{1,4} P P {1,2,3,4} NPC [1] NPC [1]
{2,3} NPC –

a b

Fig. 10. (a) The {1,3,4} gadget (windmill tree). (b) Windmill substitution.

then the mandatory existence of an incomplete unit-volume cube on its 3d embedding (one without all 12 edges, but with
at least 3 vertices not on the same face) will lead to a similar contradiction. �

5. Conclusion and open problems

Table 1 gives the full dichotomy into polynomial and NP-complete for the recognition of (two-dimensional) partial grids.
Previous results are duly referenced. Note that, for every degree setD ⊇ {1}, the complexity classes forD-graphs andD-trees
match. It is also noteworthy that the results herein obtained are sufficient to show that the problem remains NP-complete
even when a consistent orientation for the input graph is provided.

A natural question concerns the existence of robust gadgets. A robust gadget R always preserves the immersibility of the
original graph G, when the vertices of G are replaced by copies of R. The gadgets introduced herein, while sufficient for the
intended proofs, do not guarantee that the immersibility of the original graph G is preserved when a consistent orientation
of G is unknown. The graph shown in Fig. 10(a), called the windmill graph, is one such robust gadget.1 Since each of the
windmill ‘‘arms’’ – one of which is highlighted in Fig. 10(a) – are independently tied to the windmill ‘‘axis’’ – its center – by
an edge, it is possible that they interchange their positions so as to allow for any desired circular permutation of the gadget’s
interconnectors. Consequently, the windmill tree does not impose any fixed, predefined positioning of the neighborhood of
each vertex being replaced, and the preservation of the original graph’s immersibility is guaranteed. The proposed question
asks whether or not there exist robust gadgets for degree sets other than the windmill’s {1,3,4}.

Another question worth considering is how the complexities get affected by allowing edges with length up to k > 1.
Finally, completing the complexity dichotomy for the three-dimensional case (given in Table 2) is a challenging problem,

due to the rising number of applications employing three-dimensional layouts and to its intriguing theoretical appeal. In
particular, so far we do not know of a complexity-separating degree set D for which 3d-PGR is polynomial for D-trees but
NP-complete for D-graphs.

1 Indeed the windmill could perfectly have been used to prove the NP-completeness of PGR for {1,3,4}-trees, had that result not come as a byproduct of
the {1,3}-case (by the superset property).
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Table 2
Known complexity dichotomy for the three-dimensional case (NPC1: NP-complete
due to Corollary 13; NPC2: NP-complete due to Corollary 14; P: polynomial;
?: open case; —: the corresponding input does not exist). Each cell states the
complexity of 3d-PGR restricted to D-graphs, where D is the union of the sets
associated with the column and the row that contain the cell. Bold letters
indicate the base cases, wherefrom the other cases derive (by the superset/subset
property).

∅ {4} {5} {6} {4,5} {4,6} {5,6} {4,5,6}
∅ – P P P P P P P
{1} P ? ? P NPC2 NPC2 ? NPC2

{2} P NPC1 ? ? NPC1 NPC1 ? NPC1

{3} ? NPC1 NPC1 ? NPC1 NPC1 NPC1 NPC1

{1,2} P NPC1 NPC2 ? NPC1 NPC1 NPC2 NPC1

{1,3} ? NPC1 NPC1 NPC2 NPC1 NPC1 NPC1 NPC1

{2,3} ? NPC1 NPC1 ? NPC1 NPC1 NPC1 NPC1

{1,2,3} ? NPC1 NPC1 NPC2 NPC1 NPC1 NPC1 NPC1
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