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1. Introduction

The setting up of a consistent power-counting scheme for chiral
effective field theories with heavy degrees of freedom is a non-
trivial endeavor. For example, in baryon chiral perturbation theory
the usual power counting is not satisfied if the dimensional reg-
ularization is used in combination with the minimal subtraction
scheme [1]. The current solutions to this problem either involve
the heavy-baryon approach [2] or the use of a suitably chosen
renormalization condition [3–6]. Because the mass difference be-
tween the nucleon and the �(1232) is small in comparison to the
nucleon mass, the � resonance can also be consistently included
in the framework of effective field theory [7–11].

On the other hand, the treatment of the ρ meson is more
complicated. While the � resonance decays into a (heavy) nu-
cleon and a (light) pion, the main decay of the ρ meson involves
two pions with vanishing masses in the chiral limit. Therefore, for
energies of the order of the ρ-meson mass, the loop diagrams de-
velop large imaginary parts. Unlike in the baryonic sector, these
power-counting-violating contributions, being imaginary, cannot be
absorbed in the redefinition of the parameters of the Lagrangian as
long as the usual renormalization procedure is used. Despite this
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feature, the heavy-particle approach has been considered in Refs.
[12–16], treating the vector mesons as heavy static matter fields.

In Refs. [17] and [18] we considered the inclusion of virtual
vector mesons in the framework of (baryon) chiral perturbation
theory for low-energy processes in which the vector mesons can-
not be generated explicitly. The present work extends the applica-
bility of the chiral effective field theory to the momentum region
near the complex pole corresponding to the vector mesons. We
tackle the power-counting problem by using the complex-mass
renormalization scheme [19–24], which is an extension of the on-
mass-shell renormalization scheme to unstable particles. As an ap-
plication we consider the mass and the width of the ρ meson
which are of particular interest in the context of lattice extrapo-
lations [25,26]. For a different approach to these problems using
the infrared regularization, see Refs. [27,28].

2. Lagrangian

We start from the most general effective Lagrangian for ρ and
ω mesons and pions in the parametrization of the model III of
Ref. [29], where the ρ-vector fields transform in-homogeneously
under chiral transformations,

L = Lπ + Lρπ + Lω + Lωρπ + · · · .
Displaying explicitly only those terms relevant for the calculations
of this work, the individual expressions read
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In fact, at the beginning all the fields and parameters of Eqs. (1)
and (2) should be regarded as bare quantities which are usually
indicated by a subscript 0. However, in order to increase the read-
ability of the expressions we have omitted this index. In Eqs. (1),
F denotes the pion-decay constant in the chiral limit, M2 is the
lowest-order expression for the squared pion mass, Mρ and Mω

refer to the bare ρ and ω masses, g , cx , and gωρπ are coupling
constants. Demanding that the dimensionless and dimensionfull
couplings are independent, the consistency condition for the ρππ
coupling [30] leads to the KSFR relation [31,32]

M2
ρ = 2g2 F 2. (3)

3. Renormalization and power counting

To perform the renormalization we use the standard procedure
of expressing the bare quantities (parameters and fields, now in-
dicated by a subscript 0) in terms of renormalized ones, leading
to the generation of counterterms. Below, we show explicitly only
those which are relevant for calculations of this work,

ρ
μ
0 = √

Zρρμ,

Zρ = 1 + δZρ,

Mρ,0 = MR + δMR ,

cx,0 = cx + δcx. (4)

We apply the complex-mass renormalization scheme [19–24] and
choose M2

R = (Mχ − iΓχ/2)2 as the pole of the ρ-meson propa-
gator in the chiral limit. The pole mass and the width of the ρ
meson in the chiral limit are denoted by Mχ and Γχ , respectively.
Both are input parameters in our approach. We include MR in the
propagator and the counterterms are treated perturbatively. In the
complex-mass renormalization scheme, the counterterms are also
complex quantities.

Since the ρ mass will not be treated as a small quantity, the
presence of large external four-momenta, e.g., in terms of the ze-
roth component, leads to a considerable complication regarding
the power counting of loop diagrams. To assign a chiral order to
a given diagram it is first necessary to investigate all possibilities
how the external momenta could flow through the internal lines
of that diagram. Next, when assigning powers to propagators and
vertices, one needs to determine the chiral order for a given flow
of external momenta. Finally, the smallest order resulting from the
various assignments is defined as the chiral order of the given di-
agram.

The power counting rules are as follows. Let q collectively stand
for a small quantity such as the pion mass. A pion propagator
counts as O(q−2) if it does not carry large external momenta and
as O(q0) if it does. On the other hand, a vector-meson propaga-
tor counts as O(q0) if it does not carry large external momenta
and as O(q−1) if it does. The pion mass counts as O(q1), the
vector-meson mass as O(q0), and the width as O(q1). Vertices
generated by the effective Lagrangian of Goldstone bosons L(n)

π

count as O(qn). Derivatives acting on heavy vector mesons, which
cannot be eliminated by field redefinitions, count as O(q0). While
the diagrams with vector meson loops satisfy the power counting
after renormalization, the contributions of vector meson loops can
systematically be absorbed in the renormalization of the param-
eters of the effective Lagrangian. Therefore, it is more convenient
to drop such loop diagrams and include their contributions in the
redefinition of the parameters.

4. Evaluation of the two-point function

The mass and width of the ρ meson are extracted from the
complex pole of the two-point function. The undressed propagator
of the vector meson reads

i Sab
0μν(p) = −iδab

gμν − pμ pν

M2
R

p2 − M2
R + i0+ , (5)

with complex M2
R . We parameterize the sum of all one-particle-

irreducible diagrams contributing to the two-point function as

iΠab
μν(p) = iδab[gμνΠ1

(
p2) + pμpνΠ2

(
p2)]. (6)

The dressed propagator, expressed in terms of the self energy, has
the form

i Sab
μν(p) = −iδab

gμν − pμpν
1+Π2(p2)

M2
R +Π1(p2)+p2Π2(p2)

p2 − M2
R − Π1(p2) + i0+ . (7)

The pole of the propagator is found as the (complex) solution to
the following equation:

z − M2
R − Π1(z) = 0. (8)

In the vicinity of the pole z, the dressed propagator can be written
as

i Sab
μν(p) = −iδab

[
Zr
ρ

(
gμν − pμ pν

z

)
p2 − z + i0+ + R

]
, (9)

where

Zr
ρ = 1

1 − Π ′
1(z)

,

and R stands for the non-pole part. The counterterms δMR and
δZρ are fixed by requiring that, in the chiral limit, M2

R is the pole
of the dressed propagator and that the residue Zr

ρ is equal to one.
The solution to Eq. (8) can be found perturbatively as an ex-

pansion

z = z(0) + z(1) + z(2) + · · · , (10)

where the superscripts (i) denote the ith-loop order. Each of these
terms can be expanded in small quantities in the chiral expansion.
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Fig. 1. One-loop contributions to the ρ-meson self-energy at O(q3). The dashed,
solid, and wiggly lines correspond to the pion, the ω meson, and the ρ meson,
respectively.

Up to and including third chiral order, the tree-order result for Π1
is

Π
(0)
1 = cxM2. (11)

At tree order, the pole obtained from Eq. (8) reads

z(0) = M2
R + cxM2. (12)

The one-loop contributions to the vector self-energy up to O(q3)

are shown in Fig. 1. The contributions of diagrams (a) and (b) to
Π1 are given by

Da = − g2μ4−n[2IM − (p2 − 4M2)IMM ]
n − 1

,

Db = (n − 2)g2
ωρπμ4−n

4(n − 1)

[
M4 IMMω

− (
2IMMω M2

ω + IM − IMω + 2IMMω p2)M2

+ IMMω p2 + M2
ω

(
IMMω M2

ω + IM − IMω

)
− (

2IMMω M2
ω + IM + IMω

)
p2], (13)

where the loop integrals are defined as

Im1m2 = i

(2π)n

∫
dnk

[k2 − m2
1 + i0+][(p + k)2 − m2

2 + i0+] ,

Im = i

(2π)n

∫
dnk

k2 − m2 + i0+ , (14)

with n the space–time dimension and p the four-momentum of
the vector meson.

Due to the large momenta flowing through the ρππ vertex in
diagram (a), this vertex should, in principle, count as O(q0). How-
ever, its large component is proportional to pμ and, thus, does not
contribute to Π1. Therefore, the ρππ vertex actually contributes
as O(q1). Hence, diagram (a) contributes to Π1 starting at O(q4),
which is beyond the accuracy of our calculation. Diagram (c) con-
tains the contributions of the counterterms.

Diagram (a) contains a power-counting-violating imaginary part
(which is proportional to the ρ-meson mass for an “on-shell” reso-
nance and hence does not vanish in the chiral limit). It is impossi-
ble to cancel this imaginary part by contributions of counterterms
unless we use the complex-mass renormalization scheme, where
the counterterm contributions become complex quantities. It is
this new feature which makes a crucial difference and allows one
to solve the power-counting problem for the “on-shell” ρ meson.
In diagram (b) we take Mω = MR which is a good approximation
for the purposes of this work.

We fix the counterterms contributing to the pole of the ρ-
meson propagator such that the pole at chiral limit stays at M2

R .
This gives:
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3
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where

λ = 1

16π2

{
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The contributions of diagrams (a), (b) and (c) to the pole, expanded
up to O(q4), read

z(1) = g2M4

16π2M2
R

(
3 − 2 ln

M2

M2
R

− 2iπ

)
− g2

ωρπ M3Mχ

24π
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g2
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(
ln M2

M2
χ

− 1
)

32π2
+ ig2

ωρπ M3Γχ

48π
. (17)

As is seen from Eq. (17), the contribution of diagram (c) is indeed
of O(q4) within the complex-mass renormalization scheme.

Using the renormalized version of Eq. (3), i.e., M2
R = 2g2 F 2, to

eliminate g2 from Eq. (17), we obtain for the pole mass and the
width of the ρ meson to O(q4)

M2
ρ = M2

χ + cxM2 − g2
ωρπ M3Mχ

24π

+ M4

32π2 F 2

(
3 − 2 ln

M2

M2
χ

)

−
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(
ln M2
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χ

− 1
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32π2
, (18)

Γ = Γχ + Γ 3
χ

8M2
χ

− cxΓχ M2

2M2
χ

− g2
ωρπ M3Γχ

48π Mχ
+ M4

16π F 2Mχ
. (19)

The non-analytic terms of Eq. (18) agree with the corresponding
results of Refs. [12,14,26]. Note that both mass Mχ and width Γχ

in the chiral limit are input parameters in our approach.
To estimate the numerical values of contributions of different

orders we substitute

F = 0.092 GeV, M = 0.139 GeV,

gωρπ = 16 GeV−1, Mχ ≈ Mρ = 0.78 GeV

and obtain in units of GeV2 and GeV, respectively,

M2
ρ = M2

χ + 0.019cx − 0.0071 + 0.0014 + 0.0013,

Γ ≈ Γχ + 0.21Γ 3
χ − 0.016cxΓχ − 0.0058Γχ + 0.0011. (20)

For pion masses larger than Mρ/2 the ρ meson becomes a stable
particle. For such values of the pion mass the series of Eq. (19)
should diverge.

5. Conclusions

To summarize, we have considered an effective field theory
of vector mesons interacting with Goldstone bosons using the
complex-mass renormalization scheme. A systematic power count-
ing for the momentum region near the ρ meson pole, emerging
within this scheme, allows one to calculate the physical quantities
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in powers of small parameters. While we cannot give the gen-
eral proof, it can, in close analogy with Ref. [33], be demonstrated
that properly renormalized multi-loop diagrams satisfy the power
counting within the complex mass renormalization scheme. As an
application we have calculated the pole mass and the width of the
ρ meson which are of particular interest in the context of lattice
extrapolations [25,26]. In the isospin-symmetric limit, we calcu-
lated these quantities to O(q3) in terms of the light quark mass
and the width of the vector meson in the chiral limit. To estimate
the contributions of higher orders we also retained O(q4) terms of
O(q3) diagrams.
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