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Abstract

By means of variational iteration method the solutions of Burger’s equation and coupled Burger’s equations are
exactly obtained, comparison with the Adomian decomposition method is made, showing that the former is more
effective than the later. In this paper, He’s variational iteration method is introduced to overcome the difficulty
arising in calculating Adomian polynomials.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Up to now more and more nonlinear equations were presented, which described the motion of the
isolated waves, localized in a small part of space, in many fields such as hydrodynamic, plasma physics,
nonlinear optic, etc. The investigation of exact solutions of these nonlinear equations is interesting
and important. In the past several decades, many authors mainly had paid attention to study solu-
tions of nonlinear equations by using various methods, such as Backlund transformation[1,7], Dar-
boux transformation[34], inverse scattering method[13], Hirota’s bilinear method[22], the tanh method
[27], the sine–cosine method[40,41], the homogeneous balance method[35,42], the Riccati expansion
method with constant coefficients[43,44]. Recently, an extended tanh-function method and symbolic
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computation are suggested in[11] for solving the new coupled modified KDV equations to obtain four
kinds of soliton solutions. This method has some merits in contrast with the tanh-function method. It
not only uses a simpler algorithm to produce an algebric system, but also can pick up singular soliton
solutions with no extra effort[12,23,28,32,39].
The numerical solution of Burger’s equation is of great importance due to the equation’s application in

the approximate theory of flow through a shock wave travelling in a viscous fluid[8] and in the Burger’s
model of turbulence[4]. It is solved analytically for arbitrary initial conditions[24]. Finite element
methods have been applied to fluid problems, Galerkin and Petrov–Galerkin finite element methods
involving a time-dependent grid[6,21]. Numerical solution using cubic spline global trial functions were
developed in[31] to obtain two systems or diagonally dominant equations which are solved to determine
the evolution of the system. A collocation solution with cubic spline interpolation functions used to
produce three coupled sets of equations for the dependent variable and its two first derivatives[5]. Ali et
al. [3] applied B-spline finite element methods to the solution of Burger’s equation. The B-spline finite
element approach applied with collocationmethod over a constant grid of cubic B-spline elements. Cubic
B-spline had a resulting matrix system which is tri-diagonal and so solved by the Thomas algorithm.
Soliman[33] used the similarity reductions for the partial differential equations to develop a scheme for
solving the Burger’s equation. This scheme is based on similarity reductions of Burger’s equation on
small sub-domains. The resulting similarity equation is integrated analytically. The analytical solution is
then used to approximate the flux vector in Burger’s equation.
The coupled system is derived by Esipov[10]. It is simple model of sedimentation or evolution of

scaled volume concentrations of two kinds of particles in fluid suspensions or colloids, under the effect
of gravity [30].
The variational iteration method was first proposed by He[14–17] and was successfully applied to

autonomous ordinary differential equations in[18], to nonlinear polycrystalline solids[29], and other
fields. The combination of a perturbation method, variational iteration method, method of variation of
constants and averaging method to establish an approximate solution of one degree of freedom weakly
nonlinear system in[9]. The variational iteration method has many merits and has much advantages over
the Adomian method[37].
The aim of this paper is to extend the variational iterations method proposed by He[14–17,19,20]to

solve two different types such as the one-dimensional Burger’s equation and coupled Burger’s equations
and comparison with that obtained previously by the Adomian decomposition method[2,25,26,36,38].

2. Variational iteration method

To illustrate its basic concepts of the variational iterationmethod, we consider the following differential
equation:

Lu + Nu = g(x), (1)

whereL is a linear operator,N a nonlinear operator, andg(x) an inhomogeneous term.
According to the variational iteration method, we can construct a correct functional as follows:

un+1(x) = un(x) +
∫ x

0
�{Lun(�) + N

∼
un(�) − g(�)}d�, (2)
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where� is a general Lagrangian multiplier[14–17], which can be identified optimally via the variational

theory, the subscriptn denotes thenth-order approximation,
∼
un is considered as a restricted variation

[14–17], or see He’s monographs[19,20] i.e.�
∼
un =0.

To illustrate the above theory, two examples of special interest such as one-dimensional Burger’s and
coupled Burger’s equations are discussed in details and the obtained results are exactly the same with
that found by the Adomian decomposition method[25,26].

3. Applications

3.1. One-dimensional Burger’s equation

Consider that the one-dimensional Burger’s equation has the form[4]

ut + uux − �uxx = 0 (3)

with an initial condition

u(x,0) = � + � + (� − �)exp(�)

1+ exp(�)
, t �0, (4)

where� = (�/�)(x − �) and the parameters�, �, �, and� are arbitrary constants.
To solve Eq. (3) by means of the variational iteration method, we construct a correction functional

which reads

un+1(x, t) = un(x,0) +
∫ t

0
�{ut + ∼

uux −�
∼

uxx}d�, (5)

where�
∼
un is considered as a restricted variation. Its stationary conditions can be obtained as follows:

�′(�) = 0, (6a)

1+ �(�)	�=t = 0. (6b)

Eq. (6a) is called Lagrange–Euler equation, and Eq. (6b) natural boundary condition.
The Lagrange multiplier, therefore, can be identified as� = −1, and the following variational iteration

formula can be obtained:

un+1(x, t) = un(x,0) −
∫ t

0
{(ut )n + ununx − �unxx}d�. (7)
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Fig. 1. The behavior ofu(x, t) evaluates by variational iteration method versusx for different values of time with fixed values
� = 1, � = 1, � = 0.125,� = 0.6, � = 0.4.

We start with an initial approximationu0 = u(x,0) given by Eq. (4), by the above iteration formula
(7), we can obtain directly the other components as

u1(x, t) = � + � + (� − �)exp(�)

1+ exp(�)
+ 2��2 exp(�)

�[1+ exp(�)]2 t, (8)

u2(x, t) = � + � + (� − �)exp(�)

1+ exp(�)
+ 2��2 exp(�)

�[1+ exp(�)]2 + �3�2 exp(�)[−1+ exp(�)]
�2[1+ exp(�)]3 t2, (9)

u3(x, t) = u2 + �4�3 exp(�)[1− 4 exp(�) + exp(�)2]
3�3[1+ exp(�)]4 t3 (10)

and so on, in the same manner the rest of components of the iteration formula (7) were obtained using
the Maple Package. The solution ofu(x, t) in a closed form is

u(x, t) = � + � + (� − �)exp(	)

1+ exp(	)
, (11)

where	 = (�/�)(x − �t − �), which are exactly the same as obtained byAdomian decomposition method
[26].
The behavior of the solutions obtained by the variational iteration method is shown for different values

of times inFig. 1.

3.2. Coupled Burger’s equations

For the purpose of illustration of the variational iteration method for solving the homogeneous form
of coupled Burger’s equations, we will consider the system of equations

ut − uxx − 2uux + (uv)x = 0, (12)
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vt − vxx − 2vvx + (uv)x = 0, (13)

the solutions of which are to be obtained subject to the initial conditions

u(x,0) = sin x, v(x,0) = sin x. (14)

To solve the system of equations (12), (13) by means of the variational iteration method, we construct
the following correction functionals:

un+1(x, t) = un(x,0) +
∫ t

0
�1{(ut )n − unxx − 2

∼
ununx + ∼

(unvn)x}d�, (15)

vn+1(x, t) = vn(x,0) +
∫ t

0
�2{(vt )n − vnxx − 2

∼
vnvnx + ∼

(unvn)x}d�, (16)

where�1 and �2 are general Lagrange multipliers, and
∼

ununx , (
∼

unvn )x , and
∼

vnvnx denote restricted

variations i.e.�
∼

ununx =�(
∼

unvn )x = �
∼

vnvnx =0.
Making the above correction functional stationary, we obtain the following stationary conditions:

�′
1(�) = 0,

1+ �1(�)	�=t = 0,

�′
2(�) = 0,

1+ �2(�)	�=t = 0. (17)

The Lagrangian multipliers, therefore, can be identified as

�1 = �2 = −1. (18)

Substituting Eq. (18) into the correction functional equations (15) and (16) results in the following
iteration formula:

un+1(x, t) = un(x,0) −
∫ t

0
{(ut )n − unxx − 2ununx + (unvn)x}d�, (19)

vn+1(x, t) = vn(x,0) −
∫ t

0
{(vt )n − vnxx − 2vnvnx + (unvn)x}d�. (20)

We start with initial approximations given by Eqs. (14) and by the above iteration formula we can
obtain the following results:

u1(x, t) = sin x − t sin x, (21)

v1(x, t) = sin x − t sin x, (22)

u2(x, t) = sin x − t sin x + t2

2! sin x, (23)

v2(x, t) = sin x − t sin x + t2

2! sin x, (24)
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u3(x, t) = sin x − t sin x + t2

2! sin x − t3

3! sin x, (25)

v3(x, t) = sin x − t sin x + t2

2! sin x − t3

3! sin x (26)

and so on. Proceeding as before the rest of components were obtained, and then the two functionsu(x, t)

andv(x, t) in the closed form are readily found to be

u(x, t) = exp(−t) sin x, (27)

v(x, t) = exp(−t) sin x, (28)

which are exactly the same as those obtained by the Adomian decomposition method[25].

4. Conclusions

In this paper, the variational iteration method has been successfully applied to finding the solution of a
Burger’s and coupled Burger’s equations. The solution obtained by the variational iteration method is an
infinite power series for appropriate initial condition, which can, in turn, be expressed in a closed form,
the exact solution. The results show that the variational iteration method is a powerful mathematical tool
to solving Burger’s and coupled Burger’s equations, it is also a promisingmethod to solve other nonlinear
equations. The solutions obtained are shown graphically. In our work, we use the Maple Package to
calculate the series obtained from the variational iteration method.
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