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Very special relativity (VSR) keeps the main features of special relativity but breaks rotational invariance. 
We will show how VSR like terms which depend on a fixed null vector can be generated systematically. 
We start with a formulation for a spinning particle which incorporates VSR. We then use this formulation 
to derive the VSR modifications to the Maxwell equations. Next we consider VSR corrections to Thomas 
precession. We start with the coupling of the spinning particle to the electromagnetic field adding a 
gyromagnetic factor which gives rise to a magnetic moment. We then propose a spin vector in terms of 
the spinning particle variables and show that it obeys the BMT equation. All this is generalized to the 
VSR context and we find the VSR contributions to the BMT equation.
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1. Introduction

The standard model of particle physics is a well established and 
experimentally confirmed theory but it needs to be extended in 
order to incorporate some known phenomena like, for instance, 
neutrino masses and dark matter. Possibly the standard model is 
the low energy limit of a larger theory which hopefully includes 
gravity. Since the present experimental data are not enough to 
point out how to extend the standard model we must seek for 
small deviations of it which could be detected at low energies. One 
possibility is that fields from a more complete theory couple to 
the standard model fields like constant background fields causing 
deviations of Lorentz symmetry [1]. This is a very active line of in-
vestigation with many theoretical results awaiting for experimental 
confirmation (for a review see [2]). Usually such proposals have as 
a consequence that the dispersion relation for light is modified. 
A more conservative alternative would keep the essential features 
of special relativity, like the constancy of the velocity of light, but 
leave aside rotation symmetry for instance. This can be achieved 
by taking subgroups of the Lorentz group which preserve the con-
stancy of the velocity of light. Such subgroups were identified and 
used to built what is called very special relativity (VSR) [3]. One of 
its main features is that the inclusion of P , T or C P symmetries 
enlarges VSR to the full Lorentz group so that VSR is only rele-
vant in theories where one of the discrete symmetries is broken. 
Two subgroups of the Lorentz group, SIM(2) and HOM(2), have the 
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property of rescaling a fixed null vector nμ . Then terms contain-
ing ratios of contractions of nμ with other kinematic vectors will 
be invariant under transformations of these subgroups. A proposal 
to generate mass for neutrinos along these lines was presented in 
[4] where an equation for a left-handed fermion incorporating VSR 
was given(

/p − 1

2
m2 /n

nμpμ

)
ψL = 0, (1)

where m sets the VSR scale. When the equation of motion is 
squared we find that it describes a free fermion of mass m. The 
price to be paid is the presence of non-local operators as well as 
the lack of rotational symmetry. In this way it is possible to save 
some of the important effects of special relativity and consider 
possible violations of space isotropy. Several aspects of VSR have 
been considered, like the inclusion of supersymmetry [5,6], curved 
spaces [7,8], noncommutativity [9,10], dark matter [11] and also in 
cosmology [12].

We can take this specific realization of VSR and consider the 
addition of interaction terms in the context of the usual Lorentz 
violating theories. We can regard the inclusion of operators con-
taining a constant and null vector nμ as determining a preferred 
direction in space. It breaks Lorentz symmetry to ISO(2) but allow-
ing a scale transformation on nμ the symmetry can be enlarged 
to SIM(2). So the inclusion of terms containing ratios of nμ con-
tracted with other kinematic vectors will lead to the consideration 
of VSR like terms as that in (1). When a Lorentz invariant action is 
extended by the addition of Lorentz violating operators the coeffi-
cients of such operators are in general arbitrary and unrelated to 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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each other. In this paper we will show that Lorentz violating terms, 
like the one present in (1), can be derived in a systematic way. To 
do that we start in Section 2 with the model of a massive spin-
ning particle describing a free fermion. It is characterized by its 
worldline reparametrization and worldline supersymmetry. To give 
rise to a VSR term similar to that in (1) the supersymmetry con-
straint is modified. This is the only point where a Lorentz violating 
term is added by hand. In Section 3 we consider a spinning parti-
cle with N = 2 supersymmetries which describes an Abelian gauge 
field. In order to derive the Lorentz violating terms contributing to 
the Maxwell equations we consider the modified supersymmetry 
constraint from the previous section. We find a massive photon in 
agreement with the VSR construction done in [13]. This approach 
provides a systematical way of generating Lorentz violating terms 
like the one in (1).

We then apply this approach to interacting theories. To be 
concrete we consider the relativistic equation describing Thomas 
precession also known as BMT equation [14,15]. It describes the 
dynamics of an axial 4-vector Sμ , associated to the spin of the 
electron, in the presence of a uniform electromagnetic field and 
from it is possible to derive the precession angular velocity of the 
spin in the electron rest frame. In order to apply our formalism we 
have to construct Sμ in terms of the spinning particle variables 
and this is done in the next section where we consider the cou-
pling of the usual spinning particle to the Maxwell field and define 
a Grassmannian spin vector Sμ for the spinning particle. We then 
show how it naturally leads to the BMT equation. Then in Sec-
tion 5 we use the VSR spinning particle obtained in Section 2 to 
derive corrections to the BMT equation. We find that the spin vec-
tor Sμ must have additional terms depending on nμ . We work in 
the limit where m is much smaller than the electron mass and find 
that many new terms contribute to the BMT equation. As expected 
the coefficients of the Lorentz breaking terms are not arbitrary, the 
only arbitrariness being the value of m. Finally, in Section 6 we 
present some conclusions.

2. VSR spinning particle

The spinning particle [16] provides a particle description for a 
Dirac field in the same way as the relativistic particle is associated 
to the Klein–Gordon field. Besides the particle coordinates Xμ(τ )

and its momentum Pμ(τ ) we also need Grassmannian coordinates 
Ψ μ(τ ) and Ψ5(τ ) satisfying Poisson brackets

{
Xμ, Pν

} = δ
μ
ν ,

{
Ψ μ,Ψ ν

} = i

2
ημν,

{Ψ5,Ψ5} = − i

2
. (2)

We assume the existence of a first class constraint S which gener-
ates worldline supersymmetry

S = PμΨ μ − MΨ5. (3)

We then find that the Poisson bracket algebra closes on the Hamil-
tonian constraint

{S,S} = iH, H = 1

2

(
P 2 − M2). (4)

The quantization is performed by promoting the Poisson brack-
ets to commutators or anticommutators

[
Xμ, Pν

] = −iδμ
ν ,

{
Ψ μ,Ψ ν

} = 1

2
ημν,

{Ψ5,Ψ5} = −1
, (5)
2

so that Pμ = i∂μ and the Grassmannian variables are proportional 
to the Dirac gamma matrices Ψ μ = 1

2 γ μγ5, Ψ5 = 1
2 γ5. Then the 

physical states ϕ(x) must satisfy the supersymmetry constraint 
Sϕ(x) = 0 and we get the massive Dirac equation.

In VSR the massive Dirac equation for a fermion is modified to 
[5](

i/∂ + i

2
m2 /n

n∂
− M

)
ϕ(x) = 0, (6)

where n2 = 0, m is the VSR mass scale and n∂ = nμ∂μ . We will 
use the notation that for two vectors Aμ and Bμ , AB = AμBμ . This 
strongly suggests that we modify the supersymmetry constraint (3)
to

S = PΨ − 1

2
m2 Ψ n

Pn
− MΨ5, (7)

so that the Poisson bracket algebra still closes on the Hamiltonian 
constraint which is modified to

H = 1

2

(
P 2 − m2 − M2). (8)

Then the effect of VSR like term in the supersymmetry constraint 
is just a shift in the squared particle mass. Notice also that the su-
persymmetry constraint is still well behaved with respect to VSR 
transformations since nμ appears on the numerator and denomi-
nator of the new term.

The action for the VSR spinning particle has the standard form

S =
∫

dτ (P Ẋ − iΨ Ψ̇ + iΨ5Ψ̇5 + eH+ iχS), (9)

where e(τ ) and χ(τ ) are Lagrange multipliers. From the con-
straints we can derive the infinitesimal worldline supersymmetry 
transformations

δXμ = −iε

(
Ψ μ + 1

2
m2 Ψ n

(Pn)2
nμ

)
, (10)

δPμ = 0, (11)

δΨ μ = −1

2
ε

(
Pμ − 1

2
m2 nμ

Pn

)
, (12)

δΨ5 = −1

2
Mε, (13)

δe = −iεχ, (14)

δχ = ε̇, (15)

and worldline reparametrization transformations

δXμ = ξ Pμ, (16)

δe = ξ̇ , (17)

δPμ = δΨ μ = δΨ5 = δχ = 0, (18)

where ε is a Grassmannian supersymmetry parameter and ξ is the 
reparametrization parameter. The action is invariant under these 
transformations up to a total derivative term. Upon quantization 
the wave function has to satisfy the supersymmetry constraint (7)
and we get the VSR Dirac equation (6).

3. Maxwell equations in VSR

Since the Dirac equation is modified in VSR the same must 
happen to the Maxwell equations. To show this we can use the 
spinning particle with extended supersymmetry. The general case 
was treated in [17] where it was shown that a spinning particle 
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with N supersymmetries describes massless field equation for par-
ticles with spin N /2. A path integral analysis was performed in 
[18]. Here we will consider the case N = 2 in the context of VSR.

We consider two Grassmannian variables Ψ μ
i , i = 1, 2, and the 

following constraints

H = 1

2

(
P 2 − m2), (19)

Si = PΨi − 1

2
m2 Ψin

Pn
, (20)

φi j = ΨiΨ j . (21)

The constraint φi j generates SO(2) rotations so we have two super-
symmetries. The constraint algebra is

{Si,S j} = δi jH, (22)

{φi j,Sk} = Siδ jk − S jδik, (23)

{φi j, φkl} = δikφ jl − δilφ jk + δ jkφil − δ jlφik. (24)

The physical states ϕ must satisfy all constraints. The anticom-
mutation relations

{
Ψ

μ
i ,Ψ ν

j

} = ημνδi j, (25)

can be realized in terms of gamma matrices as [17]

Ψ
μ
1 = γ μ ⊗ 1, Ψ

μ
2 = γ5 ⊗ γ μ. (26)

This means that the physical states are bispinors ϕαβ . Then the 
SO(2) constraint implies that ϕαβ = (σμνC)αβ Fμν(x), where C is 
the charge conjugation matrix and (σμνC)αβ is symmetric in the 
spinor indices.

The constraint Si implies that

/∂
β
αϕβγ + 1

2
m2 /nβ

α

n∂
ϕβγ = 0. (27)

We can rewrite this equation for Fμν getting
(

∂μFνλ + 1

2
m2 nμ

n∂
Fνλ

)(
γ μσνλ

)β

α
= 0. (28)

Since γ μσνλ is proportional to εμνλργργ5 and ημ[νγ λ] we can 
take the trace to get

∂[μFνλ] + 1

2

m2

n∂
n[μFνλ] = 0, (29)

while multiplying by γ5 and taking the trace we get

∂μFμν + 1

2

m2

n∂
nμFμν = 0. (30)

In special relativity when m2 = 0 we recover the Bianchi identities 
and the Maxwell equations. In VSR they are modified. They also 
imply that

�Fμν + m2 Fμν = 0, (31)

showing that Fμν has mass m.
We can try to solve the VSR Bianchi identities (29) and remark-

ably there is a solution

Fμν = D[μ Aν], Dμ = ∂μ + 1

2

m2

n∂
nμ. (32)

Notice that Dμ has an Abelian algebra but it does not satisfy the 
Leibniz rule. Notice also that Fμν is not invariant under the usual 
gauge transformation but it is invariant under
δAμ = DμΛ. (33)

Then the VSR Maxwell equations (30) can be written as

DμFμν = 0, (34)

and we have a massive field described by a field equation with a 
modified gauge invariance (33). Our results agree with those found 
in [13].

The non-Abelian extension of VSR gauge fields was done in [19]. 
It was found that since all gauge fields in a given multiplet acquire 
a common mass m it cannot be used as a replacement for the 
Higgs mechanism.

4. Coupling the spinning particle to the Maxwell field and the 
BMT equation

In this section we show how to derive the BMT equation in 
special relativity using the spinning particle variables. Firstly we 
couple the spinning particle to a background electromagnetic field 
Aμ using the minimal substitution Pμ → Pμ − q Aμ in the su-
persymmetry constraint (3). To introduce the gyromagnetic factor 
g we consider the proposal for a spinning particle with “anoma-
lous” magnetic moment [20]. There is a more detailed treatment 
in [21] where the expressions are more explicit. Besides the min-
imal substitution we also have to replace M → M + 2iμFΨ Ψ , in 
the supersymmetry constraint, where the magnetic moment is

μ = q

2M

(
g

2
− 1

)
, (35)

so we get

S = Ψ (P − q A) − (M + 2iμFΨ Ψ )Ψ5. (36)

The notation F AB = Fμν AμBν is used throughout the rest of the 
paper. The Hamiltonian constraint is now

H = 1

2

[
(P − q A)2 − M2] − i(q + 2μM)FΨ Ψ

− 4iμF (P − q A)Ψ Ψ5 + 2μ2(FΨ Ψ )2. (37)

It can also be checked that {H, S} = 0.
The action has the same form as before (9) and the equations 

of motion are

Pμ = q Aμ − 1

e
Ẋμ + 4iμF μνΨνΨ5 − i

e
χΨ μ, (38)

Ṗμ = e
[−q

(
Pν − q Aν

)
∂μ Aν − i(q + 2μM)∂μFΨ Ψ

− 4iμ
(
∂μF

)
(P − q A)Ψ Ψ5 − 4iμq

(
∂μ Aν

)
FρνΨ ρΨ5

+ 4μ2 FΨ Ψ ∂μFΨ Ψ
] − iqχΨ ∂μ A, (39)

Ψ̇ μ = e
[−(q + 2μM)F μνΨν + 2μF μν(P − q A)νΨ5

− 4iμ2 FΨ Ψ F μνΨν

] − 1

2
χ

[
(P − q A)μ − 8iμF μνΨνΨ5

]
,

(40)

Ψ̇5 = −2μeF (P − q A)Ψ − 1

2
χ(M + 2iμFΨ Ψ ), (41)

plus the constraints. We now choose the gauge e = −1/M and 
χ = 0. Since we are interested only in weak and uniform back-
ground fields we can linearize the above equations. Also eliminat-
ing the momentum we find
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Ẍμ = q

M
F μν Ẋν, (42)

Ψ̇ μ =
(

q

M
+ 2μ

)
F μνΨν − 2μF μν ẊνΨ5, (43)

Ψ̇5 = 2μF ẊΨ, (44)

ẊΨ + 2i
μ

M
FΨ Ψ Ψ5 − Ψ5 = 0, (45)

Ẋ2 − 1 − 2
i

M

(
q

M
+ 2μ

)
FΨ Ψ = 0. (46)

The next step is to define an axial spin vector Sμ(τ ) which 
generalizes the rest frame spin of the electron. Requiring that its 
time component vanishes in the rest frame it must satisfy Ẋ S = 0. 
There are several proposals to describe the relativistic spin through 
some particle model (see for instance [22]). Here we assume that 
Sμ is a pseudo-vector even in the Grassmannian variables and the 
natural choice is

Sμ = εμνρσ ẊνΨρΨσ . (47)

When computing Ṡμ we have to rewrite all terms quadratic in Ψ
in terms of S . To do that we use the identity

Ψ μΨ ν = 1

2 Ẋ2
εμνρσ Ẋρ Sσ − Ẋ [μΨ ν] ẊΨ

Ẋ2
, (48)

where A[μBν] = AμBν − Aν Bμ with no factor of 1/2. We also have 
to use the field equations (43)–(46) noting that Ψ̇ μ, Ψ̇5, Ẋ2 −1 and 
ẊΨ − Ψ5 are all of O(F ). The calculation is lengthy and tedious. 
There are several terms proportional to εμνρσ ẊνΨσ Ψ5 which can-
not be rewritten in terms of Sμ but cancel against each other. At 
the end the result is

Ṡμ = qg

2M

(
F μν Sν + ẊμF S Ẋ

) − ẊμS Ẍ . (49)

Using now the equation of motion (42) we get the BMT equation

Ṡμ = q

M

(
g

2
F μν Sν +

(
g

2
− 1

)
ẊμF S Ẋ

)
. (50)

Having obtained the BMT equation from the spinning particle the 
next step is to generalize it to VSR since we already know the 
supersymmetry constraint (7).

5. Coupling the VSR spinning particle

We go along the same lines as in the previous section. The sim-
plest choice for the supersymmetry constraint which reduces to 
(36) and (7) is

S = Ψ (P − q A) − (M + 2iμFΨ Ψ )Ψ5 − 1

2
m2 Ψ n

(P − q A)n
. (51)

The Poisson bracket algebra of two supersymmetries constraints 
closes on

H = 1

2

[
(P − q A)2 − m2 − M2] − i(q + 2μM)FΨ Ψ

− 4iμF (P − q A)Ψ Ψ5 + 2μ2(FΨ Ψ )2

+ iqm2Ψ n
FΨ n

[(P − q A)n]2
− 2iμm2 FΨ n

(P − q A)n
Ψ5

+ 2μm2Ψ n
nρ∂ρ FΨ Ψ

[(P − q A)n]2
Ψ5. (52)

Again it is possible to show that its Poisson bracket with S van-
ishes.
When deriving the equations of motion we have to deal with 
(P − q A)n in several denominators. To do that we take the field 
equation obtained by varying Pμ

(P − q A)μ

= −1

e
Ẋμ + 4iμF μνΨνΨ5 + 2m2

(
iqΨ n

FΨ n

[(P − q A)n]3

− iμ
FΨ nΨ5

[(P − q A)n]2
+ 2μΨ n

nρ∂ρ FΨ Ψ

[(P − q A)n]3
Ψ5

)
nμ

− i

e
χ

(
Ψ μ + 1

2
m2 Ψ n

[(P − q A)n]2
nμ

)
, (53)

and contract it with nμ so that

(P − q A)n = − Ẋn

e

(
1 + 4iμe

FΨ n

Ẋn
Ψ5 + iχ

Ψ n

Ẋn

)
. (54)

We can now invert this equation taking into account that we have 
Grassmannian variables inside the parenthesis

1

(P − q A)n
= − e

Ẋn

(
1 − 4iμe

FΨ n

Ẋn
Ψ5 − iχ

Ψ n

Ẋn

+ 8μe
FΨ nΨ5

( Ẋn)2
χΨ n

)
. (55)

Since the particle has mass 
√

m2 + M2 we now choose the 
gauge e = −1/

√
m2 + M2 and χ = 0. The linearized equations of 

motion become

Ẍμ = q√
m2 + M2

F μν Ẋν, (56)

Ψ̇ μ = q + 2μM√
m2 + M2

F μνΨν − 2μF μν ẊνΨ5

− q

2

m2

(m2 + M2)3/2

1

( Ẋn)2

(
FΨ n nμ − Ψ n F μνnν

)

+ μ
m2

m2 + M2

F μνnν

Ẋn
Ψ5, (57)

Ψ̇5 = 2μF ẊΨ + 2μ
m2

m2 + M2

FΨ n

Ẋn
, (58)

ẊΨ + 2
μ√

m2 + M2
FΨ Ψ Ψ5 − M√

m2 + M2
Ψ5

− 1

2

m2

m2 + M2

Ψ n

Ẋn
= 0, (59)

Ẋ2 − 1 − 2i

m2 + M2
(q + 2μM)FΨ Ψ

+ 6iq
m2

m2 + M2

Ψ n

( Ẋn)2
FΨ n = 0. (60)

Notice that the Lorentz force law in VSR (56) keeps the same form 
as in special relativity and does not depend on nμ . Just the mass 
has changed to include the VSR mass scale m.

The next step is to compute Ṡμ . Besides the identity (48) we 
will need another identity obtained from the former one by con-
tracting it with nμ . After using the equations of motion it reads

ΨμΨ n = 2(m2 + M2)

m2 + 2M2

(
1

2( Ẋ)2
εμνρσ nν Ẋρ Sσ

+ M√
2 2

ẊnΨμΨ5

)
+ . . . , (61)
m + M
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where . . . are terms proportional to Ẋμ which do not contribute 
to the relevant calculations. It is then found that the cancellation 
among the εμνρσ ẊνΨσ Ψ5 terms no longer occurs and Ṡ cannot be 
written in terms S . The only way out is to modify the definition 
of Sμ .

In fact having a new vector nμ allows the construction of other 
vectors out of a bilinear in the Grassmannians. For instance

S̃μ = 1

Ẋn
εμνρσ ẊνnρΨσ Ψ5 (62)

satisfies Ẋ S̃ = 0 so it is a candidate. Another possibility is 
εμνρσ nνΨρΨσ which does not vanish when contracted with Ẋ
but with n. It is possible to multiply it by a projector so that it 
vanishes when contracted with Ẋ

Ŝμ = 1

Ẋn
εμνρσ nνΨρΨσ − Ẋμ

Ẋ2

1

Ẋn
ελνρσ ẊλnνΨρΨσ . (63)

It turns out that Ŝ can be written as a combination of S and S̃ as

Ŝμ = 2
m2 + M2

m2 + 2M2
Sμ + 4

M
√

m2 + M2

m2 + 2M2
S̃μ − m2

m2 + 2M2

Sn

Ẋn
Ẋμ

+ m2

m2 + 2M2

Sn

( Ẋn)2
nμ. (64)

We then found that the only combination S and S̃ that gets rid of 
the εμνρσ ẊνΨσ Ψ5 terms mentioned above is given by

Sμ
T = Sμ − m2

M
√

m2 + M2
S̃μ

= εμνρσ Ẋν

(
ΨρΨσ − m2

M
√

m2 + M2

1

Ẋn
nρΨσ Ψ5

)
. (65)

The factor − m2

M
√

m2+M2
is essential for the cancellation. To show 

that we need further identities like

εμνρσ Ẋρ S̃σ = Ẋ[μnν]
Ẋn

ẊΨ Ψ5 − Ẋ[μΨν]Ψ5 + Ẋ2 n[μΨν]
Ẋn

Ψ5, (66)

εμνρσ nρ S̃σ = Ẋ[μnν]
Ẋn

Ψ nΨ5 + n[μΨν]Ψ5. (67)

Since the VSR scale is very small we can consider only the case 
m2 � M2 and keep terms up to order m2/M2. In this case we get 
after a long calculation

Ṡμ
T = 1

M

(
1 − 1

2

m2

M2

)
(q + 2μM)F μν STν

+ 2μ

(
Ẋμ − 1

2

m2

M2

nμ

Ẋn

)
F ST Ẋ + μ

m2

M2
F μν Ẋν

ST n

Ẋn

+ q

2

m2

M3
F μνnν

ST n

( Ẋn)2
+ q

2

m2

M3

(
Ẋμ − nμ

Ẋn

)
F ST n

Ẋn

− q

2

m2

M3
ẊμF Ẋn

ST n

( Ẋn)2
. (68)

This is the generalization of the BMT equation to VSR. As antici-
pated there are several terms that can be built out of nμ but all 
the coefficients are determined. A consistency check is to notice 
that

Ẋ Ṡ T = q√
m2 + M2

F Ẋ ST . (69)

We now have to go to the electron rest frame by a Lorentz 
boost and nμ has to be transformed as well. It can be checked that 
ST ṠT = 0 so that in the rest frame �ST · �̇S T = 0 which means that 
the spin is precessing in that frame. This has been explicitly veri-
fied. Then it is possible to compute the VSR corrections to Thomas 
precession and also the VSR contribution to the anomalous mag-
netic moment of the electron.

An alternative way to derive the extension of the BMT equa-
tion to VSR is by making use of the distribution function for the 
spinning particle. In order to relate quantities depending on the 
Grassmannian variables with observable quantities it is usual to 
define a distribution function in phase space [16]. The distribution 
ρ(Ψ, Ψ5, t) must satisfy a Liouville equation

∂ρ

∂t
+ {H,ρ} = 0, (70)

and must be normalized to one∫
dΨ5dΨ3dΨ2dΨ1dΨ0 ρ(Ψ,Ψ5) = 1. (71)

It is used to define the averaged value of a dynamical variable 
F (Ψ, Ψ5) as

〈F 〉 =
∫

dΨ5dΨ3dΨ2dΨ1dΨ0 F (Ψ,Ψ5)ρ(Ψ,Ψ5). (72)

In this context the Grassmannian variables are regarded as inde-
pendent variables so that the supersymmetry constraint S is used 
only at the end of all calculations. In the relativistic case PΨ and 
Ψ5 are gauge degrees of freedom so that the distribution function 
is given by [16]

ρ = 1

2

(
v(t)Ψ + 1

3
εμνρσ Pμ

M
ΨνΨρΨσ

)
δ

(
PΨ

M

)
δ(Ψ5), (73)

where v(t) satisfies P v = 0 and the coefficient 1/3 is required 
by normalization. The distribution function is defined for the free 
spinning particle and interactions are introduced in the Hamilto-
nian in (70). Then Pμ = M Ẋμ and (73) reduces to

ρ = 1

2

(
v(t)Ψ + 1

3
εμνρσ ẊμΨνΨρΨσ

)
ẊΨ Ψ5, (74)

with Ẋ v = 0.
If we consider the VSR contributions to the spinning particle 

as part of the interactions then our distribution function is (74)
and we can use it to compute the averaged value of Sμ

T (65). We 
then find that 〈Sμ

T 〉 = vμ . We now use (70) to find the equation 
satisfied by 〈Sμ

T 〉. To this end we get the Hamiltonian H from (9)

as H = −eH = H/
√

m2 + M2 with H given by (52). Computing 
the Poisson brackets and using the constraints (45) and (46) and 
eliminating the momentum using (38) we find that the equation 
satisfied by 〈Sμ

T 〉 when m2 � M2 is exactly (68). This provides a 
powerful check that our extension of the BMT equation to VSR is 
in the right direction.

Alternatively we could had started with a distribution function 
for the VSR spinning particle which already takes into account the 
VSR effects as described in Section 2. Now the gauge degrees of 
freedom are ΠΨ and Ψ5, where

Πμ = Pμ − 1

2
m2 nμ

Pn
(75)

so that the distribution function is

ρ = 1

2

(
vΨ + 1

3
εμνρσ Πμ

M
ΨνΨρΨσ

)
ΠΨ

M
Ψ5, (76)

with Π v = 0. We again replace the momenta getting
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Πμ =
√

m2 + M2 Ẋμ − 1

2

m2

√
m2 + M2

nμ

Ẋn
. (77)

Now the averaged value of Sμ
T is given by a more complicated ex-

pression

〈
Sμ

T

〉 =
√

m2 + M2

M

[(
1 − 1

2

m2

m2 + M2

)
vμ

− 1

2

m2

m2 + M2

(
Ẋμ − 1

2

m2

m2 + M2

nμ

Ẋn

)
vn

Ẋn

]
, (78)

which is a consequence of the fact that vμ no longer satisfies 
Ẋ v = 0 but

Ẋ v − 1

2

m2

√
m2 + M2

nv

Ẋn
= 0. (79)

Notice that we still have Ẋ〈ST 〉 = 0. In the limit m2 � M2 the 
Liouville equation now gives

v̇μ = 1

M

(
1 − 1

2

m2

M2

)
(q + 2μ)F μν vν

+ 2μ

[(
1 + 1

2

m2

M2

)
Ẋμ − 1

2

m2

M2

nμ

Ẋn

]
F v Ẋ

+ m2

M2

q

2M
F μνnν

vn

Ẋn
− 1

2M

m2

M2

(
2μM Ẋμ + q

nμ

Ẋn

)
F vn

Ẋn
.

(80)

We then take the time derivative in (78) and use (80) to find that 
〈 Ṡμ

T 〉 again obeys (68).
As a last remark we want to mention that the distribution func-

tion is also required to satisfy some sort of positivity condition [16]
like∫

dΨ5dΨ3dΨ2dΨ1dΨ0 ρ F � F ≥ 0, (81)

for any phase space function F . Like in the classical relativistic case 
[16] our distribution functions do not satisfy a positivity condition. 
It seems that this can only be implemented when the spinning 
particle has internal degrees of freedom [24].

6. Conclusions

We discussed the inclusion of VSR like terms in a Lorentz in-
variant theory starting with the spinning particle model for a 
fermion. It provides a way to generate a class of Lorentz violat-
ing theories which have a preferred direction in space but at the 
same time keeps many essential elements of special relativity. Its 
effects appear at a scale m where the anisotropy becomes relevant. 
Many terms invariant by VSR can be added to relativistic invariant 
equations and we developed a systematic way to generate such 
terms. In particular we determined how the BMT equation, which 
describes the electron spin precession in an electromagnetic field, 
is modified by VSR. We showed that in the rest frame the spin 
still precesses but VSR effects will now produce new effects. It has 
been argued that VSR is not consistent with Thomas precession 
[23] but our analysis does not support this view. It is well known 
that for a particle with g = 2 in a magnetic field the spin precesses 
in such a way that the longitudinal polarization is constant, while 
the presence of an electric field in the relativistic limit makes the 
spin to precess very slowly. It would be interesting to find how 
VSR changes these properties.
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