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Abstract

Backlund transformations (BTs) for ordinary differential equations (ODEs), and in particular
for hierarchies of ODEs, are a topic of great current interest. Here, we give an improved
method of constructing BTs for hierarchies of ODEs. This approach is then applied to fourth
Painlevé @) hierarchies recently found by Gordoa et al. [Publ. Res. Inst. Math. Sci. (Kyoto)
37 (2001) 327-347]. We show how the known pattern of BTs Fgy can be extended to our
Py hierarchies. Remarkably, the BTs required to do this are precisely the Miura maps of the
dispersive water wave hierarchy. We also obtain the important result that the fourth Painlevé
equation has only one nontrivial fundamental BT, and not two such as is frequently stated.
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1. Introduction

A classical problem, dating from the end of the nineteenth century, is that of seek-
ing new transcendental functions defined by ordinary differential equations (ODES).
This motivated the classification of ODEs having what is today referred to as the
Painlevé property, i.e. having their general solution free of movable branched singular-
ities. In particular, it led to the discovery of the six Painlevé equatid2s21,36,37],
which did indeed define new transcendental functions.

The six Painlevé equations are of course second-order ODEs. However, the
classification programme embarked upon by Painlevé and co-workers foresaw, once
second-order ODEs had been dealt with, a classification of third-order ODEs, then of
fourth-order ODESs, and so on. Thus Chazy [7] and Garnier [13] studied certain classes
of third-order ODEs, although no new transcendent was discovered at third order.
Restricted classes of third-order ODEs were also later considered by Exton [10] and
Martynov [30,31], unfortunately with the same result. It should be remarked that
the difficulties of classification increase with the order of the equations studied;
for example, at second-order movable essential singularites may arise [37],
whereas at third-order movable natural boundaries may occur [7]. At fourth order,
even the classification of dominant terms for the polynomial case was left incomplete
[6].

Thus, some 20-25 years ago, the search for higher-order ODEs defining new tran-
scendental functions was in need of a new insight in order to catalyse research in this
area. This impetus came in the form of the discovery by Ablowitz and Segur [1] of
a connection between completely integrable partial differential equations (PDEs) and
ODEs having the Painlevé property. This discovery not only made a remarkable con-
nection between modern research and mathematics at the turn of the last century, but
in establishing a link between integrability and the analytical properties of solutions,
mirrored the prize-winning work of Kowalevski on the motion of a rigid body about
a fixed point [25,26]. It was Airault who, exploiting the fact that, for example, sitting
above the Korteweg—de Vries (KdV) equation and the modified KdV (mKdV) equa-
tion are their respective hierarchies, first realised the next step of using higher-order
integrable PDEs to derive higher-order ODEs with the Painlevé property. In fact she
derived a whole hierarchy of ODEs, the second Painle¥@ hierarchy, by similarity
reduction of the KdV/mKdV hierarchies [2].

However, Airault also made another important step: she obtained Béacklund transfor-
mations (BTs) for every member of thB, hierarchy. A BT is a mapping between
solutions of ODEs, involving naturally some identification between the parameters ap-
pearing as coefficients in the ODEs; in the case of BTs between solutions of the same
ODE, this identification between parameters translates as changes in parameter values.
BTs for the Painlevé equations had previously been studied in the Soviet literature; a
comprehensive list of references can be found in [11], and a recent review in [20].
Today BTs are universally recognised as an important property of integrable nonlinear
ODEs, and there is much interest in their derivation, especially within the context of
hierarchies of ODEs. The aim of the present paper is to explore BTs for fourth Painlevé
(Pv) hierarchies.
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Due therefore to the work of Ablowitz and Segur, over the last quarter century, the
study of higher-order analogues of the Painlevé equations, and of their properties, has
been informed by knowledge of the connection with completely integrable PDEs; here
we refer, for example, to the work of Mjan and Jrad33-35], and Cosgrove [9].

The present authors have also exploited this connection [15,17-19] in the development
of their own method [18] of deriving (amongst other things) hierarchies of higher-
order Painlevé equations together with associated underlying linear problems. Here, we
extend this connection still further: we find that certain features of such ODEs are
directly related to the underlying structures of associated completely integrable PDEs.
That is, when seeking to extend to a fourth Painlevé hierarchy [15] the pattern of BTs
already known for the first membet(/), we find that the answer lies in the Miura
transformations for the associated PDE hierarchy.

The layout of the paper is as follows. We introduce @&y hierarchies in Section 2.

In Section 3 we give an improved method, based on the Painlevé truncation process for
PDEs, of deriving auto-BTs and special integrals for hierarchies of ODEs, and as an
example we apply this approach to tRg hierarchy of Airault. In Section 4 we use this
method to derive auto-BTs and special integrals for two of e hierarchies derived

in Section 2. In Section 5, we identify to which BTs &y these BTs correspond.

In Section 6 we seek further BTs in order to extend the known pattern of BTs for
Py to corresponding hierarchies. Remarkably, it turns out that the BTs required to
do this are precisely the known Miura maps for the associated PDE (dispersive water
wave, DWW) hierarchy. In Section 7, we consider a mapping between our hierarchies
which allows us to further relate the BTs derived: an important consequence of this
is the result thatPy has only one nontrivial fundamental BT. Section 8 is devoted to
conclusions.

2. Sequences of fourth Painlevé hierarchies

In our recent paper [15] we derived, along with associated linear problems, the
sequence of coupled ODEs in= (u, v)7,

n—1

n i 1 1 1 0
R"uy +ZCiR Uy +gn—1R2(0> +gnR<O) +gn+1<0> = (0) s (1)

i=0

whereco, ..., cy—1, gn—1, &» @nd g,+1, are arbitrary constants, aril is the recursion
operator of the DWW hierarchfp,22-24,27,29,32,39p( = d/0x = d/dx in our ODE
case (1)),

1{ouot-06, 2
R=2[ "% % . 2
2<2v+vx8xlu+0x> @

In what follows we will consider the case which corresponds to a generalgged
hierarchy, i.e.g,—1 = 0 andg, # 0 [15]. We can then assume, using a shift wrthat



P.R. Gordoa et al. / J. Differential Equations 217 (2005) 124-153 127

gn+1 = 0 (note that previously we have used such a shift tocget = 0, but here we
prefer to removeg,,1). Further, using a shift o, we can setg = 0. Thus, without
any loss of generality, we can assume that our generalgedhierarchy is of the form

n—1

R”ux+2hiRiux+gnR(é> - (8) (3)

i=1

for some constant&,, ..., h,—1 and g,(# 0). We note in passing that the second
nontrivial member of our hierarchyn (= 2) is of interest for the problems that its
singularity analysis presents; this was the subject of our pHdr

The hierarchy (3) can also be written in the alternative form

BoK,[u] =0, 4)
where
n—1 0
Kn[u]zl—n[u]“‘zhil—i[u]“‘gn<x>v ®)

i=1

B> is one of the three Hamiltonian operators of the DWW hierarchy,

1( 20, om0}
Bp=3( O, GMTG 6
? (uax+a§ v@x—i-(?xv) ©

and eachL;[u] is the variational derivative of the Hamiltonian.density corresponding
to the operatoiB; for the #;-flow of the DWW hierarchyu, = R'u, = BoL;[ul].
Here we have used the fact tHBt= B,B;, where

B=(25) ™

is another of the Hamiltonian operators of the DWW hierarchy. We note also the
recursion relationB;L;1[u] = BoL;[u], and thatLo[u] = (0, 2)7, L1[u] = (v, u)7.

We now consider the construction of hierarchies equivalengdjoWe will also see
how a reduction of order of our system (4) can be effected using the Hamiltonian
structures of the DWW hierarchy. We begin by recalling the Miura maps of the DWW
hierarchy, as given by Kupershmidt [27]. The first Miura map is givenuby F[U],
whereU = (U, V)T and

U
F[U]=<UV—V2+VX>' ®)
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The two second Miura maps are given by= ®[¢], where¢ = (¢, p)’ and
O[] = <¢+2p> ©)
p
andU = Y[y, wherey = (i, s)” and
= (V22 (10)

That is, we have the following two sequences of Miura transformations:

v v () (11)
OIS

We now consider the first of these sequences. Using the fact that for the Miura map
F we have

= F[u1B (FuU)), 12)

u=F[U]

whereB is the Hamiltonian operator of the modified DWW system,
1/20, 0,
s=3(% %) (13

F'[U] is the Fréchet derivative of the Miura map a(l[U])T is its adjoint, we obtain,
in the same way as in the PDE case, the modified versiod)f (

B (F'[U]) K, [F[U]] = 0. (14)
This we can then integrate to obtain

(FIUN) K, [FIUTT + (e, d)” =0 (15)
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for two arbitrary constants, andd,. In fact this last is equivalent to an integrated
version of @) under the BT

u—F[U] = 0, (16)

"K[Ul + (. dn)” = 0. (17)

(F'[U1)
It is this construction of a BT between an integrated modified hierarchy and an inte-
grated version of our original hierarchy that lies behind the first integrals ofBRpur
hierarchy given if15]; this approach is described in more detail in [38]. The integrated
form of (4) obtained from (16), (17) is

Ln,x = 2K, +ulL, + (gn — 20), (18)

2
(Kn + %gn - O‘n) - %ﬁi
Knx = I —vl,, (29)
n

whereK, = (K,, L,)T, and where we have set2+ d, = g, — 22, andd? = f2.
In the same way, since under the compositidn= F o ® we have analogously to
12)

B, = HgIC (H'[¢))’ 20)

u=H[¢]

with

1/ -20, 0y
c=3 (%) @)

we obtain the integrated second modified hierarchy,

(H'1¢1) KL [HIp1] + (en, £i)T = 0. (22)

It is easy to see that the constants of integratiornlb) @nd (22) are related by, = e,
andd, = f, — 2e,.

For our second sequence of Miura transformations we have the compdsitiéio ¥V
and, corresponding to (20),

B, = 1'[y1D (')’ (23)
u=I[y]
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with
1/-20, -0,
p=5( ). @4)
Thus we obtain the alternative integrated second modified hierarchy,

(') KAL) + (G ma)” =0 (25)

with constants of integration related to those d5) by ¢, =1, andd, = —m,, — 2,,.

The hierarchies (18)—(19), (15), (22) and (25) are R{} hierarchies. In order to
show this, let us consider the case= 1 of these hierarchies. We hav&;, = v and
L1 =u+ g1x, and so our system (18)—(19) reads

uy = 20+ u(u + g1x) — 201, (26)
2
<v + 381 061) —ip2
vy = —v(u + g1x), (27)
u+ g1x

eliminating v and settingu = +y — g1x yields the fourth Painlevé equation

1y2 3, 2 1,5, 157
yxx=§7x+§y F 2g10y" +2{ Ze1e" —oa )y — 575 (28)

The system 15) reads
Ve+2UV — V%4 g1xV 4+¢1 = 0, (29)
Uy +2UV —U? — g1(U = 2V)x + g1 — d1 = O. (30)
Elimination of V and settingU = +y — g1x, 2c1 +d1 = g1 — 204 andd? = fiZ yields

(28). This follows immediately from the fact that in the Miura mép= u. However,
eliminating U and settingV = +w also yields the fourth Painlevé equation,

1w? 3 1 1 1¢?
Wy = EUX + §w3 + 2g1xw2 +2 [Zg%xz — E(cl + 2dy — gl):| w— Ej (32)

Thus forn = 1, both independent variables of the first modification define versions of
Pv. We will return to the relationship between these two copie®of later.
Our first second modificatior2®), for n = 1, reads
Py +2¢0p +3p% + gixp+e1 = 0, (32)

¢, —6pp —6p? — ¢p? — g1x(¢p+2p) + 81— f1 = O, (33)
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eliminating ¢ yields

3 1e?
Pxx = + —p2+2gxp? 42 [ g2x?% — f(2f1 —3e1 — gl)} a (34)

2 2 2p
i.e. the fourth Painlevé equation. Noting that in the Miura niap= p, we see that this
last is equivalent to31), for the upper choice of sign, with the identificatian= p,
c1=e1 anddy = f1 — 2e1.

Our second modification (25), for = 1, reads

sy + 2s — 3%+ grxs — 11 = 0, (35)
W, + 6s — 652 — % — gix (Y — 25) + g1 +m1 = 0, (36)

equivalent to 82), (33) unden ¢, p, e1, f1) = (¥, —s, 11, —m1). Elimination ofy gives

1s¢ L33 ogns? a2 n (2 + 301+ g1) 14 (37)
Sxx = 2 25 8g1XS 4g1x mi 1 81 S 2 R .

another version ofPy equivalent to 81) for the lower choice of sign, witlw = s,
c1=1N and di=—-mq— 2.

Thus, we see that the hierarchies (18)—(19), (15), (22) and (25) define sequences of
Py hierarchies, as in (11). In Section 4 we will derive BTs for the hierarchies (22)
and (25), and in Section 6 we show how the known structure of BTsPfprcan be
replicated for Py hierarchies, using the Miura transformations given above.

Before turning to the derivation of BTs and special integrals Rpy hierarchies,
however, we present first of all an improved method of deriving BTs for hierarchies
of ODEs. As a simple but illuminating example, we apply this to e hierarchy.

3. Bécklund transformations for the second Painlevé hierarchy

We take theP, hierarchy in the form
(s +2Y)( Y—Y21—7>+%—/1,,=0, (38)

where /,, are arbitrary parameters, and the sequetgesatisfies the Lenard recursion
relation [28] 8, My, 1[W] = (05 +4Wd, +2W,) M,[W1, with Mo = 3, Mi[W] = W. In

order to construct a BT for this hierarchy, we consider adapting the approach developed
by Weiss for PDEs [40], and seek a “truncated Painlevé expansion”

Px
¢

Y=-—"247, (39)
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where

o Lo (40)
2 ¢

ForY defined by 89), we find that

YX—YZZ?X—Y2—7+2%Y=?X_{/2’ (41)

where in order to obtain the last equality we have us#).(That is, the quantity
Y. — Y2 is invariant under the mapping (39), (40). Thus substituting (39) into (38)
yields

i 1 1
<ax o7 - 2&> (Mn[Yx 72— —x) > =0 (42)
® 2 2

Assuming now tha®’ also satisfies the corresponding member of Epehierarchy, but
now for parameter value,, i.e.

(0 +2Y) <M,,[?X —Y?% - %x) + % —Jn =0, (43)

we obtain using 42) and this last,

}vn - )Ln
ki R ks S (44)
@ 2M,[Y, —Y?2] —x

But (44) must be compatible with (40), or equivalently with the Riccati equation
¢ 0. \° Lo (@
(2), () (2) 0
P Jx ® ®
substituting 44) in (45) gives
A 7 7 -2 1 1 b 3
(Ox +2Y) | MylY =Y ]_Ex +§(ﬂn_ﬂn)zo (46)

and so comparing with4@) we see that this compatibility requires

I+ = 1. (47)



P.R. Gordoa et al. / J. Differential Equations 217 (2005) 124-153 133

Thus we obtain Airault's BT[2]

}vn - )tn
X — 2My[Yy — Y2]

Y=Y+ (48)

for the Py hierarchy, along with the shift in paramete#7). We note that this deriva-
tion, which does not make use of the Schwarzian derivative but instead relies on the
invariance of the quantity, — Y2 under the mapping (39), (40), is much simpler, and
is much more widely applicable, than that presented in [8].

Special integrals of thé?, hierarchy are obtained by setting coefficients of different
powers of¢ in (42) to zero independently; sindg — Y2 = Y, — Y2 we see that this
gives

M,lY, — Y4 - 3x =0, (49)

which defines solutions of3B) for 1, = % We refer to [8] for further information on
special integrals of the, hierarchy, and the iteration af,, hierarchy BTs.

4. Backlund transformations for fourth Painlevé hierarchies

We now apply the above approach to aBt; hierarchy (22); since

. ¢+ 2p
o=, 002 ). 50)

this reads

1 p ¢+2p eny_ (O
(2¢+2p—5x)K"[<¢P+p2+px)}+<fn>_<0>' G

We now seek, analogously to the case of #e hierarchy above, a mapping (BT)
between two solutiong, p and ¢, p of our Py hierarchy, of the form

¢ =224, (52)
@
p=-245 (53)
Y
where
$=—Lax, (54)
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It then follows that

b+2p=3+2p (55)
and
¢p+p2+px=$ﬁ+ﬁ2+ﬁx—%—%&>=&>ﬁ+ﬁ2+ﬁx, (56)

where the last equality follows fronb4). Thus we see that the quantiti¢st 2p and
¢p+ p?+ p, are invariant under the mapping (52)—(54). Substitution of (52), (53) into
(51) therefore gives

1 p-L ¢ +2p en)_ (O
(2<?>+213£6x>K"[($ﬁ+ﬁ2+ﬁxﬂ+<ﬁz>_(0)' e

Since we assume tba?t p are solutions of a second copy of o&r, hierarchy, but
with parameters,,, f,, i.e.

<;<$+2[;—@x>K”[(&ﬁi?i@)%(%)=<8>v (58)

we obtain, by elimination betweerbq{) and this last,

P o =& , (59)
"ot
n T~ ~2 ~
¢p + p°+ Px
.fn - fn (60)

Eqg. 69) must be compatible with (54), or equivalently with the Riccati equation

(2),+ (2 o() -

substituting $9) into (61) gives

(&s_ax)Ln |:<(~pi).f_~;22f_ ﬁx):| +(en —en) =0 (62)
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and comparing this last with68) we see that we must haég = f, — e, and so
en = fu—ey. (63)

Thus we have for ouy, hierarchy b1) the BT

p=9+2 o , (64)
¢+2p
Ly, ~ o o
¢p+ P+ px
~ en — €y
p=p-— —— : (65)
L. ?+2p
$P + P* + px
along with the shifts in parameters given 0} and (63).
We now consider deriving BTs for thgy hierarchy (25); since
_ Y —2s
I['H_<—aps+s2—sx , (66)

this reads

(% aea)ol(lndn )]+ (n)=(5) e

Seeking a BT in the form

po=2% 43, (68)
(Y

s=%x 4% (69)

®
where

n Pxx

y=—-— (70)
Dy

and where@, s are solutions of ourPy hierarchy for parameter valuds, 7,

1 —$ U — 25 I \ _ (0
(o) e[ )] (2)=() o
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then yields
Vo= +2 %_ZA , (72)
— £S5
b [( —¢§w+ §2 -5 )}
s i b= ’A’;A (73)
— 4S5
A(EEN)
for the shift in parameter values
My = my, (74)
Iy = —my — 1. (75)

We note that the BT A2)—(75) follows immediately from (64), (65), (60), (63) under
(¢, p,en, fn) = (Y, —s,1,, —m,), which maps theP,y hierarchy (51) into thePy,
hierarchy (67). However, this mapping does not leave Hye equation in standard
form, since (34) is mapped to (37), and these two equations we identify Ryjthoy
setting g1 = 2 and —2, respectively. We return to this point later.

We now briefly consider special integrals. We see that setting coefficients of different
powers ofg in (57) to zero independently gives, using the fact that 2p = ¢ + 2p
and ¢j + p* + px = ¢p + p* + px,

¢+ 2p )]
L, =0, 76
[( op+ p*+ ps (76)
which then defines solutions 051) provided that
¢+ 2p )i|
K, . =0 77
[(¢p+p2+px e 7
and
So= 2e,,. (78)

In the same way, at the same point in the derivation of the B2)-{(75), setting
coefficients of different powers of to zero independently, and using the fact that
Y — 25 =y — 25 and —y§ + 52 — 5, = — s + 52 — s, gives

L))o
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which then defines solutions 067) provided that

Ki [( ~ w;”;jf_ . )] +1, =0 (80)

and
my = —21,. (81)

Again, just as for our BTs, we have the mappitg, p, e, ) — J, —s, 1, —my)
between these special integrals. See, however, the discussion in the next section.

5. ldentification of Backlund transformations

We now turn to the identification of the BTs obtained in the previous section. We
will give to BTs for our Py hierarchies the same names as are given to theicasé,
i.e. to the Py equation itself. First of all we fix the identification of parameters in our
hierarchies with the parametessand  in Py when written as

_10% 3.3 2 2 15
Qxx-é?"‘EQ +4x0 +2<x —OC) _EE (82)

We take this last as the standard form Bf, in order to simplify the writing of
parameter shifts for its BTs. We note that, singe> —f is a discrete symmetry of
(82), in BTs of Py we can always replace parameters corresponding by +.

We begin with the hierarchy (22), or (51),

(H'1¢1) KL [HIp1] + (en, £i)T = 0. (83)

In the casen = 1 this gives the systenB2), (33) and, after eliminating, equation
(34). In order to identify this last with Eq. (82) we now set, for the entire hierarchy
(83),

8n = 2, (84)
e, = B, (85)
fo = 3(2A, +3B, +2) (86)

and similarly for the paramete#, and f, in the hierarchy %8).
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We then have for the hierarchg3) the BT (64), (65), with the corresponding shift
on parameters (60), (63), i.e.

A, = —3(2A, — 3B, +6), (87)

oo

n = %(ZAn + B, + 2) (88)
In the casen = 1 this BT reads

~ B1—2A1-2

b =¢+—=—"- : (89)
¢+2p+2x
. 1B1—2A1-2
p=p— A - (90)
2 ¢p+2p+2x
Eliminating ¢ we obtain a BT forPy (34) itself,
- (B1—2A1—-2)p
P=pP+t = (91)

Px — P2 —2xp+ B1/2+ A1+ 1

This BT for Py, along with the parameter shif87), (88) (forn = 1), is often referred
to as the “double daggert{) BT (see [3,14]). For this reason we refer to the BT (64),
(65), together with the parameter shifts (87), (88), as:th8&T for the Py hierarchy
(83).

We now turn to the hierarchy (25), or (67),

(') K[ 1] + (G ma)” = O, (92)

In the casen = 1 this gives the systenB3%), (36) and, after eliminating/, equation
(37). In order to identify Eq. (37) with (82) we now set, for the entire hierarchy (92),

gn = —2, (93)
l, = by, (94)
my = _%(Zan +3b, —2) (95)

and analogously for the parameté,gsand m, in the hierarchy T1).
We have for the hierarchy (92) the BT (72), (73), with the corresponding shift on
parameters (74), (75), i.e.

ay = —3(2ay — 3b, — 6), (96)

by = (2a, + by, — 2). (97)
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In the casen = 1 this BT reads

~ b1 —2a1+2
=+ — (98)
Y —25 —2x
1by —2a1 +2
s=fpATtS (99)
20— 25 — 2x
and eliminatingl@ we obtain a BT forPy (37) itself,
2a1 — b1 — 2)§
o3 (2a1 — b1 — 2)s (100)

LYy vy S

This BT for Py, along with the parameter shif®§), (97) (forn = 1), is often refereed
to as the “dagger” ") BT (see [3,14]); it is for this reason that we refer to the BT
(72), (73), together with the parameter shifts (96), (97), astheT for the Py
hierarchy (92). Here we use the lettef’ {e.g. 1*) for BTs related to the hierarchy
(83), and 4" (e.g. t1) for BTs related to the hierarchy (92).

Finally we recall that we also have, as detailed in Section 4, special integrals for our
Py hierarchies. Thus we have the special integral system (76)—(77), with parameters
satisfying (78), for the hierarchy (83), where we now impose the identification (84)—
(86). Similarly we have the special integral system (79)—(80), with parameters satisfying
(81), for the hierarchy (92), now imposing (93)—(95).

In the casen = 1, with the identification (84)—(86), our special integral system
(76)—(77) for the hierarchy (83) reads

¢+2p+2x =0, (101)
px+¢p+p?+BL=0 (102)

for parameters satisfying’8), i.e.
By =2A1+2. (103)

Thus we obtain the special integral &fy (34),
px — p*—2xp+ B1=0, (104)
where the parameter$; and B of Py satisfy (03).
On the other hand, the special integral system (79)—(80) for the hierarchy (92), with
the identification (93)—(95), reads far= 1,

Y —25s—2x =0, (105)
se+ys —s>—by =0 (106)



140 P.R. Gordoa et al. / J. Differential Equations 217 (2005) 124-153

with parameters satisfying81), i.e.
by = 2a1 — 2. (107)
Eliminating  then gives the special integral &y (37),
Sy 452+ 2xs —by =0 (108)

for parametersi; and b1 of Py satisfying (07).

We note that the identifications of parameters (84)—(86) and (93)—(95) mean that
we no longer have the simple mappiag, p, e., f») — (U, —s, 1, —m,) between the
hierarchies (83) and (92); consider for example the systems obtained=fot, (32),

(33) and (35), (36). Thus the BTs and special integrals obtained here are no longer
equivalent under this mapping. The question of whether a mapping can be found under
which they are equivalent is discussed in Section 7.

6. Further Backlund transformations for our Py hierarchies

Thus far we have found the BTi¢ and <’ for our Py hierarchies. However, as is
well known, for Py itself, these BTs can be written as compositions of other BTS,
referred to in the literature [3,14] as the “tildd?/7) and “hat” (/1) BTs. We now
show how this pattern of BTs foP, can be extended to ouPy hierarchies.

It turns out, quite remarkably, that this can be done by considering the Miura maps
between (83) and (15), and (92) and (15), as given in (11). Let us begin with the Miura
transformation between (83) and (15), as given by (9). We recall that ferl (15)
yields Eg. (28). We take the lower sign in (28) and now fix the relationship between
our parameters,, d, anda,, f5,, for the entire hierarchy (15), as

gn = 25 (109)
e = 32— 20, — B, (110)
d, = B, (111)

and similarly for a second copy of our hierarctys) in U, V with parameters,, d,,
or equivalentlya,,, f,.
Since we have

= ey, (112)
dy = fn — 2ey (113)
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and similarly for parameters,, d,, ¢,, and f,, we obtain the following BTs and
parameter shifts:

U= ¢+2p, (114)
V=5 (115)

with
Ay = —3@2+ 23, — 3B,), (116)
By, = 32-23,— B, (117)

and
b =U=-2V, (118)
p=V (119)

with
oy = 3(2—2A, — 3B,), (120)
B, = 3(2+2A, — By). (121)

For the casen = 1, the first of these, when written as a BT between two copies of
Pyv — (34) in p, A1, B1, and (28) iny, a1, 1, wherey = —U — 2x — reads

Pr— P2 —2xp+1—d1— By/2

T (122)

y =

which, together with the parameter shifts16), (117) defines precisely the BT
The second of the above BTSs, in the case- 1, when written as a BT between
(34) inp, A1, B1 and (28) iny, a1 and i1, wherey = —U — 2x, reads

v +y2+2xy + 1+ A1 — B1/2
ety 2y +1+4; 1/ ’ (123)
2y

which, together with the parameter shiftk20), (121) defines precisely the BT

We thus define the BTs (114), (115) and (118), (119), with parameter shifts (116),
(117) and (120), (121), respectively, asind 7 BTs for our Py hierarchies.
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We now define the additional BS by § = (/) 1o o (/)~1. A simple calculation
gives this BTS as

U="0U, (124)

V=V+ (125)

with the change of parameters

Cn = Cn +dp, (126)
d, = —d, (127)
or equivalently
Op = Op, (128)
By = B, (129)

For the caser = 1, for Eq. @8), this BT S reads

y= y9 &1 = o1, ﬁl = 7ﬁl (130)

and we recover the well-known relatioh = 7 o S o7 for Py BTs. Our BTS (124)-
(129) then allows us to extend this decomposition of B¥er* ast¥ =70 Sof from
Py itself to our Py hierarchies. This pattern of BTs, obtained here using the Miura
map U = ®[¢] of the DWW hierarchy (which defines the B¥sand7), can be seen
in Fig. 1. It is interesting that this Miura map, a simple linear map when considered
as a mapping betweegy and U, gives rise to BTs of our hierarchies: however, as we
have seen above for =1 (Pyv), when considered as a mapping between components
of our hierarchies, it is no longer a linear map.

We recall that forn = 1 the second componeitt of the system (15) also defines
a copy of Py (31). Using the identification (84)—(86), where as usugl= e¢; and
d1 = f1—2e1, we obtain that Eq. (31), with the upper choice of sign, is a copy of Eq.
(34), with w = p and the same parameteAs and B;. Thus, in Fig. 1, when tracing
for n = 1 the action of our BTs over individual components, we see that the auto-BT
for (34) must be the same as the auto-BT for Eq. (31). This last is as given by (125),

and reads (withV = w, V = %, and eliminating0),

(B1 — 2A1 — 2)w

= - (131)
Wy — w2 —2xw+ B1/2+ A1+ 1

w=w-+
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(&)~(5) (&)~(%)
(v) : (v)

<t h

(7) g (7)

p p -
€n ~ A, é"n ~ 4n
fn Bn fn B'n,

Fig. 1. Decomposition of the BT+ for Py hierarchies &, = 2).

with parameter shifts

A1 = —%(2A1 - 3B1 +6), (132)

By = 3(2A1+ B1+2). (133)

Thus we see that this BT is exactly the same as that 3d),(i.e. (91) and (87),
(88), withn = 1. That is, forn = 1, (125) is ther* BT (from o to w).

From the above it also follows that the equation obtained when eliminafirfigom
the system (29), (30) written in terms &f, V, ¢4, d1, i.e.

0=

Ve — V24 2xV + 61

) 134
2V (134)

corresponds to the BT from (31), with upper sign, to (28), with lower sign. In the
same way, the equation obtained when eliminathffom the system (29), (30),

U, —U2-—2xU+2—d
2U + 4x

V= : (135)
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corresponds to the BT from (28), with lower sign, to (31), with upper sign. This then
gives one identification of Eqgs. (134) and (135) (another is made later).

We now turn to ourt’ BT. We recall once again the Miura maps (11) and in
particular the Miura transformation between (92) and (15), as given by (10): Eot
(15) yields Eq. (28); we take the upper sign in (28) and change the relationship between
our parameters (now labelleg}, d, and a,, f5,, corresponding to variable§, V), to
the following, again for the entire hierarchy (15):

gn = —2, (136)
e = —3(2+ 23, + B,), (137)
d, = P, (138)

and similarly for a second copy of our hierarclys) in U, V with parameters,, d,,
or equivalentlyé,, f,,.
Since we have

I, (139)
= —my — 2, (140)

é‘!l
Il

3&4

and similarly for parameters,, d,, I,, and ,, we obtain the following BTs and
parameter shifts:

U = — 25, (141)
V =-§ (142)

with
an = 12— 23, +3p,), (143)
by = =32+ 28, + B,) (144)

and
Y =U-2V, (145)

with
By = —2(2+ 2a, + 3by), (147)
B, = —3(2—2a, +by). (148)
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For the caser = 1, the first of these, when written as a BT between two copies of
Py — (37) in'§, a1, by, and (28) in3, &1, fi;, where§ = U — 2x — reads

S+ 2d 141+ B2

% (149)

y =

which, together with the parameter shift§48), (144) defines the BT (we recall,
when comparing to the BT (123) with parameter shifts, (120), (121 ferl — also
identified as a “hat” BT/ — the invariance ofPy (82) underp — —p).

The second of the above BTSs, in the case- 1, when written as a BT between
(37) in's, a1, b1 and (28) iny, a1 and /_31, wherej = U — 2x, reads

Vo — 32— 2§+ 1—ag +b1/2
2y ’

(150)

S =

which, together with the parameter shift§4{), (148) defines the BT (again we
recall, when comparing to (122) with parameter shifts, (116), (117xferl — also
identified as a “tilde” BT, — the invariance ofPy (82) underf — —pf).

We thus define the BTs (141), (142) and (145), (146), with parameter shifts (143),
(144) and (147), (148), respectively, aand T BTs for our Py hierarchies.

We now define the additional BF by ¢ = (¥) 101" o (¥)~1. A simple calculation
gives this BTo as

U="0, (151)
. d
V=V+ (152)
I3 U
"I\NOUV —-VZ4V,
with the change of parameters
6n = Cn "f‘én’ (153)
d, = —d, (154)
or equivalently
6\‘n = &ﬂs (155)
By = =P (156)

For the caser = 1, for Eq. £8), this BT ¢ reads

y=9, da=a1, Pr=-P (157)
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(&)~(5) (&)~(%)
(%) " (%)

(¥) (%)
(m)~(52) ()~ (50)

Fig. 2. Decomposition of the BET for Py hierarchies &, = —2).

and we recover the well-known relatial = 7o g0 % for Py BTs. Our BT ¢ (151)-
(156) then allows us to extend this decomposition of Blet’ ast’ =% o g0 % from
Py itself to our Py hierarchies. This pattern of BTs, obtained here using the Miura
map U = ¥Y[y] of the DWW hierarchy, can be seen in Fig. 2. Again we note that what
is a simple linear map, when considered as a mapping betwesmmd U, gives rise to
BTs of our hierarchies (the BTsand?), but that, once again, and as we have seen for
n =1 (Pv), when considered as a mapping between components of our hierarchies,
it is no longer such a trivial mapping.

We recall that forn = 1 the second componeiit of the system (15), now written
in terms of U, V and with coefficients'1, d1, also defines a copy afyy via V = —w.
This copy of Py is (31) in w, ¢1 and d1, and with lower choice of sign. We thus
obtain that this copy of (31), where as usdak=[; anddy; = —m1— 23, and using the
identification (93)—(95), is a copy of Eq. (37), with = s and the same parameters
and b1. Thus, in Fig. 2, when tracing for = 1 the action of our BTs over individual
components, we see that the auto-BT for (37) must be the same as the auto-BT for this
copy of Eq. (31). This last is as given by (152), and reads (Wite= —w, V = —,
and eliminating),

(2a1 — b1 — 2)W

— k (158)
Wy + W2 +2x —b1/2 —a1 +1

w=w+
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with parameter shifts

a1 = —2(2a1 — 3b1 — 6), (159)
by = 3(2a1+ b1 - 2). (160)

Thus we see that this BT is exactly the same as that%), (.e. (100) and (96), (97),
with n = 1. That is, forn = 1, (152) is thet" BT (from v to w).

From the above it also follows that the equatlon obtained when eliminatirfigpm
the system (29), (30), written in terms of, V, ¢1, di, ie.

. Ve— V242V ¢
g Lo Viravia (161)
2V

corresponds to thé BT from (31), with lower sign, to (28), with upper sign. In the
same way, the equation obtained when eliminatihgn the system (29), (30), written
in terms ofU, V, ¢, d1, i.e.

U —U%?—2xU +2—d;
2U + 4x

V=-— , (162)

corresponds to thé BT from (28), with upper sign, to (31), with lower sign. Thus we
have a different identification of Eqgs. (134) and (135).

We note that the transformation induced on our original variablesd v by S and
o is just the identity together wittio,, $,) — (o, —f,) (a discrete symmetry of the
hierarchy (18), (19)).

7. A mapping between our sequences aPy hierarchies

In this section, we consider a mapping between our two different sequences of fourth
Painlevé hierarchies. These two different sequences are defined by the gheica
or g, = —2. As we noted earlier, this then means that we no longer have the mapping
(¢, p,en, fn) — (Y, —s,1l,, —m,;) between the hierarchies (22) and (25). However, we
still have another mapping between these two hierarchies.

Consider the hierarchy (22), with the identifications (84)—(86), i.e.

(H'[61)" K [HIp1] + (en, £i)” =0, (163)
where g, = 2)
n—1

0
KalHI@1] = Lu[HI1 + D hiLi[H[S]] +2(x>. (164)

i=1
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We now consider the scaling transformatiop, p, x) = (A", —i~ts, A&). This then
gives

1 0
Li[H[¢]l = ZO 1 Ll (165)
A
where in the right-hand side of this last, derivatives are wr.fThus

1o0)1 — n—i nt1( 0
KalHION = (& 1 ) 77 [Lall W0+ D 2" LT + 220

i=1

1 0 1 n—1 0

i=1

where we have choseh such that"*! = —1, and have set; "~/ = H;. Since also

(H'9])" = <é _01) (')’ <é ;f) (167)

our hierarchy 22), i.e. (163), becomes

n—1
(')’ [Lnn W+ 3 HL ) -2 (2)} “(5)=(5)  ass

i=1

which, identifyinge, = —I, and f,, = m,, is precisely the hierarchy2b), i.e.

(') K1 + ()T =0 (169)

with the identification 93)—(95) g, = —2). Thus we have a BT from the hierarchy
(25) with g, = —2 to the hierarchy (22) witly,, = 2, given by

(¢, p.x) = W, =415, 28), (170)

Iy, = —ep, (171)

my = fu, (172)

H; = hi)" 7, (173)

where /"t1 = —1. We refer to this BT as the transformatidh We now consider

the compositionT Lo t¥ o T, i.e. (. §, by, 1itn) — (P, . én, fn) — (P, P, ens fa) —
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W, s, 1, my), which gives an auto-BT of the hierarchgg). It turns out that this
auto-BT is precisely:’. That is, we have the relation

T =T"oroT. (174)

We note thatT also maps the first integral¥¥), (80) of the hierarchy (25), with
the identifications (93)—(95)g( = —2) to the first integrals (76), (77) of the hierarchy
(22), with the identifications (84)—(86%( = 2).

We now consider a corresponding scaling transformation between our hierarchy (15)
for g, = 2, and the same hierarchy fg = —2. This scaling transformation is induced
from that between the hierarchies (22) and (25Y@sV, x) = (A 71U, 771V, i¢). The
hierarchy (15), i.e.

(F'TU1)" KL [FIUT + (e d)T =0, (175)
where
n—1 0
Ku[FIUTl = LalFIUT + ) hiLi[FIUT] + 2 (x ) : (176)

i=1

then becomes (again all derivatives are now with respec) to

(F101)" K, [FION + G, d)T =0 (177)
with
~ _ n—1 _ 0
Ku[FIUIl = L,[F[U]] + Z H;L;[F[U]] -2 <é) (178)
i=1
and where we have identifiet) = —¢, andd, = —d,,. That is, we have the BT from

(177), (178) to (175), (176),

(U, V,x) = G710, .71, 9, (179)
Cn = —Cn, (180)
dy = —dy, (181)
H; = hi)"™" (182)
with 2"t = —1, which, by a convenient abuse of notation, we also refer to as the

transformation.
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We now conS|der the composmdﬁ 1ofoT, ie. (fp S, in,mn) — (&) D, én, f,l) —
0, V,é,d,) — (U, V,é, d,). This BT turns out to be precisely the BT Thus we
have the relation

t=T"1oioT. (183)

We also consider the compositidi Loio T, i.e. (U, V, &y, dy) — (U, V, cn, dy) —
(¢, p,en, fn) —> ,s,1,,my,). This BT is7, and so we have

T=T"1oioT. (184)

Finally, consideration of the BT Yo SoT, i.e. (U, V,éy,dy) — (U, V, &y dy) —
wu,V,c,,dy) — (U, V,cu, dy), leads to the conclusion

=Tt oSoT, (185)

Thus we see that our transformatidnis a mapping of Fig2 into Fig. 1, but for
a different independent variabl&, in Fig. 1 being related t@ in Fig. 2 by x = A&
where #"t1 = —1. Thus of course the relatiori = 7o ¢ 0% (Fig. 2) is mapped into
the relations* =70 S o7 (Fig. 1).

Our transformatiorm has some important consequences. It tells us that the pattern of
BTs obtained from our second sequence of Painlevé hierarchies can be related to that
obtained from our first sequence of Painlevé hierarchies. If we had only considered
one sequence (e.g. the first) it might not have been obvious how to obtain a sequence
(the second) having the pattern of BTs corresponding'to

The reason why this might not have been obvious is that,Hgr the BTs “tilde”
and “hat” are believed to be independent. This then leads us on to another of the
important consequences of our results: the BTs “tilde” and “hat” fpy are not
independent, but are related by a trivial scaling . That is, there is only one
nontrivial fundamental BT forP,. This is in contrast to the claim in [3] tha®y has
two nontrivial fundamental BTs (“tilde” and “hat”).

Let us present our results fdfy explicitly. For n = 1 we may takel =i and so
our transformationT from (37) with the identification (93)—(95),

§2 2
l B 3 lb

to (34) with the identification (84)—(86),

2

1p2 3 1B2
pre =525 4 S pP 4 axp? +2[3% - ] p - 5L, (187)
2p 2 2p
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p=is, x =1i¢, a1 = —A1, b1 = —B1. (188)

The same transformatioh provides a BT from Z8) in y and &, with upper choice of
sign and the identification (136)—(138),

) -2
- 1y§ 3_3 -2 2 = \= 1ﬁ1
p= o> 4 = 4¢ 2(&— - -=, 189
yee 2y+2y+cy+(i “1) 25 (189

to (28) iny and x, with lower choice of sign and the identification (109)—(111),

_ 1%3 33 2 2 1/3%
yxx_57+§y + 4xy +2(x —ocl)y—§7, (190)
i.e.
y =iy, x =i, 01 = —ou, Bl = —f1. (191)

In order to show explicitly thatPy, has only one fundamental BT it is enough to
show that {84) holds, i.e. that

T=T"1oioT. (192)
Here? is the BT (123), with parameter shifts (120) and (121), i.e.

Y 2+ 14+ A1—-B1/2

- 1
p 2 (193)

and
01 = 3(2—2A1 — 3By), (194)
pp = 3(2+241— By) (195)

from (190) to (187). Meanwhile7 is the BT (150), with parameter shifts (147), (148),
i.e.

S_yé—y2—25y+1—a1+bl/2

5 (196)
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o1 = —3(2+ 2a1 + 3b1), (197)
Bp = —3(2—2ay+ by) (198)

from (189) to (186). It is easy to show that under the transformafiore. when (188)
and (191) hold, equations (196)—(198) are mapped onto Egs. (193)—(195). Thus, the
“tilde” and “hat” BTs of Py are equivalent under a simple scaling transformation, and
we see thatPy has only one nontrivial fundamental auto-BT.

We note that forPyy itself the transformationm can in fact be found in [4], and
was also known to the authors of [3]. However, these last failed to recognise that it
provides a mapping between the “tilde” and “hat” BTs Bf; .

8. Conclusions

We have given an improved method of obtaining auto-BTs and special integrals for
hierarchies of ODEs, and have used this to derive auto-BTs and special integrals for
two fourth Painlevé hierarchies. We have shown how the known pattern of BTR\for
can be extended to hierarchies, observing that the BTs required to do this turn out to
be precisely the Miura maps of the DWW hierarchy. Finally, we have given a mapping
between our two sequences of fourth Painlevé hierarchies which allows us to relate the
BTs derived for these two sequences: in particular, we have derived the resufiythat
has in fact only one nontrivial fundamental auto-BT.
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