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Abstract

Bäcklund transformations (BTs) for ordinary differential equations (ODEs), and in particular
for hierarchies of ODEs, are a topic of great current interest. Here, we give an improved
method of constructing BTs for hierarchies of ODEs. This approach is then applied to fourth
Painlevé (PIV ) hierarchies recently found by Gordoa et al. [Publ. Res. Inst. Math. Sci. (Kyoto)
37 (2001) 327–347]. We show how the known pattern of BTs forPIV can be extended to our
PIV hierarchies. Remarkably, the BTs required to do this are precisely the Miura maps of the
dispersive water wave hierarchy. We also obtain the important result that the fourth Painlevé
equation has only one nontrivial fundamental BT, and not two such as is frequently stated.
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1. Introduction

A classical problem, dating from the end of the nineteenth century, is that of seek-
ing new transcendental functions defined by ordinary differential equations (ODEs).
This motivated the classification of ODEs having what is today referred to as the
Painlevé property, i.e. having their general solution free of movable branched singular-
ities. In particular, it led to the discovery of the six Painlevé equations[12,21,36,37],
which did indeed define new transcendental functions.

The six Painlevé equations are of course second-order ODEs. However, the
classification programme embarked upon by Painlevé and co-workers foresaw, once
second-order ODEs had been dealt with, a classification of third-order ODEs, then of
fourth-order ODEs, and so on. Thus Chazy [7] and Garnier [13] studied certain classes
of third-order ODEs, although no new transcendent was discovered at third order.
Restricted classes of third-order ODEs were also later considered by Exton [10] and
Martynov [30,31], unfortunately with the same result. It should be remarked that
the difficulties of classification increase with the order of the equations studied;
for example, at second-order movable essential singularities may arise [37],
whereas at third-order movable natural boundaries may occur [7]. At fourth order,
even the classification of dominant terms for the polynomial case was left incomplete
[6].

Thus, some 20–25 years ago, the search for higher-order ODEs defining new tran-
scendental functions was in need of a new insight in order to catalyse research in this
area. This impetus came in the form of the discovery by Ablowitz and Segur [1] of
a connection between completely integrable partial differential equations (PDEs) and
ODEs having the Painlevé property. This discovery not only made a remarkable con-
nection between modern research and mathematics at the turn of the last century, but
in establishing a link between integrability and the analytical properties of solutions,
mirrored the prize-winning work of Kowalevski on the motion of a rigid body about
a fixed point [25,26]. It was Airault who, exploiting the fact that, for example, sitting
above the Korteweg–de Vries (KdV) equation and the modified KdV (mKdV) equa-
tion are their respective hierarchies, first realised the next step of using higher-order
integrable PDEs to derive higher-order ODEs with the Painlevé property. In fact she
derived a whole hierarchy of ODEs, the second Painlevé (PII ) hierarchy, by similarity
reduction of the KdV/mKdV hierarchies [2].

However, Airault also made another important step: she obtained Bäcklund transfor-
mations (BTs) for every member of thePII hierarchy. A BT is a mapping between
solutions of ODEs, involving naturally some identification between the parameters ap-
pearing as coefficients in the ODEs; in the case of BTs between solutions of the same
ODE, this identification between parameters translates as changes in parameter values.
BTs for the Painlevé equations had previously been studied in the Soviet literature; a
comprehensive list of references can be found in [11], and a recent review in [20].
Today BTs are universally recognised as an important property of integrable nonlinear
ODEs, and there is much interest in their derivation, especially within the context of
hierarchies of ODEs. The aim of the present paper is to explore BTs for fourth Painlevé
(PIV ) hierarchies.
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Due therefore to the work of Ablowitz and Segur, over the last quarter century, the
study of higher-order analogues of the Painlevé equations, and of their properties, has
been informed by knowledge of the connection with completely integrable PDEs; here
we refer, for example, to the work of Muğan and Jrad[33–35], and Cosgrove [9].
The present authors have also exploited this connection [15,17–19] in the development
of their own method [18] of deriving (amongst other things) hierarchies of higher-
order Painlevé equations together with associated underlying linear problems. Here, we
extend this connection still further: we find that certain features of such ODEs are
directly related to the underlying structures of associated completely integrable PDEs.
That is, when seeking to extend to a fourth Painlevé hierarchy [15] the pattern of BTs
already known for the first member (PIV ), we find that the answer lies in the Miura
transformations for the associated PDE hierarchy.

The layout of the paper is as follows. We introduce ourPIV hierarchies in Section 2.
In Section 3 we give an improved method, based on the Painlevé truncation process for
PDEs, of deriving auto-BTs and special integrals for hierarchies of ODEs, and as an
example we apply this approach to thePII hierarchy of Airault. In Section 4 we use this
method to derive auto-BTs and special integrals for two of thePIV hierarchies derived
in Section 2. In Section 5, we identify to which BTs ofPIV these BTs correspond.
In Section 6 we seek further BTs in order to extend the known pattern of BTs for
PIV to corresponding hierarchies. Remarkably, it turns out that the BTs required to
do this are precisely the known Miura maps for the associated PDE (dispersive water
wave, DWW) hierarchy. In Section 7, we consider a mapping between our hierarchies
which allows us to further relate the BTs derived: an important consequence of this
is the result thatPIV has only one nontrivial fundamental BT. Section 8 is devoted to
conclusions.

2. Sequences of fourth Painlevé hierarchies

In our recent paper [15] we derived, along with associated linear problems, the
sequence of coupled ODEs inu = (u, v)T ,

Rnux +
n−1∑
i=0

ciRiux + gn−1R2
(

1
0

)
+ gnR

(
1
0

)
+ gn+1

(
1
0

)
=
(

0
0

)
, (1)

wherec0, . . . , cn−1, gn−1, gn andgn+1, are arbitrary constants, andR is the recursion
operator of the DWW hierarchy[5,22–24,27,29,32,39] (�x = �/�x = d/dx in our ODE
case (1)),

R = 1

2

(
�xu�

−1
x − �x 2

2v + vx�
−1
x u+ �x

)
. (2)

In what follows we will consider the case which corresponds to a generalisedPIV
hierarchy, i.e.gn−1 = 0 andgn �= 0 [15]. We can then assume, using a shift onu, that
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gn+1 = 0 (note that previously we have used such a shift to setcn−1 = 0, but here we
prefer to removegn+1). Further, using a shift onx, we can setc0 = 0. Thus, without
any loss of generality, we can assume that our generalisedPIV hierarchy is of the form

Rnux +
n−1∑
i=1

hiRiux + gnR
(

1
0

)
=
(

0
0

)
(3)

for some constantsh1, . . . , hn−1 and gn(�= 0). We note in passing that the second
nontrivial member of our hierarchy (n = 2) is of interest for the problems that its
singularity analysis presents; this was the subject of our paper[16].

The hierarchy (3) can also be written in the alternative form

B2Kn[u] = 0, (4)

where

Kn[u] = Ln[u] +
n−1∑
i=1

hiL i[u] + gn

(
0
x

)
, (5)

B2 is one of the three Hamiltonian operators of the DWW hierarchy,

B2 = 1

2

(
2�x �xu− �2

x

u�x + �2
x v�x + �xv

)
(6)

and eachL i[u] is the variational derivative of the Hamiltonian density corresponding
to the operatorB2 for the ti-flow of the DWW hierarchy,uti = Riux = B2L i[u].

Here we have used the fact thatR = B2B
−1
1 , where

B1 =
(

0 �x
�x 0

)
(7)

is another of the Hamiltonian operators of the DWW hierarchy. We note also the
recursion relationB1L i+1[u] = B2L i[u], and thatL0[u] = (0,2)T , L1[u] = (v, u)T .

We now consider the construction of hierarchies equivalent to (4). We will also see
how a reduction of order of our system (4) can be effected using the Hamiltonian
structures of the DWW hierarchy. We begin by recalling the Miura maps of the DWW
hierarchy, as given by Kupershmidt [27]. The first Miura map is given byu = F[U],
whereU = (U, V )T and

F[U] =
(

U

UV − V 2 + Vx

)
. (8)
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The two second Miura maps are given byU = �[�], where� = (�, p)T and

�[�] =
(

� + 2p
p

)
(9)

andU = �[�], where� = (�, s)T and

�[�] =
(

� − 2s
−s

)
. (10)

That is, we have the following two sequences of Miura transformations:

(
u

v

)
✲

F

(
U

V

) ✲
�

(
�
p

)
✲

�

(
�
s

)
.

(11)

We now consider the first of these sequences. Using the fact that for the Miura map
F we have

B2 = F′[U]B (F′[U])†
,

u=F[U]
(12)

whereB is the Hamiltonian operator of the modified DWW system,

B = 1

2

(
2�x �x
�x 0

)
, (13)

F′[U] is the Fréchet derivative of the Miura map and(F′[U])† is its adjoint, we obtain,
in the same way as in the PDE case, the modified version of (4),

B
(
F′[U])†Kn[F[U]] = 0. (14)

This we can then integrate to obtain

(
F′[U])†Kn[F[U]] + (cn, dn)

T = 0 (15)
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for two arbitrary constantscn and dn. In fact this last is equivalent to an integrated
version of (4) under the BT

u− F[U] = 0, (16)(
F′[U])†Kn[u] + (cn, dn)

T = 0. (17)

It is this construction of a BT between an integrated modified hierarchy and an inte-
grated version of our original hierarchy that lies behind the first integrals of ourPIV
hierarchy given in[15]; this approach is described in more detail in [38]. The integrated
form of (4) obtained from (16), (17) is

Ln,x = 2Kn + uLn + (gn − 2�n), (18)

Kn,x =
(
Kn + 1

2gn − �n
)2 − 1

4�2
n

Ln
− vLn, (19)

whereKn = (Kn, Ln)
T , and where we have set 2cn + dn = gn − 2�n and d2

n = �2
n.

In the same way, since under the compositionH = F ◦ � we have analogously to
(12)

B2 = H ′[�]C (H ′[�])†

u=H[�]
(20)

with

C = 1

2

(−2�x �x
�x 0

)
, (21)

we obtain the integrated second modified hierarchy,

(
H ′[�])†Kn[H[�]] + (en, fn)

T = 0. (22)

It is easy to see that the constants of integration in (15) and (22) are related bycn = en
and dn = fn − 2en.

For our second sequence of Miura transformations we have the compositionI = F◦�
and, corresponding to (20),

B2 = I ′[�]D (I ′[�])†

u=I [�]
(23)
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with

D = 1

2

(−2�x −�x
−�x 0

)
. (24)

Thus we obtain the alternative integrated second modified hierarchy,

(
I ′[�])†Kn[I [�]] + (ln,mn)

T = 0 (25)

with constants of integration related to those of (15) by cn = ln anddn = −mn − 2ln.
The hierarchies (18)–(19), (15), (22) and (25) are allPIV hierarchies. In order to

show this, let us consider the casen = 1 of these hierarchies. We haveK1 = v and
L1 = u+ g1x, and so our system (18)–(19) reads

ux = 2v + u(u+ g1x)− 2�1, (26)

vx =
(
v + 1

2g1 − �1

)2 − 1
4�2

1

u+ g1x
− v(u+ g1x), (27)

eliminating v and settingu = ±y − g1x yields the fourth Painlevé equation

yxx = 1

2

y2
x

y
+ 3

2
y3 ∓ 2g1xy

2 + 2

(
1

4
g2

1x
2 − �1

)
y − 1

2

�2
1

y
. (28)

The system (15) reads

Vx + 2UV − V 2 + g1xV + c1 = 0, (29)

Ux + 2UV − U2 − g1(U − 2V )x + g1 − d1 = 0. (30)

Elimination of V and settingU = ±y − g1x, 2c1 + d1 = g1 − 2�1 and d2
1 = �2

1 yields
(28). This follows immediately from the fact that in the Miura mapU = u. However,
eliminatingU and settingV = ±w also yields the fourth Painlevé equation,

wxx = 1

2

w2
x

w
+ 3

2
w3 ± 2g1xw

2 + 2

[
1

4
g2

1x
2 − 1

2
(c1 + 2d1 − g1)

]
w − 1

2

c2
1

w
. (31)

Thus for n = 1, both independent variables of the first modification define versions of
PIV . We will return to the relationship between these two copies ofPIV later.

Our first second modification (22), for n = 1, reads

px + 2�p + 3p2 + g1xp + e1 = 0, (32)

�x − 6�p − 6p2 − �2 − g1x(� + 2p)+ g1 − f1 = 0, (33)
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eliminating � yields

pxx = 1

2

p2
x

p
+ 3

2
p3 + 2g1xp

2 + 2

[
1

4
g2

1x
2 − 1

2
(2f1 − 3e1 − g1)

]
p − 1

2

e2
1

p
, (34)

i.e. the fourth Painlevé equation. Noting that in the Miura mapV = p, we see that this
last is equivalent to (31), for the upper choice of sign, with the identificationw = p,
c1 = e1 and d1 = f1 − 2e1.

Our second modification (25), forn = 1, reads

sx + 2�s − 3s2 + g1xs − l1 = 0, (35)

�x + 6�s − 6s2 − �2 − g1x(� − 2s)+ g1 +m1 = 0, (36)

equivalent to (32), (33) under(�, p, e1, f1) → (�,−s, l1,−m1). Elimination of� gives

sxx = 1

2

s2
x

s
+ 3

2
s3 − 2g1xs

2 + 2

[
1

4
g2

1x
2 + 1

2
(2m1 + 3l1 + g1)

]
s − 1

2

l21

s
, (37)

another version ofPIV equivalent to (31) for the lower choice of sign, withw = s,
c1 = l1 and d1 = −m1 − 2l1.

Thus, we see that the hierarchies (18)–(19), (15), (22) and (25) define sequences of
PIV hierarchies, as in (11). In Section 4 we will derive BTs for the hierarchies (22)
and (25), and in Section 6 we show how the known structure of BTs forPIV can be
replicated forPIV hierarchies, using the Miura transformations given above.

Before turning to the derivation of BTs and special integrals forPIV hierarchies,
however, we present first of all an improved method of deriving BTs for hierarchies
of ODEs. As a simple but illuminating example, we apply this to thePII hierarchy.

3. Bäcklund transformations for the second Painlevé hierarchy

We take thePII hierarchy in the form

(�x + 2Y )
(
Mn[Yx − Y 2] − 1

2x
)

+ 1
2 − �n = 0, (38)

where�n are arbitrary parameters, and the sequenceMn satisfies the Lenard recursion
relation[28] �xMn+1[W ] = (�3

x+4W�x+2Wx)Mn[W ], with M0 = 1
2, M1[W ] = W . In

order to construct a BT for this hierarchy, we consider adapting the approach developed
by Weiss for PDEs [40], and seek a “truncated Painlevé expansion”

Y = −�x
�

+ Ỹ , (39)
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where

Ỹ = 1

2

�xx
�x

. (40)

For Y defined by (39), we find that

Yx − Y 2 = Ỹx − Ỹ 2 − �xx
�

+ 2
�x
�
Ỹ = Ỹx − Ỹ 2, (41)

where in order to obtain the last equality we have used (40). That is, the quantity
Yx − Y 2 is invariant under the mapping (39), (40). Thus substituting (39) into (38)
yields

(
�x + 2Ỹ − 2

�x
�

)(
Mn[Ỹx − Ỹ 2] − 1

2
x

)
+ 1

2
− �n = 0. (42)

Assuming now thatỸ also satisfies the corresponding member of thePII hierarchy, but
now for parameter valuẽ�n, i.e.

(�x + 2Ỹ )

(
Mn[Ỹx − Ỹ 2] − 1

2
x

)
+ 1

2
− �̃n = 0, (43)

we obtain using (42) and this last,

�x
�

= �̃n − �n

2Mn[Ỹx − Ỹ 2] − x
. (44)

But (44) must be compatible with (40), or equivalently with the Riccati equation

(
�x
�

)
x

+
(

�x
�

)2

− 2Ỹ

(
�x
�

)
= 0, (45)

substituting (44) in (45) gives

(�x + 2Ỹ )

(
Mn[Ỹx − Ỹ 2] − 1

2
x

)
+ 1

2
(�n − �̃n) = 0 (46)

and so comparing with (43) we see that this compatibility requires

�n + �̃n = 1. (47)
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Thus we obtain Airault’s BT[2]

Y = Ỹ + �̃n − �n

x − 2Mn[Ỹx − Ỹ 2] (48)

for the PII hierarchy, along with the shift in parameters (47). We note that this deriva-
tion, which does not make use of the Schwarzian derivative but instead relies on the
invariance of the quantityYx − Y 2 under the mapping (39), (40), is much simpler, and
is much more widely applicable, than that presented in [8].

Special integrals of thePII hierarchy are obtained by setting coefficients of different
powers of� in (42) to zero independently; sincẽYx − Ỹ 2 = Yx − Y 2 we see that this
gives

Mn[Yx − Y 2] − 1
2x = 0, (49)

which defines solutions of (38) for �n = 1
2. We refer to [8] for further information on

special integrals of thePII hierarchy, and the iteration ofPII hierarchy BTs.

4. Bäcklund transformations for fourth Painlevé hierarchies

We now apply the above approach to ourPIV hierarchy (22); since

H[�] =
(

� + 2p
�p + p2 + px

)
, (50)

this reads

(
1 p

2 � + 2p − �x

)
Kn

[(
� + 2p

�p + p2 + px

)]
+
(
en
fn

)
=
(

0
0

)
. (51)

We now seek, analogously to the case of thePII hierarchy above, a mapping (BT)
between two solutions�, p and �̃, p̃ of our PIV hierarchy, of the form

� = 2
�x
�

+ �̃, (52)

p = −�x
�

+ p̃, (53)

where

�̃ = −�xx
�x

. (54)
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It then follows that

� + 2p = �̃ + 2p̃ (55)

and

�p + p2 + px = �̃p̃ + p̃2 + p̃x − �xx
�

− �x
�

�̃ = �̃p̃ + p̃2 + p̃x, (56)

where the last equality follows from (54). Thus we see that the quantities� + 2p and
�p+p2 +px are invariant under the mapping (52)–(54). Substitution of (52), (53) into
(51) therefore gives

(
1 p̃ − �x

�

2 �̃ + 2p̃ − �x

)
Kn

[(
�̃ + 2p̃

�̃p̃ + p̃2 + p̃x

)]
+
(
en
fn

)
=
(

0
0

)
. (57)

Since we assume that̃�, p̃ are solutions of a second copy of ourPIV hierarchy, but
with parameters̃en, f̃n, i.e.

(
1 p̃

2 �̃ + 2p̃ − �x

)
Kn

[(
�̃ + 2p̃

�̃p̃ + p̃2 + p̃x

)]
+
(
ẽn

f̃n

)
=
(

0
0

)
, (58)

we obtain, by elimination between (57) and this last,

�x
�

= en − ẽn

Ln

[(
�̃ + 2p̃

�̃p̃ + p̃2 + p̃x

)] , (59)

f̃n = fn. (60)

Eq. (59) must be compatible with (54), or equivalently with the Riccati equation

(
�x
�

)
x

+
(

�x
�

)2

+ �̃

(
�x
�

)
= 0, (61)

substituting (59) into (61) gives

(�̃ − �x)Ln

[(
�̃ + 2p̃

�̃p̃ + p̃2 + p̃x

)]
+ (en − ẽn) = 0 (62)
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and comparing this last with (58) we see that we must haveẽn = f̃n − en and so

ẽn = fn − en. (63)

Thus we have for ourPIV hierarchy (51) the BT

� = �̃ + 2
en − ẽn

Ln

[(
�̃ + 2p̃

�̃p̃ + p̃2 + p̃x

)] , (64)

p = p̃ − en − ẽn

Ln

[(
�̃ + 2p̃

�̃p̃ + p̃2 + p̃x

)] , (65)

along with the shifts in parameters given by (60) and (63).
We now consider deriving BTs for thePIV hierarchy (25); since

I [�] =
(

� − 2s
−�s + s2 − sx

)
, (66)

this reads

(
1 −s

−2 −� + 2s + �x

)
Kn

[(
� − 2s

−�s + s2 − sx

)]
+
(
ln
mn

)
=
(

0
0

)
. (67)

Seeking a BT in the form

� = 2
�x
�

+ �̂, (68)

s = �x
�

+ ŝ, (69)

where

�̂ = −�xx
�x

(70)

and where�̂, ŝ are solutions of ourPIV hierarchy for parameter valuesl̂n, m̂n,

(
1 −ŝ

−2 −�̂ + 2ŝ + �x

)
Kn

[(
�̂ − 2ŝ

−�̂ŝ + ŝ2 − ŝx

)]
+
(
l̂n
m̂n

)
=
(

0
0

)
, (71)
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then yields

� = �̂ + 2
ln − l̂n

Ln

[(
�̂ − 2ŝ

−�̂ŝ + ŝ2 − ŝx

)] , (72)

s = ŝ + ln − l̂n

Ln

[(
�̂ − 2ŝ

−�̂ŝ + ŝ2 − ŝx

)] (73)

for the shift in parameter values

m̂n = mn, (74)

l̂n = −mn − ln. (75)

We note that the BT (72)–(75) follows immediately from (64), (65), (60), (63) under
(�, p, en, fn) → (�,−s, ln,−mn), which maps thePIV hierarchy (51) into thePIV
hierarchy (67). However, this mapping does not leave thePIV equation in standard
form, since (34) is mapped to (37), and these two equations we identify withPIV by
settingg1 = 2 and−2, respectively. We return to this point later.

We now briefly consider special integrals. We see that setting coefficients of different
powers of� in (57) to zero independently gives, using the fact that�̃ + 2p̃ = � + 2p
and �̃p̃ + p̃2 + p̃x = �p + p2 + px ,

Ln

[(
� + 2p

�p + p2 + px

)]
= 0, (76)

which then defines solutions of (51) provided that

Kn

[(
� + 2p

�p + p2 + px

)]
+ en = 0 (77)

and

fn = 2en. (78)

In the same way, at the same point in the derivation of the BT (72)–(75), setting
coefficients of different powers of� to zero independently, and using the fact that
�̂ − 2ŝ = � − 2s and −�̂ŝ + ŝ2 − ŝx = −�s + s2 − sx , gives

Ln

[(
� − 2s

−�s + s2 − sx

)]
= 0, (79)
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which then defines solutions of (67) provided that

Kn

[(
� − 2s

−�s + s2 − sx

)]
+ ln = 0 (80)

and

mn = −2ln. (81)

Again, just as for our BTs, we have the mapping(�, p, en, fn) → (�,−s, ln,−mn)
between these special integrals. See, however, the discussion in the next section.

5. Identification of Bäcklund transformations

We now turn to the identification of the BTs obtained in the previous section. We
will give to BTs for ourPIV hierarchies the same names as are given to the casen = 1,
i.e. to thePIV equation itself. First of all we fix the identification of parameters in our
hierarchies with the parameters� and � in PIV when written as

Qxx = 1

2

Q2
x

Q
+ 3

2
Q3 + 4xQ2 + 2

(
x2 − �

)
Q− 1

2

�2

Q
. (82)

We take this last as the standard form ofPIV in order to simplify the writing of
parameter shifts for its BTs. We note that, since� → −� is a discrete symmetry of
(82), in BTs ofPIV we can always replace parameters corresponding to� by ±�.

We begin with the hierarchy (22), or (51),

(
H ′[�])†Kn[H[�]] + (en, fn)

T = 0. (83)

In the casen = 1 this gives the system (32), (33) and, after eliminating�, equation
(34). In order to identify this last with Eq. (82) we now set, for the entire hierarchy
(83),

gn = 2, (84)

en = Bn, (85)

fn = 1
2(2An + 3Bn + 2) (86)

and similarly for the parameters̃en and f̃n in the hierarchy (58).
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We then have for the hierarchy (83) the BT (64), (65), with the corresponding shift
on parameters (60), (63), i.e.

Ãn = −1
4(2An − 3Bn + 6), (87)

B̃n = 1
2(2An + Bn + 2). (88)

In the casen = 1 this BT reads

� = �̃ + B1 − 2A1 − 2

�̃ + 2p̃ + 2x
, (89)

p = p̃ − 1

2

B1 − 2A1 − 2

�̃ + 2p̃ + 2x
. (90)

Eliminating �̃ we obtain a BT forPIV (34) itself,

p = p̃ + (B1 − 2A1 − 2)p̃

p̃x − p̃2 − 2xp̃ + B1/2 + A1 + 1
. (91)

This BT for PIV , along with the parameter shift (87), (88) (forn = 1), is often referred
to as the “double dagger” (t‡) BT (see [3,14]). For this reason we refer to the BT (64),
(65), together with the parameter shifts (87), (88), as thet‡ BT for the PIV hierarchy
(83).

We now turn to the hierarchy (25), or (67),

(
I ′[�])†Kn[I [�]] + (ln,mn)

T = 0. (92)

In the casen = 1 this gives the system (35), (36) and, after eliminating�, equation
(37). In order to identify Eq. (37) with (82) we now set, for the entire hierarchy (92),

gn = −2, (93)

ln = bn, (94)

mn = −1
2(2an + 3bn − 2) (95)

and analogously for the parametersl̂n and m̂n in the hierarchy (71).
We have for the hierarchy (92) the BT (72), (73), with the corresponding shift on

parameters (74), (75), i.e.

ân = −1
4(2an − 3bn − 6), (96)

b̂n = 1
2(2an + bn − 2). (97)
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In the casen = 1 this BT reads

� = �̂ + b1 − 2a1 + 2

�̂ − 2ŝ − 2x
, (98)

s = ŝ + 1

2

b1 − 2a1 + 2

�̂ − 2ŝ − 2x
(99)

and eliminating�̂ we obtain a BT forPIV (37) itself,

s = ŝ + (2a1 − b1 − 2)ŝ

ŝx + ŝ2 + 2xŝ − b1/2 − a1 + 1
. (100)

This BT for PIV , along with the parameter shift (96), (97) (forn = 1), is often refereed
to as the “dagger” (�†) BT (see [3,14]); it is for this reason that we refer to the BT
(72), (73), together with the parameter shifts (96), (97), as the�† BT for the PIV
hierarchy (92). Here we use the letter “t” (e.g. t‡) for BTs related to the hierarchy
(83), and “�” (e.g. �†) for BTs related to the hierarchy (92).

Finally we recall that we also have, as detailed in Section 4, special integrals for our
PIV hierarchies. Thus we have the special integral system (76)–(77), with parameters
satisfying (78), for the hierarchy (83), where we now impose the identification (84)–
(86). Similarly we have the special integral system (79)–(80), with parameters satisfying
(81), for the hierarchy (92), now imposing (93)–(95).

In the casen = 1, with the identification (84)–(86), our special integral system
(76)–(77) for the hierarchy (83) reads

� + 2p + 2x = 0, (101)

px + �p + p2 + B1 = 0 (102)

for parameters satisfying (78), i.e.

B1 = 2A1 + 2. (103)

Thus we obtain the special integral ofPIV (34),

px − p2 − 2xp + B1 = 0, (104)

where the parametersA1 andB1 of PIV satisfy (103).
On the other hand, the special integral system (79)–(80) for the hierarchy (92), with

the identification (93)–(95), reads forn = 1,

� − 2s − 2x = 0, (105)

sx + �s − s2 − b1 = 0 (106)
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with parameters satisfying (81), i.e.

b1 = 2a1 − 2. (107)

Eliminating � then gives the special integral ofPIV (37),

sx + s2 + 2xs − b1 = 0 (108)

for parametersa1 and b1 of PIV satisfying (107).
We note that the identifications of parameters (84)–(86) and (93)–(95) mean that

we no longer have the simple mapping(�, p, en, fn) → (�,−s, ln,−mn) between the
hierarchies (83) and (92); consider for example the systems obtained forn = 1, (32),
(33) and (35), (36). Thus the BTs and special integrals obtained here are no longer
equivalent under this mapping. The question of whether a mapping can be found under
which they are equivalent is discussed in Section 7.

6. Further Bäcklund transformations for our PIV hierarchies

Thus far we have found the BTst‡ and �† for our PIV hierarchies. However, as is
well known, for PIV itself, these BTs can be written as compositions of other BTs,
referred to in the literature [3,14] as the “tilde”

(
t̃/�̃
)

and “hat”
(
t̂/�̂
)

BTs. We now
show how this pattern of BTs forPIV can be extended to ourPIV hierarchies.

It turns out, quite remarkably, that this can be done by considering the Miura maps
between (83) and (15), and (92) and (15), as given in (11). Let us begin with the Miura
transformation between (83) and (15), as given by (9). We recall that forn = 1 (15)
yields Eq. (28). We take the lower sign in (28) and now fix the relationship between
our parameterscn, dn and �n, �n, for the entire hierarchy (15), as

gn = 2, (109)

cn = 1
2(2 − 2�n − �n), (110)

dn = �n (111)

and similarly for a second copy of our hierarchy (15) in Ũ , Ṽ with parameters̃cn, d̃n,
or equivalently�̃n, �̃n.

Since we have

cn = en, (112)

dn = fn − 2en (113)
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and similarly for parameters̃cn, d̃n, ẽn, and f̃n, we obtain the following BTs and
parameter shifts:

Ũ = �̃ + 2p̃, (114)

Ṽ = p̃ (115)

with

Ãn = −1
4(2 + 2�̃n − 3�̃n), (116)

B̃n = 1
2(2 − 2�̃n − �̃n) (117)

and

� = U − 2V, (118)

p = V (119)

with

�n = 1
4(2 − 2An − 3Bn), (120)

�n = 1
2(2 + 2An − Bn). (121)

For the casen = 1, the first of these, when written as a BT between two copies of
PIV — (34) in p̃, Ã1, B̃1, and (28) inỹ, �̃1, �̃1, where ỹ = −Ũ − 2x — reads

ỹ = p̃x − p̃2 − 2xp̃ + 1 − �̃1 − �̃1/2

2p̃
, (122)

which, together with the parameter shifts (116), (117) defines precisely the BT̃t .
The second of the above BTs, in the casen = 1, when written as a BT between

(34) in p, A1, B1 and (28) iny, �1 and �1, wherey = −U − 2x, reads

p = −yx + y2 + 2xy + 1 + A1 − B1/2

2y
, (123)

which, together with the parameter shifts (120), (121) defines precisely the BT̂t .
We thus define the BTs (114), (115) and (118), (119), with parameter shifts (116),

(117) and (120), (121), respectively, ast̃ and t̂ BTs for ourPIV hierarchies.
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We now define the additional BTS by S = (t̂)−1 ◦ t‡ ◦ (t̃)−1. A simple calculation
gives this BTS as

U = Ũ , (124)

V = Ṽ + dn

Ln

[(
Ũ

Ũ Ṽ − Ṽ 2 + Ṽx

)] (125)

with the change of parameters

c̃n = cn + dn, (126)

d̃n = −dn (127)

or equivalently

�̃n = �n, (128)

�̃n = −�n. (129)

For the casen = 1, for Eq. (28), this BTS reads

y = ỹ, �̃1 = �1, �̃1 = −�1 (130)

and we recover the well-known relationt‡ = t̂ ◦ S ◦ t̃ for PIV BTs. Our BTS (124)–
(129) then allows us to extend this decomposition of theBT t‡ as t‡ = t̂ ◦ S ◦ t̃ from
PIV itself to our PIV hierarchies. This pattern of BTs, obtained here using the Miura
mapU = �[�] of the DWW hierarchy (which defines the BTst̂ and t̃), can be seen
in Fig. 1. It is interesting that this Miura map, a simple linear map when considered
as a mapping between� andU, gives rise to BTs of our hierarchies: however, as we
have seen above forn = 1 (PIV ), when considered as a mapping between components
of our hierarchies, it is no longer a linear map.

We recall that forn = 1 the second componentV of the system (15) also defines
a copy of PIV (31). Using the identification (84)–(86), where as usualc1 = e1 and
d1 = f1 − 2e1, we obtain that Eq. (31), with the upper choice of sign, is a copy of Eq.
(34), with w = p and the same parametersA1 andB1. Thus, in Fig. 1, when tracing
for n = 1 the action of our BTs over individual components, we see that the auto-BT
for (34) must be the same as the auto-BT for Eq. (31). This last is as given by (125),
and reads (withV = w, Ṽ = w̃, and eliminatingŨ ),

w = w̃ + (B1 − 2A1 − 2)w̃

w̃x − w̃2 − 2xw̃ + B1/2 + A1 + 1
(131)
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Fig. 1. Decomposition of the BTt‡ for PIV hierarchies (gn = 2).

with parameter shifts

Ã1 = −1
4(2A1 − 3B1 + 6), (132)

B̃1 = 1
2(2A1 + B1 + 2). (133)

Thus we see that this BT is exactly the same as that for (34), i.e. (91) and (87),
(88), with n = 1. That is, forn = 1, (125) is thet‡ BT (from w̃ to w).

From the above it also follows that the equation obtained when eliminatingŨ from
the system (29), (30) written in terms of̃U , Ṽ , c̃1, d̃1, i.e.

Ũ = − Ṽx − Ṽ 2 + 2xṼ + c̃1

2Ṽ
, (134)

corresponds to thẽt BT from (31), with upper sign, to (28), with lower sign. In the
same way, the equation obtained when eliminatingV from the system (29), (30),

V = −Ux − U2 − 2xU + 2 − d1

2U + 4x
, (135)



144 P.R. Gordoa et al. / J. Differential Equations 217 (2005) 124–153

corresponds to thêt BT from (28), with lower sign, to (31), with upper sign. This then
gives one identification of Eqs. (134) and (135) (another is made later).

We now turn to our�† BT. We recall once again the Miura maps (11) and in
particular the Miura transformation between (92) and (15), as given by (10). Forn = 1
(15) yields Eq. (28); we take the upper sign in (28) and change the relationship between
our parameters (now labelled̄cn, d̄n and �̄n, �̄n, corresponding to variables̄U , V̄ ), to
the following, again for the entire hierarchy (15):

gn = −2, (136)

c̄n = −1
2(2 + 2�̄n + �̄n), (137)

d̄n = �̄n (138)

and similarly for a second copy of our hierarchy (15) in Û , V̂ with parameterŝcn, d̂n,
or equivalently�̂n, �̂n.

Since we have

c̄n = ln, (139)

d̄n = −mn − 2ln (140)

and similarly for parameterŝcn, d̂n, l̂n, and m̂n, we obtain the following BTs and
parameter shifts:

Û = �̂ − 2ŝ, (141)

V̂ = −ŝ (142)

with

ân = 1
4(2 − 2�̂n + 3�̂n), (143)

b̂n = −1
2(2 + 2�̂n + �̂n) (144)

and

� = Ū − 2V̄ , (145)

s = −V̄ (146)

with

�̄n = −1
4(2 + 2an + 3bn), (147)

�̄n = −1
2(2 − 2an + bn). (148)
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For the casen = 1, the first of these, when written as a BT between two copies of
PIV — (37) in ŝ, â1, b̂1, and (28) inŷ, �̂1, �̂1, where ŷ = Û − 2x — reads

ŷ = − ŝx + ŝ2 + 2xŝ + 1 + �̂1 + �̂1/2

2ŝ
, (149)

which, together with the parameter shifts (143), (144) defines the BT̂� (we recall,
when comparing to the BT (123) with parameter shifts, (120), (121) forn = 1 — also
identified as a “hat” BT,̂t — the invariance ofPIV (82) under� → −�).

The second of the above BTs, in the casen = 1, when written as a BT between
(37) in s, a1, b1 and (28) inȳ, �̄1 and �̄1, where ȳ = Ū − 2x, reads

s = ȳx − ȳ2 − 2xȳ + 1 − a1 + b1/2

2ȳ
, (150)

which, together with the parameter shifts (147), (148) defines the BT̃� (again we
recall, when comparing to (122) with parameter shifts, (116), (117) forn = 1 — also
identified as a “tilde” BT,t̃ — the invariance ofPIV (82) under� → −�).

We thus define the BTs (141), (142) and (145), (146), with parameter shifts (143),
(144) and (147), (148), respectively, as�̂ and �̃ BTs for ourPIV hierarchies.

We now define the additional BT� by � = (�̃)−1 ◦ �† ◦ (�̂)−1. A simple calculation
gives this BT� as

Ū = Û , (151)

V̄ = V̂ + d̄n

Ln

[(
Û

Û V̂ − V̂ 2 + V̂x

)] (152)

with the change of parameters

ĉn = c̄n + d̄n, (153)

d̂n = −d̄n (154)

or equivalently

�̂n = �̄n, (155)

�̂n = −�̄n. (156)

For the casen = 1, for Eq. (28), this BT � reads

ȳ = ŷ, �̂1 = �̄1, �̂1 = −�̄1 (157)
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Fig. 2. Decomposition of the BT�† for PIV hierarchies (gn = −2).

and we recover the well-known relation�† = �̃ ◦ � ◦ �̂ for PIV BTs. Our BT � (151)–
(156) then allows us to extend this decomposition of theBT �† as �† = �̃ ◦ � ◦ �̂ from
PIV itself to our PIV hierarchies. This pattern of BTs, obtained here using the Miura
mapU = �[�] of the DWW hierarchy, can be seen in Fig. 2. Again we note that what
is a simple linear map, when considered as a mapping between� andU, gives rise to
BTs of our hierarchies (the BTŝ� and �̃), but that, once again, and as we have seen for
n = 1 (PIV ), when considered as a mapping between components of our hierarchies,
it is no longer such a trivial mapping.

We recall that forn = 1 the second component̄V of the system (15), now written
in terms ofŪ , V̄ and with coefficients̄c1, d̄1, also defines a copy ofPIV via V̄ = −w̄.
This copy of PIV is (31) in w̄, c̄1 and d̄1, and with lower choice of sign. We thus
obtain that this copy of (31), where as usualc̄1 = l1 and d̄1 = −m1−2l1, and using the
identification (93)–(95), is a copy of Eq. (37), withw = s and the same parametersa1
and b1. Thus, in Fig. 2, when tracing forn = 1 the action of our BTs over individual
components, we see that the auto-BT for (37) must be the same as the auto-BT for this
copy of Eq. (31). This last is as given by (152), and reads (withV̄ = −w̄, V̂ = −ŵ,
and eliminatingÛ ),

w̄ = ŵ + (2a1 − b1 − 2)ŵ

ŵx + ŵ2 + 2xŵ − b1/2 − a1 + 1
(158)
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with parameter shifts

â1 = −1
4(2a1 − 3b1 − 6), (159)

b̂1 = 1
2(2a1 + b1 − 2). (160)

Thus we see that this BT is exactly the same as that for (37), i.e. (100) and (96), (97),
with n = 1. That is, forn = 1, (152) is the�† BT (from ŵ to w̄).

From the above it also follows that the equation obtained when eliminatingÛ from
the system (29), (30), written in terms of̂U , V̂ , ĉ1, d̂1, i.e.

Û = − V̂x − V̂ 2 + 2xV̂ + ĉ1

2V̂
, (161)

corresponds to thê� BT from (31), with lower sign, to (28), with upper sign. In the
same way, the equation obtained when eliminatingV̄ in the system (29), (30), written
in terms of Ū , V̄ , c̄1, d̄1, i.e.

V̄ = − Ūx − Ū2 − 2xŪ + 2 − d̄1

2Ū + 4x
, (162)

corresponds to thẽ� BT from (28), with upper sign, to (31), with lower sign. Thus we
have a different identification of Eqs. (134) and (135).

We note that the transformation induced on our original variablesu and v by S and
� is just the identity together with(�n, �n) → (�n,−�n) (a discrete symmetry of the
hierarchy (18), (19)).

7. A mapping between our sequences ofPIV hierarchies

In this section, we consider a mapping between our two different sequences of fourth
Painlevé hierarchies. These two different sequences are defined by the choicegn = 2
or gn = −2. As we noted earlier, this then means that we no longer have the mapping
(�, p, en, fn) → (�,−s, ln,−mn) between the hierarchies (22) and (25). However, we
still have another mapping between these two hierarchies.

Consider the hierarchy (22), with the identifications (84)–(86), i.e.

(
H ′[�])†Kn[H[�]] + (en, fn)

T = 0, (163)

where (gn = 2)

Kn[H[�]] = Ln[H[�]] +
n−1∑
i=1

hiL i[H[�]] + 2

(
0
x

)
. (164)



148 P.R. Gordoa et al. / J. Differential Equations 217 (2005) 124–153

We now consider the scaling transformation(�, p, x) = (�−1�,−�−1s, �	). This then
gives

L i[H[�]] =
(

1
�i+1 0

0 1
�i

)
L i[I [�]], (165)

where in the right-hand side of this last, derivatives are w.r.t.	. Thus

Kn[H[�]] =
( 1

� 0
0 1

)
1

�n

[
Ln[I [�]] +

n−1∑
i=1

hi�
n−iL i[I [�]] + 2�n+1

(
0
	

)]

=
( 1

� 0
0 1

)
1

�n

[
Ln[I [�]] +

n−1∑
i=1

HiL i[I [�]] − 2

(
0
	

)]
, (166)

where we have chosen�, such that�n+1 = −1, and have sethi�
n−i = Hi . Since also

(
H ′[�])† =

(
1 0
0 −1

) (
I ′[�])†

(
1 0
0 1

�

)
, (167)

our hierarchy (22), i.e. (163), becomes

(
I ′[�])†

[
Ln[I [�]] +

n−1∑
i=1

HiL i[I [�]] − 2

(
0
	

)]
+
(−en
fn

)
=
(

0
0

)
, (168)

which, identifying en = −ln and fn = mn, is precisely the hierarchy (25), i.e.

(
I ′[�])†Kn[I [�]] + (ln,mn)

T = 0 (169)

with the identification (93)–(95) (gn = −2). Thus we have a BT from the hierarchy
(25) with gn = −2 to the hierarchy (22) withgn = 2, given by

(�, p, x) = (�−1�,−�−1s, �	), (170)

ln = −en, (171)

mn = fn, (172)

Hi = hi�
n−i , (173)

where �n+1 = −1. We refer to this BT as the transformationT. We now consider
the compositionT −1 ◦ t‡ ◦ T , i.e. (�̂, ŝ, l̂n, m̂n) → (�̃, p̃, ẽn, f̃n) → (�, p, en, fn) →
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(�, s, ln,mn), which gives an auto-BT of the hierarchy (25). It turns out that this
auto-BT is precisely�†. That is, we have the relation

�† = T −1 ◦ t‡ ◦ T . (174)

We note thatT also maps the first integrals (79), (80) of the hierarchy (25), with
the identifications (93)–(95) (gn = −2) to the first integrals (76), (77) of the hierarchy
(22), with the identifications (84)–(86) (gn = 2).

We now consider a corresponding scaling transformation between our hierarchy (15)
for gn = 2, and the same hierarchy forgn = −2. This scaling transformation is induced
from that between the hierarchies (22) and (25) as(U, V, x) = (�−1Ū , �−1V̄ , �	). The
hierarchy (15), i.e.

(
F′[U])†Kn[F[U]] + (cn, dn)

T = 0, (175)

where

Kn[F[U]] = Ln[F[U]] +
n−1∑
i=1

hiL i[F[U]] + 2

(
0
x

)
, (176)

then becomes (again all derivatives are now with respect to	)

(
F′[Ū])†

Kn[F[Ū]] + (c̄n, d̄n)
T = 0 (177)

with

Kn[F[Ū]] = Ln[F[Ū]] +
n−1∑
i=1

HiL i[F[Ū]] − 2

(
0
	

)
(178)

and where we have identifiedcn = −c̄n and dn = −d̄n. That is, we have the BT from
(177), (178) to (175), (176),

(U, V, x) = (�−1Ū , �−1V̄ , �	), (179)

c̄n = −cn, (180)

d̄n = −dn, (181)

Hi = hi�
n−i (182)

with �n+1 = −1, which, by a convenient abuse of notation, we also refer to as the
transformationT.
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We now consider the compositionT −1 ◦ t̃ ◦ T , i.e. (�̂, ŝ, l̂n, m̂n) → (�̃, p̃, ẽn, f̃n) →
(Ũ , Ṽ , c̃n, d̃n) → (Û , V̂ , ĉn, d̂n). This BT turns out to be precisely the BT̂�. Thus we
have the relation

�̂ = T −1 ◦ t̃ ◦ T . (183)

We also consider the compositionT −1◦ t̂ ◦T , i.e. (Ū , V̄ , c̄n, d̄n) → (U, V, cn, dn) →
(�, p, en, fn) → (�, s, ln,mn). This BT is �̃, and so we have

�̃ = T −1 ◦ t̂ ◦ T . (184)

Finally, consideration of the BTT −1 ◦ S ◦ T , i.e. (Û , V̂ , ĉn, d̂n) → (Ũ , Ṽ , c̃n, d̃n) →
(U, V, cn, dn) → (Ū , V̄ , c̄n, d̄n), leads to the conclusion

� = T −1 ◦ S ◦ T . (185)

Thus we see that our transformationT is a mapping of Fig.2 into Fig. 1, but for
a different independent variable,x in Fig. 1 being related to	 in Fig. 2 by x = �	
where �n+1 = −1. Thus of course the relation�† = �̃ ◦ � ◦ �̂ (Fig. 2) is mapped into
the relationt‡ = t̂ ◦ S ◦ t̃ (Fig. 1).

Our transformationT has some important consequences. It tells us that the pattern of
BTs obtained from our second sequence of Painlevé hierarchies can be related to that
obtained from our first sequence of Painlevé hierarchies. If we had only considered
one sequence (e.g. the first) it might not have been obvious how to obtain a sequence
(the second) having the pattern of BTs corresponding to�†.

The reason why this might not have been obvious is that, forPIV , the BTs “tilde”
and “hat” are believed to be independent. This then leads us on to another of the
important consequences of our results: the BTs “tilde” and “hat” forPIV are not
independent, but are related by a trivial scaling ofPIV . That is, there is only one
nontrivial fundamental BT forPIV . This is in contrast to the claim in [3] thatPIV has
two nontrivial fundamental BTs (“tilde” and “hat”).

Let us present our results forPIV explicitly. For n = 1 we may take� = i and so
our transformationT from (37) with the identification (93)–(95),

s		 = 1

2

s2
	

s
+ 3

2
s3 + 4	s2 + 2

[
	2 − a1

]
s − 1

2

b2
1

s
, (186)

to (34) with the identification (84)–(86),

pxx = 1

2

p2
x

p
+ 3

2
p3 + 4xp2 + 2

[
x2 − A1

]
p − 1

2

B2
1

p
, (187)
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is

p = is, x = i	, a1 = −A1, b1 = −B1. (188)

The same transformationT provides a BT from (28) in ȳ and 	, with upper choice of
sign and the identification (136)–(138),

ȳ		 = 1

2

ȳ2
	

y
+ 3

2
ȳ3 + 4	ȳ2 + 2

(
	2 − �̄1

)
ȳ − 1

2

�̄
2
1

ȳ
, (189)

to (28) in y and x, with lower choice of sign and the identification (109)–(111),

yxx = 1

2

y2
x

y
+ 3

2
y3 + 4xy2 + 2

(
x2 − �1

)
y − 1

2

�2
1

y
, (190)

i.e.

y = iȳ, x = i	, �̄1 = −�1, �̄1 = −�1. (191)

In order to show explicitly thatPIV has only one fundamental BT it is enough to
show that (184) holds, i.e. that

�̃ = T −1 ◦ t̂ ◦ T . (192)

Here t̂ is the BT (123), with parameter shifts (120) and (121), i.e.

p = −yx + y2 + 2xy + 1 + A1 − B1/2

2y
(193)

and

�1 = 1
4(2 − 2A1 − 3B1), (194)

�1 = 1
2(2 + 2A1 − B1) (195)

from (190) to (187). Meanwhile,̃� is the BT (150), with parameter shifts (147), (148),
i.e.

s = ȳ	 − ȳ2 − 2	ȳ + 1 − a1 + b1/2

2ȳ
, (196)
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�̄1 = −1
4(2 + 2a1 + 3b1), (197)

�̄1 = −1
2(2 − 2a1 + b1) (198)

from (189) to (186). It is easy to show that under the transformationT, i.e. when (188)
and (191) hold, equations (196)–(198) are mapped onto Eqs. (193)–(195). Thus, the
“tilde” and “hat” BTs of PIV are equivalent under a simple scaling transformation, and
we see thatPIV has only one nontrivial fundamental auto-BT.

We note that forPIV itself the transformationT can in fact be found in [4], and
was also known to the authors of [3]. However, these last failed to recognise that it
provides a mapping between the “tilde” and “hat” BTs ofPIV .

8. Conclusions

We have given an improved method of obtaining auto-BTs and special integrals for
hierarchies of ODEs, and have used this to derive auto-BTs and special integrals for
two fourth Painlevé hierarchies. We have shown how the known pattern of BTs forPIV
can be extended to hierarchies, observing that the BTs required to do this turn out to
be precisely the Miura maps of the DWW hierarchy. Finally, we have given a mapping
between our two sequences of fourth Painlevé hierarchies which allows us to relate the
BTs derived for these two sequences: in particular, we have derived the result thatPIV
has in fact only one nontrivial fundamental auto-BT.
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