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1. INTRODUCTION

In the theory of the differential inclusions it is known (see [4]) that the
initial value problem for evolution differential equations of the form

x'€—-dV(x)+h I
x(0) = x,, X, € D(V), @

where 3V is the subdifferential of a proper, convex, and lower semicontinu-
ous function (I.s.c.) V, defined on a real separable Hilbert space H and
with values in R U {+o}, while h € LX[0, b], H) is a single valued
perturbation, has a (unique) solution. Moreover, some Authors (cf. (1,
10]) have provzd the existence of solutions for the Cauchy problem (I),
where the single-valued perturbation is replaced with a multivalued one.

In 1989, M. Tosques [11] has obtained an existence result for a quasi-
autonomous evolution equation. In fact, he proved the existence and the
uniqueness of the solutions to the Cauchy problem

xE—-af(x)+h
X0 =xo % €D(f), (In

where 4™ f'is the Fréchet subdifferential of a function f defined on an open
subset {) of a real separable Hilbert space H, taking its values in R U
{+} and having a y-monotone subdifferential of order two, while 4 is a
function belonging to LX[0, 5], H). We recall that 4™ f is an extension of
the notion of a subdifferential of a convex function and that it coincides
with df when f is convex (cf. {7, p. 224]).
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On the other hand, in 1989 Bressan, Cellina, and Colombo [3] proved
an existence theorem for the problem

x' €F(x)
x(0) = x,, (11D
where F: R"— 2% is an upper semicontinuous multifunction with compact
and nonempty values not necessarily convex but contained in the subdif-
ferential of a proper, convex, and l.s.c. function. In other words, F is
cyclically monotone (cf. Remark 3).

In 1991 Cellina and Staicu [6] have improved the previous result by
proving the existence of solutions to the initial value problem for evolution
equations of the form

x' € —-dV(x)+ F(x)
2O =xp,  xED@V), (av)
by assuming that V: R"— R U {+} is a proper, convex, and |.s.c. function
and that F: U(x,) — 2®" is an upper semicontinuous and cyclically mono-
tone multivalued operator defined on some neighborhood of x, and with
compact and nonempty values.

In this article we consider the Cauchy problem of the form

x'€ -0 f(x)+ F(x)
x0)=x, % €D@), )

to prove that (cf. Theorem 1) it has solutions by supposing that f: Q —
R U {+} is a function with a Yy-monotone subdifferential of order 2,
defined on an open subset () C R" and such that the function x — grad=f(x)
is locally bounded in x,, while F: U(x;) — 2R" is like in (IV) (cf. [6]).

To obtain our existence result we first establish a lemma which provides
a sufficient condition for the function x: L%({0, T1, H) — C(0, T1, H),
defined by A(h) = x,, where x, is the unique solution of the problem (II),
to have a closed graph in a bounded subset of L? ([0, T], H), with respect
to the weak topology in L%[0, T], H) and to the strong topology in
C([0, T1, H). Since, as we said, the Fréchet subdifferential is an extension
of the subdifferential of a proper, convex, and l.s.c. function and, on the
other hand, every proper, convex, and l.s.c. function has a Jy-monotone
subdifferential of order two, our problem (*) contains, in one sense, the
problem (1V). In any case our proposition extends the mentioned theorem
of Cellina and Staicu, in the sense that there exist functions which do not
satisfy the assumptions of this proposition but which verify the conditions
of our existence theorem (cf. Example 1). Moreover, if x; € int D(3™f),
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our proposition strictly contains the existence result of Cellina and Staicu
(cf. Remark 4).

Finally, we observe that, since if fis a constant function the problem
(%) reduces itself to problem (III), our proposition strictly contains the
mentioned theorem due to Bressan, Cellina, and Colombo [3].

2. PRELIMINARIES

Let [a, b] be an interval, i the Lebesgue measure on it, and H a real
separable Hilbert space, with norm ||| endowed by the scalar product
(, ). Forxe& Hand e > 0 we set B(x, g) = {y € H: ||y — x| < ¢} and
cl B(x, &) = {y € H: ||y — x|| = &} represents the closure of B(x, &);
moreover, given a subset A of H, we put B(A, €) = {x € H: p(x, A) < &},
where p(x, A) = inf{||y — x||: y € A}. For a closed and convex subset A
of H, we denote by m(A) the element of A such that

[m(A)|| = inf{||y]|: y € A).
A function V: H — R U {+x} is said to be proper if D(V) # &, where

D(V) = {x € H: V(x) < + «}. If V is proper, convex, and lower semicon-
tinuous the multifunction 3V: H — 2, defined by

V(x)={yeEH: V() - V(x) =(y, £ —x),V¢E€EH}, Vx€H,
is called the subdifferential of V. We denote by D(3V) the set D(aV) =
{x € H: 8V (x) # &}.

Given an open subset Q of H and a function f: & — R U {+x}, the
multifunction o~ f; Q — 24, defined as

g, iff(x) = +2,

0 =
s {aEH: liminff(y) _f(x)_<a’)"x)20
yoox lly — x|

}, if f(x) < +oo,

is called the Fréchet subdifferential of f. We also put D(f) = {x € Q:
f(x) < +o} and D@ f) = {x € Q: 3 f(x) # O}

Remark 1. The values of 3" f are closed and convex (cf. [8, p. 1403]).

For every x € D(37f), we denote by grad f(x) the element of the
minimal norm of 3 f(x).
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If £ Q— R U {+=} is a lower semicontinuous function, we say that f
has a y-monotone subdifferential of order two if there exists a continuous
map ¥: [D()]* X R? — R* such that

forevery x, y € D(0”f) and for every a € 8™ f(x) and 8 € 97 f(y), we have

(=B, x=y)= = Plx, . f(0, fONL + |le]> + 118D x = y)%.
@.1)

Remark 2. Iff: Q— R U {+x} is proper, convex, and lower semicon-
tinuous, then 3 f(x) = af(x), Vx € D(af) (cf. [7, p. 224)).

A multifunction F: R”— 2% is called Hausdorff-lower (upper) semicon-
tinuous if ¥Yx € R" and Ve > 0 there exists § > 0 such that

F(x) C B(F(y), €), (F(y) CB(F(x),g))  Vy € B(x,3).
Moreover, F is said to have a “‘closed graph’ if the set
GrF={{x,y)ER" xRy €E F(x)}
is closed in R* x R",
Let o be the o-algebra of Lebesgue measurable subsets of R"; the
multifunction F is called ‘‘measurable’ if for any closed subset C C R",
we have

{xeR"F(x)NC#J}E HA.

The multivalued operator F is said to be ‘‘cyclically monotone’’ if for
every cyclical sequence

Xgs X15 ooy Xy = X

and for every sequence y,, ..., yysuchthaty, € F(x),i= 1, ..., N, we have

Z

(yl" Xp— xi—l> =0.
1

Remark 3. We recall that (cf. [4, Theorem 2.5]) F is cyclically mono-
tone iff there exists a proper, convex, lower semicontinuous function W:
R" — R U {+=} such that

F(x) C aW(x) Yx € R".
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We state here for reference a version of the Theorem 3.6 of Tosques
(cf. {11, p. 82]).

ProrosITION 1. Let  be an open subset of H and let f: L — R U
{+=} be a function with y-monotone subdifferential of order 2. Then
Vx, € D(f), YM = 0 such that f(xg) = M, AT* > 0 with the property:
VT € 10, T* and Yh € LX[0, T1, H)) with ||h|l; = M, there exists a
unique function x,: [0, T) — H that is the solution of the Cauchy
problem:

x'e€-9f(x)+h
x(0) = X, D

and that satisfies the properties:

(I} x, is continuous on [0, T] and absolutely continuous on com-
pact subsets of 10, T[;
D) x,(0) € D3 f) a.e. in [0, T] and x;(1) € — 3 f(x, (D)) + h(D)
a.e. in [0, T];
(II1)  x,(0) = x;
av) xf’} € L¥([0, T], H); .
V) fo x4 ds = 2(f(xg) — fx,(0)) + fo I A(s)]| ds, VYt € [0, TT;
(VD) fOx, is absolutely continuous on [0, TJ;
(VII) (f0x,)' (1) = () — xi (1), xp () a.e. in [0, T1.

Now let Q) te an open subset of H, f: 1 — R U {+} is a function with
Yy-monotone subdifferential of order 2, and x; € D(é~f) such that there
exist k, r > 0 with the property ||grad f(x)| < &, ¥x € cl B(x,, nND(3"f).
Moreover, for a fixed M = 0 such that f(x,) = M, choose T* according
to Proposition 1.

In these conditions, being ¢: [D(f)]* X R? — R* the continuous map
satisfying (2.1), it is possible to find two positive numbers R, L with
the properties:

Fy = f(xy) — 1 Vx € ¢l B(xy, R), 2.2)

L =sup {zp(x,, X2, Y1y Y2): X, X5 € ¢l B(xq, RYND(f),

Y1, Y26 [f(xo) - 1L, f(xp + %Mz]}, (2.3)

lgradf(0)||<k  Vx € clB(xy, RND@ ). 2.4)
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Set T’ = min {T*, R*/(2 + M*)}, TE 10, T'], and = {h € L¥[0, T], H):
|2|l; = M}; we consider, now, the map A: ¥ — C([0, T], H) defined by
A(h) = x;,, where x, is the unique solution of the problem (II) (cf. Proposi-
tion 1); thus, the following holds.

LemMa 1. Let (h,,),, C ¥ be a sequence which converges weakly to h
in LX[0, T), H). If there exists y € LX[0, T}, R") such that | h, (0| =
y(1), Ym € N, a.e. in [0, T], and if the sequence (x,,),, C C([0, T], H),
X,, = A(hm), converges to x in C([0, T], H), then x = \(h).

We start by observing that, from our assumptions, for every h € ¥,
we have that

lxa(0) — x| = R vi€ (0, T]. 2.5

Indeed, from (V), Vr € [0, T] it follows that
H t 1/2

I -l =[xkl as = Vi [ Lxieole as)

0 0 (2.6)

= VI (x0) = f(x(a) + M),
Let 7 = sup{t € [0, T]: || x,(s) — xo|l = R, Vs € [0, ¢]}; by the continuity
of x, we have that 0 < T = T. To obtain (2.5) it is sufficient to prove
that T = T. If T < T by (2.6), (2.2), and the choice of T' it follows that
[xi(T) — x| < VT’ [2 + M} < R. Since x, is continuous on [0,

T], this contradicts the definition of T. Therefore (2.5) is proved.

Now, from the last statement of the proof of Lemma 3.21 of [11] and
from the property (VII) of the Proposition 1, VA € K we have that

[xi0] < llgrad f(x(epl| + [|A@]  a.e.in0, T,
therefore, by (2.5), (2.4), and our assumptions, it follows that
| xiO) < k + y(®) a.e.in{0, T]. Q.7
Moreover, by (2.5), (2.2), and property (V) of Proposition 1, we obtain
S Ef(x) = Lf(x) +iM?]  VYREX,VIE0,T]. (2.8

Denoted by £ the function Ah), having f a y-monotone subdifferential
or order 2, by (2.5), (2.8), (2.3), and (2.7), for a.e. t € [0, T], we have
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(X0 (8) = 2'(2), X,(8) — R(D) =< (h(8) — B, x,,(1) — £(1))
+L{l+ || h,(t) — x,’,,(t)]l2 + ||ﬁ(t) —£'(1) |[ 2 H X, (8) — f(t)llz
= (h A1) = h(D), x,,(0) — (D) ) + 8| x,. (1) — 2> VYmEN,

where 8(1) = L[l + 8(y(1)* + 8ky(r) + 4k%], & € LX[0, T], R*). By
integrating we obtain

50 = 2O = [ ) = 5D, x,(5) — 56 s
0
+ [ 66 x(s) — )P ds  VI€10, 1, VmEN.
0

Applying Gronwall's inequality (cf. [9, p. 36]), we get
| x.(5) — 2O = @, ()

+| "25(5) |, ()| exp ( [ 280 du) ds  Vielo,T],VmeN,
0 0

where a,,(t) = 2 [, (h,(s) — h(s), x,(s) — #(s)) ds.
Since (cf. [S, Proposition II1.5])

lim a,()=0 vie |0, T],

m-—s+x
and
la, (0| =8(|lxll + MY, Vt€I0,T],VmeEN,

we have lim,,_, .| x,.(0) — £(0]?> = 0, V¢ € [0, T]; therefore £ = x, which
was to be proved.

3. EXISTENCE RESULT
We consider the Cauchy problem

x' €~ f(x)+ F(x) (+)
x(0) = x,, Xo € D(37f),

where f: 1 = R U {+>} (Q is an open subset of R") and F: U(x,) — 2%

(U(xy) is a neighbourhood of x;) verify respectively the properties:
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(@) fhas a y-monotone subdifferential of order 2;
(@) Tk, r > 0:|grad f(x)|| < k, Vx € ¢l B(xy, ) N DG f);
(8) F(x) is non empty and compact, Vx € U(x);
(8B) F is upper semicontinuous;
(BBB) F is cyclically monotone;

A function x: [0, T] — R" is called a solution of the Cauchy problem (*)
if there exists a selection u € L}([0, T], R" of F(x(.)) (i.e., u(H) € F(x(1))
a.e.in [0, T):

(a) x is continuous on [0, T] and absolutely continuous on the com-
pact subsets of 10, T1;

(b) x() € D(37f) a.e. in [0, T] and x'(t) € — 3 f(x(1)) + u(?) a.e.
in [0, T7;

(c) x(0) = x,.

Our existence result is the foliowing.

THEOREM 1. Let f and F satisfy the conditions (a), (aa), (B), (BB),
(BBB). Then there exist T > 0 and a solution x: [0, T] — R" of the Cauchy
problem (*).

We start by observing that from («), (axa), (8), and (88) it is possible
to find two positive numbers R and M with the properties:

f)=fx) ~ 1 Vx € cl B(xy, R),

fx) =M, G.1)
Iyl<M  Vy€F(x),Vx€ clB(xy, R), (3.2)
lgrad f(x)| =k  Vx € clB(x,, R) N DG ). (3.3)

Let T' be such that 0 < T' < R%(2 + M?) and let T* be the positive
number that, according to Proposition 1, there exists a correspondence
of f, xo, and M. Put T = min {T’, T*, 1}.

Now we shall consider a sequence of functions defined in [0, 7] and
prove that a subsequence converges to a solution of the Cauchy prob-
lem (*).

For every m € N we set [,,; = [0, i(T/m)] Vi € {1, ..., m}, and we are
construct two functions 4, x,,: [0, T] — R". Choose y, o € F(x,) and
define h,,on 1, , by h, () =y,, Vt€I,,. Sinceh, € LI, ,, R") and
(cf. (3.2)) || h,ll» = M by Proposition 1, there exists a unique function x,, ;:
1, — R" satisfying the conditions (I) - - - (VII). Moreover, as we saw in
Lemma 1, we have that

[x () —xl=R WViel,,. (3.4)
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Now, assuming that #,, and x,, have been defined on the initial interval
I,.,, we shall extend these functions to the interval 1,,,,,, Vi €1, ...,
m — 1}

Taking y,,; € F(x,(iT/m)), we define h,, on JiT/m, (i + 1)T/m] by

() = Vi Yt € iT/m, (i + )YT/m].

We have that h,, € L%, ;,,, R") and (cf. (3.2) and 3.4)) |4/, = M, so
by the Proposition 1 there exists a unique function x,,: 1,,;,, = R" with
the properties (I) - - - (VII) and, moreover,

”xm(t) - x()” =R Vie Im,i+1 .

So we have obtained two sequences of functions, (4,,),, and (x,,),,, defined
on [0, T} and with values in R",

Now we set 8,;: [0, T] — [0, T] defined by §,(f) = 2=, (i — 1) (T/m)
X, (1), ¥Vt € [0, T], and we observe that A,,(1) = p Ymi-1Xs, (1), Yt €
(0, T], where X, is the characteristic function of the set 71, ;. '

i

Moreover, by construction, we have

8, (t)—1¢ uniformly in (0, 71, (3.5

h, () € F(x,(8,(1) vee [0, T],VmeEN, (3.6)
lh =M Viel0,T],VmeEN. 3.7
lx.6)—x]<R Vte[0,T],VmeEN. (3.8)

Since x,, is the function constructed by Proposition 1 in connection with
h = h,,, it satisfies the corresponding conditions (I) - - - (VII).

By using the property (V) of the Proposition 1, from (3.8), (3.1), and
(3.7) we have that (x,,),, is bounded in L¥[0, T}, R"); hence, by taking the
Arzela~Ascoli theorem and Theorem 111.27 of [5] into account, it follows
that there exist a subsequence of (x,,),,, still denoted by (x,),,, and an
absolutely continuous function x: [0, T] — R" such that

(x,,),, converges uniformly to x 3.9
and
(x), converges weakly in LX([0, T], R to x'. (3.10)
Moreover, by (3.7) and Theorem I11.27 of [5], we can assume that

(h,,),, converges weakly in L*([0, T], R") to . (3.11)
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On the other hand, from (3.6), (3.5), and (3.9) we obtain

im_ p((xa(0), hy(®), GrF) = lim |15, (0) = %, (8,0} =0 VeE[0,T].
(3.12)

From (88), (3.9), (3.11), (3.12) and from the convergence theorem 1.4.1.
of [2], there exists (cf. (888) and Remark 3) a proper, convex, and lower
semicontinuous function W: R” — R U {+} such that

h(t) € dW(x(1)) a.e.in[0, T];

hence, by Lemma 3.3 of [4], it follows that
T
W(x(T)) ~ W(xg) = f < h(s), x'(s) > ds. G.13)
0

On the other hand, by (3.6) and by the definition of aW, we have

iTlm

W(x, (i (T/m))) = Wx, (G — IXT/m))) = <y,,.,,~-|, j( Xm($) dS>

i-NTim

iT/m
= (h,(s), x, (s ds VYiEe{l,...,m},YmeEN,
(i—DT/m

and, by adding i = 1, ..., m, we obtain

W(x,(T)) -~ W(xy) = j " (s), x(sNds  ¥mEN.
0

Hence, by taking (3.9), Proposition 2.12 of [4], and (3.13) into account,
we have

T T
lim sup j (h(5), x(s)) ds = f (h(s), x'(s)) ds. (3.14)
m->+x 70 0
Now, by the property (VII) of Proposition 1, it follows that

T
fo xn ()P ds (3.15)

T
= flxg) = fl () + fo (h(s), X, (shds  VmEN.

Analogously, by taking Lemma 1 into account, we obtain
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T T
fo X" (D ds = flxg) — f(x(T)) + jo (h(s), x'(s)) ds. (3.16)

Therefore, by (3.15), (3.14), (3.16), and the lower semicontinuity of f,
we obtain

lim sup [Lx; |, < |lx'l,
Therefore (cf. (3.10) and Proposition I11.30 of [5]),
(X)), converges strongly in L*({0, T}, R") tox’;
hence (cf. [S, Theorem 1V.9]), there exists a subsequence of (x,,),,, still

denoted (x,,),,, which converges pointwise a.e. in [0, T] to x’.
Now, set G: [0, T]— 2%, 9., 0: [0, T] — R”, defined as

G@) = F(x(®) = x"(0),  m,(0) = h, (1) — x,(1),
n)=h(t)—x'(t) ae.inl0, T]

By construction, 1,,(1) € F(x,(5,()) — x,(2), a.e. in [0, T] (cf. (3.6))

and, since from the last statement of the proof of Lemma 3.21 of {11} and
from the property (VII) of Proposition 1, we have that

[ x.,(0l < [lgrad f (x| + kD,  a.e.in[0, 1,

then it follows that (cf. (3.3) and (3.7)) |m,.(D = 2M + &, ae. in
[0, T]. Moreover

P(n(0), G(O) = || x,(2) — x'()|
+ sup{p(z, F(x(1)): z € F(x,,3,(1)},  a.e.in[0, T, VmeEN.

Then, by taking (3.9), (3.5), and (8B) into account, we have

lim p(n,(), G() =0, a.e.in[0, T].

Therefore, by Lemma 3.2 of [6], it follows that the multifunction ¢: [0,
T] — 2%", defined by

meN izm

o= cl<U {n.-(t)})
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is such that ¢(#) is nonempty and compact, a.e. in [0, T], ¢ is measurable
in [0, T}, and

(1) C F(x(1) — x'(1), a.e.in[0, T]. 3.17)

Consider now, the multifunction G* defined by G*(t) = o~ f(x(#)) N ¢l
B, 2M + k). Since n,(0) € 3 flx, (1) N cl B, 2M + k), a.e. in {0,
7], and the multifunction x — 9 f(x) N ¢l B(0, 2M + k) is upper semicon-
tinuous in the set § = ¢l B(x,, R) N {x € D@ f): fix) = flxy + 1 M?,
llerad f(x)|| = k} (cf. [8, Theorem 1.18; 2, Corollary 1.1.1]), taking into
account that (x,(1)),, is included in S (cf. (3.8), (3.3), and the property (V)
of Proposition 1), we have

lim p(7,(t), G*@#) =0,a.e.in[0, T];

hence, by using Lemma 3.2 of [6],
&() C af(x(1)) N cl B(O, 2M + k), a.e.in [0, T]. (3.18)

Let v: [0, T] — R" be a measurable selection of ¢, and set u: [0, T] —
R™, u(t) = v(t) + x'(r). By (3.17) and (3.18), we have that u € LX[0, T1,
R™, w(t) € F(x(1)), and x'(¢t) € — o fx(#)) + u(2), a.e. in [0, T]; since
x,,(0) = x,, Vm € N, it follows that x is a solution of the Cauchy problem (*).

The following example shows that, as we already said in the Introduc-
tion, our proposition extends the existence theorem of Cellina and
Staicu [6].

ExaMPLE 1: Let f: R — RU{+=} be the function defined by
fxy=1x-x*, x€e€R.

it is obvious that fis not convex but that it has a »-monotone subdifferential
of order 2 and, since

1 -2x|, x>0,

grad f(x) =10, x =0,
[1+2x], x<0,

it satisfies condition («aa) in every point of R.

Remark IV. Inorder to prove that, as we already said in the Introduc-
tion, if x, € int D(9"f), our proposition strictly contains the mentioned
theorem of Cellina and Staicu, observe that every proper, convex, and
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lower semicoatinuous function f; {} — R U {+=} has a y-monotone subdif-
ferential of order 2 and it satisfies condition (aa) because (cf. {2, Theorem
0.7.2]) the multifunction x — df{x) is upper semicontinuous in x, and 9f{x,)
is a compact subset of R”. On the other hand, the function of the previous
example does not satisfy, as we said, the conditions of the theorem of
[6], but it verifies the assumptions of our proposition and D(0 f) = R.
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