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Abstract

Three new classes of expansions are defined in this paper. More precisely, three different
expansions are associated to each semigroup variety V. It is shown that several previously
defined expansions can be viewed as specific examples of these constructions, or slight variants
there of. This method is then used to “smooth” an already existing expansion to one which is
guaranteed to be functorial and is maximal in a sense that will be made precise. Perhaps more
importantly, this method of construction provides a large resource of expansions to be used as
needed in the future. © 1999 Elsevier Science B.V. All rights reserved.

AMS Classification: Primary 20M07; secondary 20M035, 68Q70

0. Introduction

The idea of a semigroup expansion was first formalized in [1]. However, the Rhodes
expansion was used earlier in [14] to prove the Ideal Theorem, an important theorem
in the understanding of the group complexity of a semigroup. A variation was also
used in [3] to prove the Holonomy Theorem and more recently in [9] to give a second
proof of the Holonomy Theorem and to get a general method for getting an interesting
action of a semigroup on a tree.

Many other expansions appear as useful tools throughout the literature. In [7] an
expansion is used to calculate initial objects in the category of X-generated E-unitary
inverse monoids. A “‘non-functorial” form of an expansion was developed in [6] to show
that every finite semigroup is the image of a semigroup in which the right stabilizers
are idempotent. Another area where expansions have been useful is in answering the
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following question. Let ¥~ be a variety of languages and V' the corresponding variety
of semigroups. Let ¥~ be the variety of languages generated by the languages of ¥~
and {L;-Ly: L),L, € 4* ¥}, where - is some fixed binary relation on languages. How
is the new corresponding semigroup variety W obtained from V?

Although all these results have the use of expansions in common, the constructions
of the various expansions have seemed somewhat ad hoc and unrelated. In this paper
a unifying theme for these expansions is given. More precisely it is shown that these
expansions, or slight variants on them which can usually be used in the same manner
as the original expansions, arise from a common construction. This general construction
can be used to create new expansions for future use.

1. Preliminaries and notation

A monoid is a semigroup with an identity element. If S is a semigroup, S' denotes
the semigroup equal to S if § is a monoid and S U {1} otherwise. In the latter case
the multiplication on S is extended by setting s1 = 1s=s for all s€S. The identity
of § will be denoted 15 when it is necessary to distinguish the different identities of
different monoids.

Given any semigroups S there is a natural right action of S on itself given by
s-s' =ss' where ss' is just the product in S. The wreath product of § and 7, written
T oS, is the semidirect product 75 *S. Elements of 75 %S are of the form (f,s) and

(h,s)( f,s)=(h+* f,ss') where [h+"°f1(so)=h(sp) + f(s505).

Here 7 and 7% are written additively just for convenience of notation. They are not
assumed to be commutative.

A variety of semigroups V is the class of all semigroups which satisfy some given
set of equations. Birkhoff showed that an equivalent definition of a variety is a class
of semigroups closed under taking products, homomorphic images, and subsemigroups.
A variety of semigroups is called locally finite if every finitely generated member is
finite.

1.1. Graphs and categories

The vertices or objects of a graph or category X will be denoted Obj(X), An arrow
or edge a from s to ¢ will be denoted [s,a,¢]. A path in X will mean a finite sequence
of consecutive edges.

If S is a semigroup with generators 4, the Cayley graph of S, I'(S,4), has as objects
the elements of S, and there is an edge from s to s; labelled by a if s,a=s;. Note
that the Cayley graph is dependent on the choice of generators.

If C is a category, and ¢ and ¢’ are in Obj(C) then C(c,c’) denotes the set of all ar-
rows in C from c¢ to ¢’. If ¢ equals ¢ we can multiply the elements of C(c,c¢’) = C(c,c).
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The axioms for multiplication in a category ensure that C(c,c¢) is a monoid. C(c,¢) is
called a local monoid of C. An element of C(¢,c¢) will be called a loop.
If X is a graph, the free category over X, denoted X™, is defined by

Obj(X™) = Obj(X),
X*(e,dy={p: c— - pis apath in X}.

If C is a category the consolidated semigroup, denoted Cq, is the semigroup whose
objects are the edges of CU{0} and with the multiplication [r, a,s][z, b, u] =[r, ab,u]
if s=1¢ and 0 otherwise.

Given a surjective homomorphism of semigroups ¢:S — T, Dy will denote the de-
rived category:

o Obj(Dy)=T.

e There is an arrow [t,s,¢'] from ¢ to ¢ if ts¢p=1'. The arrows [t,5,¢'] and [z,5",¢]
are equal if sos =sos’ for all so €t~

e Multiplication of consecutive arrows is given by [¢,s,1[¢',s', "] =[t,s5",¢"}.

For more discussion on the consolidated semigroup and derived category see [15].

1.2. Expansions

Given any finite set A, A" will denote the free semigroup over A4, and 4™ will
denote the free monoid over 4. We will denote by S, the category of 4 generated
semigroups. The objects of S,y are pairs (S,¢), where S is a semigroup and ¢ is a
surjective homomorphism from A to S. There is an arrow 7 from (S}, ¢) to (S2, ¢2) if
n is a homomorphism from S; to S; such that ¢ n = ¢p,. M4 will denote the analogous
category of 4 generated monoids.

A semigroup expansion will mean a functor F from Sy to itself, along with a natural
transformation ¢ from F to the identity functor such that the arrows of & are surjective
morphisms. Similarly a monoid expansion will mean a functor F from M4 to itself
and a natural transformation ¢ from F to the identity functor such that the arrows of ¢
are surjective morphisms. When there is no ambiguity e((M, ¢)) will be denoted &,.

F
F(M,.$) —2— F(Ms,)

M, &M,

¥

M, ) ———— (M,.$,)

An important fact about working inside M4 or S, is that if a homomorphism is
well defined, then it is automatically surjective. So, in particular, when checking to see
if 2 map is an isomorphism we need only check that it is well defined and injective.
This fact will be used without comment throughout this paper.
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2. The expansion SV
2.1. The definition of (S”,¢y)

In this section we will define a class of monoid expansions and semigroup expan-
sions, one of each for each semigroup variety V. We will begin by working inside the
category M, i.e. all pairs of the form (S, ¢) will be objects of M. Later it will be
shown how to extend the definitions to all semigroups and work inside the category Sy4.
Let ¥ be a fixed variety of semigroups. The image of (S, ¢) under the expansion will
be denoted (S”, ¢y ). The idea behind the expansion is to make S the largest monoid
that has S as a homomorphic image and such that the local monoids of the derived
category of the homomorphism are in V. The following lemma describes the structure
of the derived category of the homomorphism ¢ from 4* onto S.

Lemma 2.1. Let I'(S,4) be the Cayley graph of S. Then Dy = I'(S,4)*.

Proof. They have the same objects and it is clear that there is an arrow [s,u,5"] in Dy if
and only if there is a path in I'(S,4) from s to s" labelled by u € 4*. We need to check
that if [s,u,5'] =[s,v,5'] in Dy then u=v. Suppose w € s¢p™'. As [s,u,s'] =[s,0,5'] we
have wu=wv. As A* is a cancellative semigroup, we have u=v as desired. O

The above lemma allows us to think of arrows in Dy as arising from paths in
I'(S,4). To say an arrow is labelled by u € 4* will mean that it arises from a path p
in I'(5,4) such that the word obtained by reading the labels of the edges of p in
consecutive order is u. We will be taking quotients of Dy. Arrows in the quotients
will be identified with equivalence classes of arrows in D, and may be labelled by
more than one element of A4*.

Let 74 be the smallest congruence on Dy such that the local monoids of D= Dgy/14
are in V. If u€ 4* and s€S then there is an arrow in Dy from s to s(u)¢ labelled
by u. Let [s,u,s(u)¢] denote the 74 equivalence class of [s,u,s(u)¢].

We define f,:S — Dy from S into the consolidation of D as the function taking s
in S to the arrow leaving s and labelled by u, ie. f,(s)=1[s,u,s(u)p].

Define ¢y :A* — D o S by

upy =(f,up) for ucd*,

SO

ugppywdy =(fu +° fu, (uw)).

L)+ fiu(s) =[5, 1, 5()P] + (), w, s(uw)P] = frou(s)

¢y is a homomorphism. Note that f,(s) # 0 for all u in A* and s in S. Let ¥ denote
the image of ¢y.
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2.2. Properties of (S¥,¢y)
Lemma 2.2. There is a left action of S on Dy given by

s sy, u,51(u)P] = [s51, 1, 551 (u)P].

Proof. In Lemma 2.1 we saw that [s,u.5']={[s,v,s'] if and only if u=v, and hence
the action is well defined. [

Lemma 2.3. The left action of S on Dy induces a left action of S on D.

Proof. We need to show that if s and s; are in S with [s1,u,s1(u)d]=[s1,0,5(v)P],
then [ssy,u,s5(u)P]=[ss1,0,551(v)P]. Let A*/p be the relatively free A-generated
monoid in V¥, or in other words p is the smallest congruence on 4* generated by the
equations of V. As [sy,u,s1(u)p]=[s1,v,51(v)P] there is a sequence of steps which
takes the path [s1,u,s1(u)¢] in I'(S,4) = Dy to the path {s,v,51(v)¢] by applying the
equations of V' to the local monoids of Dy. In other words, there must be a sequence
of n steps of the following form:

[s1,x7, 81 (x)PILs1(x:) P, 1z, 81 (X2 ) P1[81 (i ), yi s1(xit4; yi )]
=, [S1. %0 S10x)@1Ls1(x) P, vy, 51(x;0:) P [51(x;0:) P, yi $1(x:0: v )]

where §1(x;)¢p = s1(x;1;)p = s1(x;0; )¢ (so the middle terms are elements of a local
monoid), u;pv;, u=x1uy y;, and v =x,0, Vy. Now 51(x; ) = s1(x;1; ) = s1(x;0; )¢ implies
$81(x; ) = ss1(x;u; ) = s51(x;0; ). So the middle terms of the following are elements
of a local monoid with u;p;v;, and the sequence of steps

Lss 1, xi, s51(x: )Pl [s81(x: ), wi, 551 (xiwty Yp)Lss1 (xiws )b, iy ss1(xiwi yi )]
=, [s51,%:,551(x;)@][551(x; ), vi, 551(x;0 )P ] [551(x;0) D, yi, 851 (x:0:y1 )]

for i=1,...,n shows that [ssy,u,s51(u)p]=[ss1,0,381(v)p}. O

This action implies that if we want to determine that the pair [s,u,s’], [s,v,5)
are equal it suffices to show that [1,u,u¢p] =[1,v,v¢]. This leads us to the following
corollary.

Corollary 2.4. u¢y =v¢py if and only if f,(1)= f.(1).

Proof. By definition u¢y = v¢y implies f, = f,. Assume f,(1)= f,(1) then [1,u,ud]
=[1,v,v¢p] and it follows that u¢p =ve¢. If s is in S then f,(s)=/Ts,u,s(u)¢], and it
follows from Lemma 2.3 that this equals [s,v,s(v)¢]= fi(s). O
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Lemma 2.5. Let ¢:(T,0)— (S,¢) be a homomorphism. There is a congruence t, on
Dy such that Ds =2 Dy/ts. Moreover if [1,u,51] =, [1,0,51] then [s,u,ss|] =, [s,0,s5]
for all s in S.

Proof. Define [s1,u,52] =, [51,0,52] if [s1,u0,50] ={s1,00,s2] in D,. We need to show
that 7, is well defined and a congruence. It then follows from the definition of 7, that
D, = D¢/‘L’a.

If [s1,u,82] =[s1,0,52] in Dy then by Lemma 2.1 u=v, and [s1, uf,s7] = [51,00,52].
Hence 1, is well defined.

Suppose [s1,u, 2] =, [51,0,52] and [s2, wl,s] is an arrow in D leaving s;. By the
definition of 1, we have [s, uf,s;] =[s1,00,s;], and so

[Sla u07 S2][52, WH: S] = [S] > UG: 52][S2’ Wea S]‘

This means [s;,u, s2][52, w,s] =, [s1,0,82][s2,w,5] in Dy, and 1, is a right congruence.
An analogous argument shows that 7, is a left congruence. By construction it is clear
that Dy /1, = D,.

If [1,u,51]=,, [1,0,51] then t(u)0 =¢t(v)0 for all t€ 167", As 17 € 167!, uf = v0 and
[s,u,s51) =, [s,0,851] forall s in S. [

Proposition 2.6. Let o:(T,0)—(S,d) be a homomorphism. Let :A* — (Dy)ea oS
be the homomorphism sending u to (g,,ud) where g,(s)=[s,ub,s(u)p]. The map
n:A*y — T which sends wy to u@ is an isomorphism.

Proof. If uyy = 1 then g,(1) equals g,(1). As 17 €167}, 17(u)8 = 17(v)0 and ub = v0.
Hence # is well defined.

Reversely, if u0 =00 then g,(1)=g,(1) and it follows from Lemma 2.5 that g, = g,.
Hence 5 is injective. [

Proposition 2.7. Let ¢5:SY — S denote the restriction of the projection of D.goS
onto S. The local monoids of D, are in V and D;, = D.

Proof. Using the notation in Lemma 2.5 D §D¢/‘cgs. By Lemmas 2.3 and 2.5 it
suffices to show that [1,u,s] =, [1,v,s] exactly when [1,(fu,5),s] =q,; [1,(/s,5),5].
As f(1)=[Lus] and f(1)=[1,v,s5], [1,u,s]=,[1,v,s] implies that f,(1)= f,(1)
and it follows from Corollary 2.4 that f, = f, and [1,(f,,s),s] =, [1(f,9),5].
If [1,(fu,$),5] =0, [1,(fs,s),5], then as lgv € les“1 we have (f,,8)=(/fs5). So
SuD)=[Lus]= f(1)=[Lwvs]. O
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Theorem 2.8. Let o : (T,0)— (S,¢) be as in Lemma 2.5. If the local monoids of D,
are in V then there exists a surjective homomorphism o' : (S V,¢V)—> (T, 6).

\4

’

(22

—t

~

g

e
s
\

v ——

Proof. Recall that D=Dgy/14 and D; =2 Dy/t,. As the local monoids of D, are in V,
74 € 7. Therefore, the map F' : D — D, which sends [s,u, s(u)@] to [s,u0,5(u)¢] is a
well-defined homomorphism. We can then define o' :(f,,s)—(gs,s)y as in
Proposition 2.6, with g,(t)=F(f,(¢)). O

Theorem 2.9. The functor taking (S,$) to (S¥, ¢y ), along with the natural transfor-
mation & is an expansion.

Proof. We need to define & such that the following diagram commutes.
TV, by) —T— SV, ¢y)

(T,0) ——— (5,¢)

Let C=Dy/ty be the largest quotient of Dy whose local monoids are in ¥. The
map G:C.4— Deq sending [t,u,t(u)8] to [to,u,(t)o(u)d] and 0 to 0 is a surjective
homomorphism. For u in A* let f}:T — C. denote the function f7(t)={[t,u,t(u)6],
and let f,: S — D4 denote the function f,(s)={[s,u,s(u)$] as before. Then G(f,(¢))=
fu(to). Since o is onto, it follows that f,= f, implies f,=f,. Define G by
(fa,u0) — (fy,ud). Then (u0p)T=((f,,u0))e=(f,,up)=udy and the diagram
commutes. U

2.3. Extending the definitions to Sy

Let (S,6) be an object in S4. The homomorphism 6 can be extended to a homo-
morphism ¢ from A* to S' by letting ¢ take the empty word to 1 and ¢=6 on A™.
By the previous section we know how to define ((S')", ¢y ). Let 0y be the restriction
of ¢y to AT. Let S¥ be the image of Oy. The analogous theorems hold for (S”,0y),
and this defines an expansion on Sy.
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2.4. Finiteness properties of SV

A category C is said to be locally finite if any subcategory generated by a finite set
of arrows is finite. The following lemma is found in [6] and will not be proven here.

Lemma 2.10. Let C be a category such that each of its base monoids C(c,c) is
locally finite. Then C is locally finite.

Proposition 2.11. Let S be finite and V be locally finite. Then S is finite.

Proof. Each of the local monoids of D are in V, and so are locally finite. D is
generated by the finite set of arrows [s,a,s(a)¢], a€ 4, s€ S, and so is finite by the
above lemma. It follows that S¥ C D0 S is finite. O

A semigroup S is called finite # above if for each s€ S {re€S: t >, s} is finite.

Corollary 2.12. If S is finite ¢ above and V is locally finite then SV is finite ¢
above.

SV — s (S/L)V

2N

§ —————— §/I

Es/ls

Proof. For s in S let [, ={s'eS: s’ # 4 s}. I is an ideal of S. /I is all elements of S
which are # greater than or equal to s union zero. As S is finite # above, S/ is
finite and it follows from Proposition 2.11 that (S/L)” is finite.

Let §€(s)eg! and Iy =(L)eg'. {§1€8V: §1>45} is a subset of S¥/I;. We will
show that (S/L,)¥ = S¥/I,.

Let u,v €A™ with u¢,v¢ ¢ I,. By Corollary 2.4 it suffices to show that if [1,u,u)]
=, [1,v,0y] then [1,u,u¢] =, [1,v,0¢]. By Lemma 2.1 we can consider [1,u,u¢] as
a path in I'(S,4) and [1,u,w)] as a path in I'(S/Is,A). Since u¢ ¢ I the path [1,u, )]
never passes through the vertex 0 in I'(S/Is,A). This implies that if it passes twice
through the same vertex in I'(S/I5,4) then the path [1,u, u¢] passes twice through the
same vertex in 1'(S,4) and at the same places in u. It follows that any equation which
can be applied to a loop in [1,u,uy] corresponds to an equation which can be applied
to a loop in [1,u,u¢] and we must have [1,u,ud] =, [1,v,v¢]. O

There is a dual theory to everything above using the reverse derived category and
the reverse wreath product. The reverse derived category of ¢: 5 — T, denoted Dy ,, is



G.Z. Elston/Journal of Pure and Applied Algebra 136 (1999) 231-265 239

defined similar to the derived category, only with arrows corresponding to multiplication

on the left, instead of the right:

e Obj(Dy,)=T.

e There is an arrow [/, s,¢] if ¢ = (s)¢t. The arrows [¢',s,7] and [¢',s',t] are equal if
sso=s"sg for all sp€rp™!.

e Multiplication of consecutive arrows is given by [¢/,s',t'][¢,s, ] =[t",5's,1].

The reverse wreath product, So’T is the reverse semidirect product S " 75 with

multiplication

(51, fNs52,9) = (5182, [ + ¢g)

where [/ + g](s) = f(s25) + g(s).
Let 74, be the smallest congruence such that the local monoids of D, =Dy /14 ,
are in V. Let the homomorphism ¢y, : 4* — 5 o"(D,)eq be the extension of the map

apy ,=(ad, f,) for ac A where f,(s)=[(a)ds,a,s].

The image of ¢y, will be denoted S,

Let #(S) denote the reverse semigroup of S. The elements of #(S) are {s”": s S},
and multiplication is given by s{sj =(s25,)". For u=aia;..a,_1a, an element of A*, let
i = ayay-1...aza). If (S, ¢) is an object of M4 (or S4) then (r(S), ¢, ) with u¢, = (i1g)"
is also an object of M, (or Sy).

Consider the category Dy _,. There is an arrow [s],ay,s"] if (a1)¢,s" = ((a1)P) s" =
(s(a))p) =si, and [s5,az,8{][s],a1,8" ) =[5, a2a),5"}.

Lemma 2.13. Let (S, ¢) and (r(S), ¢,) be as above, then there is a reverse isomor-
phism from Dy to Dy .

Proof. The isomorphism is given by the map which takes [s,u,5'] in Dy to [(s')",i,5"]
in Dy, ,. There is an arrow [s,u,s] from s to s in Dy if and only if s(u)¢p =s". Now
s(u)p =s" if and only if (ugp)Y's" =(s'Y - (udp) = (it)¢,, and (&#)¢,s" =(s"Y if and only
there is an arrow [(s'),4,s"] in Dy, ,. By Lemma 2.1, and the analogous result for
Dy, ., if an arrow labelled by u is equal to an arrow labelled by v in either category

then u=v. Noticing that
[s,u,s"|[s".v,8" 1 =[s,uv,s"] in Dy
and
("), 8, ("Y' i, s" = [(s"), 8t s"] in Dy,

and that % = uv shows that the map is a reverse isomorphism. [J

As the isomorphism takes loops to loops of the same form we have the following
corollary.
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Corollary 2.14. If D is the largest image of Dy such that the local monoids of D are
in some variety V, and D, is the largest image of Dy, , such that its local monoids
are also in V, then there is a reverse isomorphism from D to D,.

Theorem 2.15. The semigroup you get by applying the reverse expansion to the re-
verse semigroup is the reverse of that you get by just applying the expansion to the
original semigroup, i.e. (r(S))V-"=r(SV).

Proof. First note that the image of u in (#(S))" is (u¢,,h,)=((ii¢p), h,) where
h(s”) = [(u)¢ys", u,s"1 = [(aP)'s", u,s"].

Let B:(r(S)Y" — r(SY) be given by (u¢,,h,)— (fi,ii¢)". Then u¢, =v¢, if and
only if (d¢) = (¥¢p) if and only if d¢ = b¢p. It follows from the proof of Lemma 2.13
and Corollary 2.14 that 4, = A, if and only if f; = f5.

It is left to check that the map respects multiplication.

(u¢ra hu)(vd)r, hL) = ((HU)(]5,, huv) and
(Ja, 4) (f2: 00) = ((f5, 5N f2, i) = (fia, (Fi)P) = (S5, (wv) )

which completes the proof. [

3. Examples

As many of the proofs in the following sections require looking at the derived
category of a homomorphism, we will once again assume that we are working in
M. The proofs go through if we restrict to 4, however they require first extending
semigroup homomorphisms from S to 7 to monoid homomorphisms from S' to 7! as
described in Section 2.3, going through the proofs below, and then restricting back to
elements of S,.

3.1. The expansion ST

One of the first expansions was the Rhodes expansion [8, 14]. Let L denote the set
of all strict #-chains of S, i.e. L= {s,<sp_1< ---52<81: Sp,...,51 €S}, where s <s’
means s is strictly below s’ in the % order. There is an associative multiplication on L
given by

(Sp<- - <s1)tp< - <ty)=Red(spty, < -+ <1ty <ty <---<ty)

where Red(s,t, < -+ < 81ty < t, < ---<t;) is the new chain you get by using the
rule: whenever there is a string of . equivalent elements keep only the left most
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element of the string, i.e.
Red(snty < - <81l Sty <+ <) =Splyy <Silm < - Sijty < - 1<k

where §;, 1,8, 1w - LSy _ 418w <Si,_ bm-

(St,¢ 1) is the Rhodes expansion cut to generators, where ¢ * is the homomorphism
which sends a to Red(a¢<1). (For (S,0) in Sy, 0 L is defined by af * = a6, considered
as a string of length 1.) The map o:(S L, ¢ *) — (S, ¢) which sends s, <---<s; to s,
is a surjective homomorphism.

Lemma 3.1. The local monoids of D, , are trivial.

Proof. Let s be an object of D;, and let [s,t,s] be an element of D, ,(s,s) with
t=s,<--- <s;. It follows from the definition of D, , that s =s,s. If ¥ €56~ then ¢
is of the form s< --- <s| and

t=(s,< - <sIN(s< - <s])=Red(s,5 < -+ <s< -+ <s))=s5< -+ <5 =1

In other words [t,s,¢] acts like the identity of D, , and [s,t,s]=[s,1,s]. O

After realizing this, we can then ask how different S and S/ are, where I is the
variety whose only member is the trivial semigroup. S turns out to be the Karnofsky—
Rhodes expansion, an extension of the Rhodes expansion [11].

Let 4°=A4U{0}. Elements of the Karnofsky-Rhodes expansion are strings of ele-
ments of A% x S of the form [0, s, X a@n—1,8,-1)---(ai,s1)] where s, L(a;)ps; < ¢s;.
The product

[(O’SH)(an—lsSnfl)' T (absl)] : [(OaS;n)(a:nﬂl’S:nvl ) T (a/lﬁsll )]
= [(O,SnS;n)(aik,SikS;n) e (a;nflas;z—l ) e (a/las/l )]
where
(S <o <5 <SINSp, < o0 <8y <)) = (S, <81y Sy < - <Shy_y <Sh <))

in the Rhodes expansion S*. Let S,/ be the monoid generated by the elements of
the form [(0,ad)a,1)] if ap <1 and [(0,ad)] if ap¥1 for a in A, and let ¢ '~
be the corresponding map from 4* to S(;L. The map a’:(Sq;L,qS”L)—%S,d)) sending
[(0,5,)...(ai,s1)] to s, is a surjective homomorphism. The proof of the following
lemma is essentially the same as in Lemma 3.1.

Lemma 3.2. The local monoids of Dy, are trivial.

An edge [c1,u,ca] of a graph is called a transition edge if there is no path from c¢;
to ¢;. Tilson proves the following in [15].
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Lemma 3.3. If X is a graph, C =X*, and t is the smallest congruence on C such that
the local monoids of Ck are trivial then two coterminal paths in C are 1 equivalent
if and only if they have the same transition edges.

I,r

”

¢l NS
&L
A* oL

Q e
. T
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Y e— U e— N e—

Theorem 3.4. The Karnofsky-Rhodes expansion of S is the largest expansion in
which the local monoids of the reverse derived category of the homomorphism down
to S are in I. That is (S'",¢1,)= (St ¢ ™).

Proof. It follows from Theorem 2.8 and Lemma 3.2 that Sd;L is a homomorphic image
of ST, Using the notation of Section 2.1 we have D=Dy /4 ,. There is an arrow
from s, to s, if and only if there is an s€ S such that ss; =s;. If X is the graph
with vertices S and an edge [s,a,s'] from s’ to s if s=(a)¢s’ then by the analogous
version of Lemma 2.1 for the reverse derived category we have Dy, = X*. So an
arrow in Dy, can be thought of as a path in X which is labelled by a word u € A*.
An arrow in D is an equivalence class of paths in X. The transition edges are ex-
actly {[(a)¢s,a,s]: (a)ps<s}. Suppose u¢ *=v¢ ™= =[(0, 5, {an-1,8n—1)-..(a1,51)].
The transition edges of f,(1) are

{[(an—l )(bsn—l,an-—lasn~l], (e )(}SS],LH,S]]},

which are also the transition edges of f,(1). By Lemma 3.3 we know f,(1) =, f.(1),
and it follows from Corollary 2.4 that f, = f, and u¢r, =v¢y,. O

We see that S& and S are not isomorphic. However, they still have many of the
same nice properties as illustrated by the following theorems. Proofs of these theorems
can be found in [11].

Theorem 3.5. Right stabilizers in S*" and S™* are aperiodic.

Theorem 3.6. Let e be an idempotent of S. The inverse image of e in S*" and in
ST each satisfy the identity xy=y.

3.2. The expansion S5t

Let SL denote the semigroup variety of semilattices, that is all semigroups which
satisfy the equations xx =x and xy = yx. In this section we will see that expanding by
SL is the same as applying the Cayley expansion.
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Once again (S, ¢) will be an element of M4 and I'(S, 4) its Cayley graph. There is
a left action of § on I'(S,A4) given by s - [s1,a,52] =[ss1,a,552]. Let ¥ be the set of
all pairs (P.s) where s €S and P is a connected subgraph of '(S,4) containing both
1 and s as vertices. There is an associative multiplication on Y given by

(P51 )P, 52) = (PyUs1Pa,8152)

where s\ P, is the image of P, under the left action of s, described above.

Let ¢¢ be the homomorphism which takes a in 4 to (P,,a¢), where P, is the single
edge [1,a,a¢]. The image of ¢, which will be denoted S€, is the Cayley expansion
of §.

Lemma 3.7. Let 6:(SC, ¢c)—(S,d) be the homomorphism that takes (P,s) to s.
The local monoids of D, are semilattices.

Proof. Suppose [s,(Py,s)),s] is an element of the local monoid Dy(s,s). Thus ss; =s.
If (P,s)€so~! then

(P,s)(Pr,s1 X PLs1 )= (PUsPLs)=(P,s)(P1,s51).

Hence ([s, (P}, s1),5D? =[5, (P1,51),5]. If [s,(P2,5,),5] is any other element of D,(s,s),
then

(P,s)(Py,s1)(Pa,57)=(PUsP) Uss| Py, s5152)
=(PUsP UsP,s)=(P,s)(P2,52)(P1,51),

and therefore [S, (Plasl ),S][S, (P2,S2),S] = [S’ (P2952)’ S][S9 (P],S] )73]' O

If X is a graph and Y is a subgraph of X, the content of Y is the set of edges of V.
The following result is due to 1. Simon. A proof of this lemma can be found in [2].

Lemma 3.8. If X is a graph, C=X%, and 1 is the smallest congruence on C such
that the local monoids of Cjt are semilattices, then two coterminal paths in C are ©
equivalent if and only if they have the same content.

Theorem 3.9. The Cayley expansion of S is the largest expansion in which the local
monoids of the derived category of the homomorphism down to S are in SL. That is

(SSL,dps1) = (SC, o).

Proof. By Theorem 2.8 and Lemma 3.7 we know that S¢ is a homomorphic image
of §SL. Once again using Lemma 2.1 we view arrows in D as paths in I'(S,4), and
we see that the path f,(1) is the same as the picture P,. If (P,,u¢)=(P,,v¢) then
1. (1)= f.(1), and it follows from Corollary 2.4 that f, = f. and u¢sy =vds. O



244 G.Z. Elston! Journal of Pure and Applied Algebra 136 (1999) 231-265
4. The expansion (S’")%
4.1. The expansion S%

We will first describe the expansion S%, where Z, is the variety of finite p-modules.
Throughout this section p will denote an integer strictly greater than 2, and S will be
a finite monoid.

Let C and D be categories. C is said to divide D, written C < D, if there is a relation
of categories #:C — D such that
o The object relation #: Obj(C)— Obj(D) is a function.

e For all s€ C(c,c’), sn#0. (The relation is fully defined.)

o If 5.5 € C(e,c’) with ennic’n # 0 then s=s'. (The relation is injective.)
e For every pair s,5" of consecutive arrows of C, sns'n C (ss' ).

e For each object c€ Obj(C), 1oy € 1cn.

We have secen that all the loops at a given object of a category can be regarded
as monoid. Similarly, a monoid can be regarded as a category with one object, x,
and a loop, [x,m,x] for each element of m of the monoid. Multiplication is given by
[x,my, x][x, m2,x] = [x,mm>,x], where m;m; is the product in the monoid. Note then
when dealing with a division into a monoid M the function on the objects must take
everything to the unique object of the category M, and every arrow will be taken to a
loop at that object. A proof of the following result can be found in [13].

Lemma 4.1. If C is a category whose local monoids are in Z,, p>2, then C <M
Jfor some M € Z, [13].

So if (S,¢) is in My, and D=Dy/t, is the largest quotient of Dy whose local
monoids are in Z,, there is a division H:D <M, where M is in Z,.

Lemma 4.2. Let D, M and H be as described above. Then §% <M o S.

Proof. Let ¢:S% — S be the projection onto the first coordinate. Then D, <D <M.
Thus, by Tilson’s covering lemma [15], there is a division #:S% —MoS. [

Let A={aj,...,a,} and S={s,...,s»}. Let Z, be the cyclic group of order p
and let G=2Z2". Let g, € G’ be such that g,(s;)=(0....,0,1,0,...,0) where the
one is in the n(i — 1) + j coordinate. Note that g, (s;)=g,,(s;) implies i=7¢ and
j=j'. Let ¥y : 4* — G oS be the homomorphism induced by the map a+ (g, a¥). For
u=bib,...b, in A* denote by g, the function g, + > gy, + --- + B1b2b-Dbg, Tt is
a straight forward check that wy = (g, u).

Theorem 4.3. A*y is the largest expansion of S such that the local monoids of the
homomorphism down to S are in Z,. That is (S%,¢z,) = (A%, ).
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Proof. Tilson shows in [15] that if m: 4™y — S is the restriction of the projection of
G o § onto the first coordinate then D, < G5. If D, < G® then so do the local monoids
of D,, and hence the local monoids of D, are in Z,. By Theorem 2.8 there exists a
homomorphism o : (%, ¢z ) — (A, ).

M-oS

|

SZp
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i

For each a € 4 fix an (F,a¢) in h(adz,), where h is the division shown to exist in
Lemma 4.2, and define ¢: 4* — M oS by ad = (F,,ad). Let u,v € A* with ) = (gu.s)
and vy =(g;,s). If u=b,...b, then

Gu=gp, + bl('bgbz 4+ (bl"‘br—l)¢gb,'

As G, ie. functions from S to G=2Z}", is a commutative semigroup and pg is the
zero function for any g € G°, we can rearrange the terms and write g, and ¢, in the
form

n n

m m
Yu = Z Z %,/"ge, and g.= Z Z Bij"9a; With 0 <o ;. B, < p— 1

=1 j=1 =1 j=1

As {Vg,,(1): i=1,....n, j=1,...,m} are linearly independent, the o;; and f;; are
uniquely determined. As M € Z,, M 5 is also a commutative semigroup with the same
property and we can similarly rearrange the terms of

UG =Fp +POF, 4. 4 brobodp,
and of F; to get

mf’ = zn: Zm: o 7 a8 and U([;:

i=t j=1 i=1 j=I

m

=

55 )
Bij Fy,.s

Now if uyy = vy then g,(1)=g,(1). This in tum implies the x; ;= pf; ;. By the form
above for £, and F, we see it follows that u¢ =v¢, and therefore u¢z, =v¢z,. Thus
o 1s one to one and an isomorphism. U

If § is finite then for any fixed s€ § there is a largest n such that there exists a
string of the form s=5,<y5,_1 <y --- <gs§1. This n is called the #-depth of s. The
F-depth of S is the maximum of the #-depths of its elements. From now on given
any ¢:4* — S the morphism ¢z, :4* — % will denote the map ¥ as defined above
and p will denote a number greater than or equal to the #-depth of S.
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4.2. Right stabilizers in (S'-")%

Given an element (S, ¢) of M, a new monoid (?S,,7) is defined in [6] as follows.
Let d:S— N\{0} be the #-depth function of S. Let Q' :ZZ(S) x 8. Elements of ¢’
are pairs of the form (g,s, < --- <s{) where q is a map from d(S) to Z,,.

The alphabet 4 acts on Q' by

(g, 50 < -+ <s1)-a=(g,Red(spap < --- < s100))

where g is defined as follows. Set so=1¢&S§. For each i in d(s), let j; be maximal in
{0,...,n} such that d(s;) <i. Let

. { gi)  ifd(s @) <t
gy +1 if d(s;(a)d)>i.

Let qo =(0, 1), where 0 is the constant zero function, and let Q ={qo - u| ueA*}
Let S, be the transition monoid of (Q,4,-) and t be the projection of 4* onto #S,.
Proofs of the following two results can be found in [6].

Theorem 4.4. Right stabilizers in PS4 satisfy the identities x* =x and xyz = xy.

Theorem 4.5. Let ¢ be an idempotent of S and é an idempotent of S'*.
(a) éa'~! satisfies the identities xyz =xzy and xy? =x and is the direct product of
an idempotent ¥-class with Z¥.
(b) (eo“l)a’_1 satisfies the identity x?*' =x and is a Rees matrix semigroup over
k
Z,
In [6] they claim the stronger result that ec~!¢’~ " is the direct product of a rectan-
gular band and of a subgroup of Zd(e) !, This is not true, and a correct computation
of the second example in Section 5 of their paper is a counter example.

Lemma 4.6. The local monoids of Dy are in Z,.
Proof. Let u,v in 4* be such that (wv)¢’ =up’. Let (q,,wdL) be any state with

wol =upt. As (wo¥)pL =we¢’ for all k, by checking the definition of (g, wep’)-
0, (Gwo, (W0)P )0, etc., we see that g (i) — Guot—1 () = quo(i) — (i) for k=1,2,3,...,
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and so
Guer (1) = Guer (1) = Guer =1 (D) + Guer—1 (D) = Guor—2(0) + -+ @ue(i) = gu(@) + (i)
= P(qwe(i) = gu(D)) + (i) = qu ()
Hence [u¢t, v, ud™]? =[ug’, 1,udp’].
Suppose also that (uv' )¢~ =ud’. Once again by definition of the action we see that

Guoro(F) = Gy (1) = Go(i) - qw(i) al:ld qwl’l"(j) - qu(i) = Gw () — qw(i). This implies
Grore(i) = Qo (i) and [ud®, v0' v, up?] = [ugt, v'vr, up’). O

This lemma tells us that first doing the reverse expansion using { and then expanding
by Z, is bigger than the expansion defined in [6]. However, the derived categories of
the maps down to the original semigroups are similar. That leaves us to ask if the
larger expansion still has some of the same nice properties as the expansion defined in
[6]. For clarity of notation the homomorphism from 4* to (S'7)% which results from
expanding (S”7, ¢ ,) by Z, will be denoted #.

(SLrZ

Pl r

A* b1, l
x SLr
|

S
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—

Theorem 4.7. Right stabilizers in (S™")%r satisfy x <y v = xy=n.

Proof. Let u,v,w € A* with vy and wy both right stabilizers of u#n, and vq <y wn. Let
w=b...b;. As (uw)np=un we have

(Gus U1, WGy 4 D1 gy 4 -+ 4 00000 g swiby Y = (gus i 1)

and “Wrg, 4. 4 (ubs--bi-1)érrg, = (. This means
udr.r (uby.. by 1)y - 2 .
T Tgh =Y 4G, (%)
i=1

where each «; is congruent to 0 mod p. As we want (vw)n =on, we need to show
1‘(7>1.rghI 4o (vbr.by— )¢l"‘gh, =0.

To do this it suffices to show that (vb; ...b;)¢; ,=(vhy ... b ; )Py, Whenever (ub; ... b;)
o1, =(uby ...biy;)br.,, for then

n
l?lf)l.rgbl R = (Ub“"b’"])(bl"gb, = Z aiti gb"z‘ (**)

i=1

where if t; =uby ...b; in (x) then ¢/ =vb;...b; in (xx).
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Now (uv)t=wut and it follows from Theorem 4.4 that v¢yy, is idempotent. This
means u¢y,, and vegy,, are of the form

vy =[(0, e )(ck—1,X¢—1) - .. (c1,x1)],
and

udr,r =[(0,xn) ... (Ctsxe YCr—1,Xk—1) ... (C1,X1)]
with e, ¥x; and e; an idempotent of S. Now

(xmb1 ... b)Y =(uby...b;)p=(uby...biy;)p=(Xmb1...bi ;)P
implies

ex(by...b;))p=(vby...bj)p=(vh...bi ;)p=er(by...biy;)P.

Checking the definition of multiplication in S”7, i.e. in the Karnofsky—Rhodes expan-
sion, we see this implies

(vb1...b:)pr, = (vby ... birj )1,
and hence (vw)y=vy. [J

Corollary 4.8. Right stabilizers in (S'"7)% are idempotent.
Proof. This is Theorem 4.7 in the case x=y. [O

Let m; and 7, be as in the following diagram, and let n=mm;.

$Ln%

A — L, SLr
\ lnz
S

Theorem 4.9. Let e be an idempotent of S and é an idempotent of S'.

(a) én; U satisfies the identities xyz =xzy and xy? =x and is the direct product of
an idempotent &-class with Zp.

(b) en~! satisfies the identity xP*'=x and is a Rees matrix semigroup over

k
Zp.
Proof. (a) Let (g;,¢€), (g2,€), (g3,€) be in énl". Then

(91,8)(92,€)(93,8) = (g1 + %2 + %3,8) = (91,6)(g3,€)(92, &)

and (g1,6)(92,8)? =(g1+ p-%92,€) =(g1,é). If (g1,¢), and (g, &) are idempotents then
(92,€)(g2,€)=(g2 + g2,8) =(g2,€), so °g is the zero function and (g;,é)(g2,€) =
(91 +°g2.€)=(g1,8).
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(b) Every element of en; ! is idempotent, and so the identity follows from part a.
For each écen;’', én;' is an L-class of en~'. Let écén;' and f € fn!, with é,
feeny'. Then as éf =f, éf is in fn;'. So, éf%f and é >, f. Dually we see
f >y ¢éand en”' is a single #-class. [

5. The expansion SK(V)

To get the expansion S¥ we imposed restrictions on the local monoids of the derived
category, consolidated the resulting category, took a wreath product of the consolidated
category with the original monoid, and then restricted to an image of A*. In the same
way we can impose restrictions on the local monoids of the kernel, consolidate the
resulting category, take a block product of the consolidated category with the original
monoid, and restrict to an image of 4™,

The kernel of a monoid homomorphism can be thought of as a two side version of
the derived category. Given a surjective morphism of monoids ¢ : S — T, the kernel,
denoted K, is the following category:

e Obj(Ky)=TxT.

e There is an arrow [(1;,1,),s, (¢, 1,)] from (#;,1,) to (¢},1]) if t;,(s)¢ =1¢; and (s)P1, =1,.
The arrows [(#;,1),5,(2,1.)] and [(#,8.),5",(t},1.)] are equal if s;s5, =s;5’s, for all
sieyp~and s, €l

e Multiplication of consecutive arrows is given by
[(tl’tr)’sa(Z;st;)][(t;’t;)’s/’(t;,’t;{/)] = [(tl,tr):ssla(t;/’t;/)]-

A double action of S on T is a function S x T x 8§ — T, (5,45 )+ sts’ satisfying

s(hh + )5 =stis’ +sts’,  s1(s2255)s2 = (5152)1(s557),
1t1=t, s0s=0

for all s,5",s1,52,5],55 €S and all 1,1, €7.
Given a double action of S on T the double semidirect product 7 x xS is the set
T x § with multiplication given by

(6,9t ,s)=(1ts' +st'1,55").
There is a natural double action of § on 755 given by

(t’f’t/) — [tsf’tl] with tl[t’fa t,]tr :(tlt)f(tltr)a

where [¢, f,1'] denotes the result of the double action and the notation ¢/’ denotes the
result of evaluating f at (¢,¢'). Thus, [¢, f,'1€ T5*S and tfr' € T.

The block product T3S is the double semidirect product 75 * S xx S associated with
this double action. Thus, T[1S has as its underlying set 75*5 x S, and the multiplica-
tion is given by

(o)) =(, £, + s, f7, 1], s5).

For more on the kernel and block product see [10].
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5.1. The definition of (S*¥), ¢x ()

Let (S,¢) and V be as in Section 2.1. The proofs in this section are analogous
to those in Section 2.1 with the derived category replaced by the kernel and the
wreath product replaced by the block product. The resulting expansion will be de-
noted (SK(V), ¢K( V)).

Let 74 be the smallest congruence on Ky, the kernel of ¢, such that the local
monoids of K =Ky/ty are in V. If u€A* and (sy,s,),(s},5,) €S xS then there is
an arrow in K, from (s;,s,) to (s},s.) labelled by u if s;,(u)p =15, and (u)dps;, =s,.
Let [(ss,5,),u,(s},s.)] denote the 74 equivalence class of [(s,s,),u,(s},s,)].

Forucd*, f, : xS ——>Kcld will be the function taking the pair (s1,s;) to the arrow
from (s, (1)Ps2) to (s1(u)¢h,sz) labelled by u, i.e. 51 fi52 = [(s1,(1)Ps2), u, (s1(u),52)].
Once again, K4 is written additively for convenience of notation, but is not in general
commutative.

Define ¢K(V) IA* _—)Kc]d as by uqSK(y) = (fu,u¢) Then

udprrywdx vy =1, fu whx )] + [udg vy, fu, 11, (uw)d),
and as

S [l’fua W¢]S2 + 851 [u¢’ fW7 1]S2
= [(s1, (uw)s2), u, (s1(u), (W) s2)] + [(s1()p, (W)hs2), w, (s1(uw), 52)]

=51 fuwS2

¢x(v) is a homomorphism. Note that s, f,s2 #0 for all u in A* and (s1,5,) in S x S.
Let SX¥) denote the image of ¢y

5.2. Properties of (S, ¢xcvy)

Let X be the graph with vertices § x S and an edge [(s1,s,),4,(s),s,)] from (s,5,)
to (s},s.) labelled by a4 if s)(a)¢p =s; and (a)¢s, =s,.

Lemma 5.1. The kernel of ¢ is isomorphic to the free category over X. That is
Ky, = X*

Proof. They have the same objects and there is an arrow [(s;, s, ), 4, (s},5,.)] in K, if an
only if there is a path in X from (s;,s,) to (s},s,) labelled by u € 4*. We need to check
that if [(s1,5,), 4, (515,5.)]1= [(51,5,), 0, (515,5,)] in K then u=v. Suppose x €5,¢~! and
yesig~L. Then if [(s;,s,), u,(s;5,5.)] = [(51,5,),0,(515,5.)] we have xuy =xvw. As A*
is a cancellative semigroup, this implies u=v. O
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The above Lemma 5.1 is analogous to Lemma 2.1 and allows us to think of arrows
in K and K4 as arising from paths in X. Notice that in K, as was in D, it is possible
for a single arrow to be labelied by two different words in A*.

Lemma 5.2. There is a left action of S on K, given by

s [(s1,0), 1, (5,51 = [(ss1,50), 1, (557,57)]

and a right action given by
(st )y 1t (7 50)] - 5 = [(51,8-8), 1, (8, S15)].

Proof. If s;u¢ =s} then ss;u¢ =ssju¢ and similarly for the second action. The ac-
tion is well defined as in the proof of the above lemma we saw that [(s;,s,),4,
(s7,8)]=1[(s1,8,),0,(s},5)) if and only if u=v. I

Lemma 5.3. The above actions induce left and right actions of S on K.

Proof. We need to show that if

[(S[,S,-), u, (‘Y§’S; )] - [(S1> S )a U, (S/[’S;/~)]’

then

[(ss7,8-8"),u, (587, 5.8" )] = [(55}, 5,8 ), 1, (58}, 518" )].

Let 4*/p be the relatively free 4-generated monoid in V, i.e. p is the smallest congru-
ence on A* generated by the equations of V. As [(s;,$,), 4, (s’[,sﬁ)] =[(s1,8:), 0, (57, 5/)]
there is a sequence of steps which take [(s;,s,),u,(s},s,)] to [(s/,5,),0,(s},s,)] by ap-
plying the equations of ¥ to the local monoids of K. Thinking of an arrow in K, as
a path in X, this means there is a sequence of n steps of the following form

[(sr250 ), %00 (51,52)11(81,52)s i (51,52)1[(51, 52 yi, (57, 57)]
E‘w) [(S[,Sr),x,‘,(Sl,Sz)][(Sl,S2),U[,(S],Sz)][(S],Sz),y,‘,(sl[5s,{)],

where the middle terms are elements of a local monoid, u;pv;, u=xu,y,, and v=
Xu0n V. I s1{x;)p =51 and s = (x;)so then ss1(x;)p =ss; and s25" = (x;)¢ps2s’. Hence,
the action will take the loop [(s1,52),X;,(s1,52)] to another loop, [(ss,s28"),x;,(sS1,
528")]. We can then apply the same equation to this loop and get the sequence of
steps

(557875 ), %1, (551,528 [(551, 525 ), w3, (551, 825 )][(851,528"), v, (557, 57.87)]

=1, [(551,8,8"),Xi, (551,528 Y1 [(551, 825" ), Ui, (551,528 [(551,528"), Vi, (857, 575")]

for i=1,...,n which shows that

(57,808 ), u, (s8], 508 =[(551,8,5"), v, (55}, 575" )]. O
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This action implies that if we want to determine if a pair of coterminal paths labelled
by u and v are equal, it is sufficient to know that the arrow from (1,u¢) to (u¢,1)
labelled by u is equal to the arrow from (1,v¢) to (v, 1) labelled by v.

Corollary 5.4. u¢xyy=vogwy) if and only if 1f,1=1f,1.

Proof. By definition udg(yy=veox) implies f,=f,. Assume 1f,1=1f,1 then
[(1,ud),u,(up, 1)]=[(1,v¢),v,(vp,1)] and it follows that up =v¢. If (s;,s,) is in
S x S then sy f,s, = [(s1,(W)s,),u, (si(u)p,s,)], and it follows from Lemma 5.3 that
this equals [(S],(U)¢Sr), U, (S](U)¢,Sr)] :Slfvsr- O

Lemma 5.5. Let ¢:(7T,0)— (S, ¢) be a homomorphism. There is a congruence t, on
Ky such that K, = Ky/ts. Moreover if [(1,s1),u,(s1,1)] =, [(1,s1),0,(s51,1)] then
[(s, 515" ), u, (551,8")] =4, [(5,515"), 0, (s51,8")] for all (s,s") in S xS.

T

2
N

S

A

g

Proof. Define 1, by [(s/,s,),u,(s},5.)] =., [(s1,5,),0,(s],5.)] if the arrows [(s;,s, ), ub,
(57,5,)] and [(s7, 5, ),00,(s},s.)] are equal in K,. If we show that 7, is a well defined
congruence it will then follow from the definition that K, = Ky/7,.

If [(s1,8,), 1, (s} 50)] = [(s1, 8, ), 0, (5}, 5%)] in K, then xuy =xvy for all x, y € 4™ with
x¢p=s; and yp=s.. A* is a cancellative semigroup and thus u=v and [(s;,s,),u0,

(S;,S:. )] = [(S[, Sr)y UH, (S;,S:)].
To show 1, is a right congruence suppose that

[(S[,Sr), u, (S;’S;)] =1, [(Sl’ Sr )a v, (S;,S;)]

and that [(s},s.), we,(s7,s))] is any arrow in Dy leaving (s},s;). By the definition of
1, we have

[Cs1,5,), u0,5(s7,5,)] = [(s1,5, ), 00, (57, 5,)]
and thus

[(s1,5), 40, (s7,5,.))(s7,57), w0, (57, 5,)] = [(s1,5,), 00, (s, 5,1 [(57, 57.), wh, (57, 57)]-
This implies

[Cs1,50), 1, (7, SIS 500, Wy (57,570 =2, [(51,5,), 0, (50,8118, 87 ), w, (57,5,

An analogous argument shows that 7, is a left congruence. By construction it is clear
that Ky /15 =K.
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To show the action is well defined, suppose

[(1,s), u, (s, 1)] =, [(1,8),0,(s, D].

By the definition of z,,
[(1,ug),ub, (ud, 1)]=[(1,v¢),v0, (v, 1)]

and 1(u)0t' =t(v)0t' for all ,¥' € 167'. As 17 €10, ul =00 and
[(s.s15"),ub, (s51,57)] ==, [(s,515), 00, (s51,57)],

and hence
[(s,515), 1, (551,8")] =, [(5,515"),0,(s51,5")). 0

Proposition 5.6. Let ¢:(T,0)— (S, ¢) be a homomorphism. Let : A* — (K;)eq S
be the homomorphism sending u to (g,,udp) where

sgus’ = [(s, (W)ps"), ub, (s(u), s")].

The map n:A*\y — T which sends wj to uf) is an isomorphism.

Proof. If uty = vy then 1g,1 equals 1g,1, i.c. [(1,u), ud, (u¢, ]=[(1,v¢),v0, (v, 1)].
As 17 €107 !, ub =08 and 5 is well defined.

Reversely, if ufl =v0 then 1g,1 =1g,1 and it follows from Lemma 5.5 that g, =g,
and # is injective. [

Proposition 5.7. Let &5:SXY) — S be the restriction of the projection of K};[1S onto
S. The local monoids of K, are in V and K;; = K.

Proof. Using the notation in Lemma 5.5 K, =K,/r,. Suppose u¢=vd=s. By
Lemmas 5.3 and 5.5 it suffices to show that

[(1.5), 1, (5. 1)} =4, [(1,5),0,(s, 1)]

exactly when
[(l,s),(fu,s),(s, 1)] ET(:S [(I,S),(fL»,S),(S, 1)]

1£,1=1(1,9),u,(s,1)] and 1£,1 =[(1,5),5,(s, )]. So 1f,1=1f,1 whenever [(L,s),
u, (s, )] =, [(1,5),v,(s,1)]. It follows from Corollary 5.4 that f, = f,, which implies
(1,50, (i) (5, D] Sy [(1,5), (fors)s (5, D]

If [(1,5),(fur$), (s, D] =1, [(1,5)(f1s5),(s, 1)), then as the identity of SKY) s in
the inverse image under &g of the identity of S, we have ( f,,s)=(f;,s). Hence

lﬁll = [(]’S)>u7(sa 1)]: 1fbl :[(17S)a U’(S’ 1)] O
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Theorem 5.8. If the local monoids of K, are in V then there exists a surjective
homomorphism a': (SX¥), dpxyy) — (T, 0).

SKV)

k) J’ ,
o
2

A —— T

Xla

N

Proof. K =K4/1y and K, =K,/1;. As the local monoids of K, are in V, 14 C1,.
Therefore the map F:Kcq— (K;)ea which sends [(s,s,),u,(s),s0)] to [(ss,sr),ub,
(s7,5.)]) is a well defined homomorphism. We can then define ¢’ :( f,,s) — (gu,s)M
as in Proposition 5.6, with tg,t’ =F(tf,’). O

Theorem 5.9. The functor taking (S,$) to (SXV), ¢xvy), along with the natural
transformation ¢ is an expansion.

Proof. We need to define @ such that the following diagram commutes.
(TKV), Ogvy) — 7, (KW, dxwy)
&r s

[

T.0) > (5.9)

Let C =Ky/ty be the largest quotient of Ky whose local monoids are in V. The
map G : Ceq — Keg sending [(#,4),u,(4],£/)] in C to [(s;,s,),u,(s},5.)] in K where
tio=s; and flo=s,, and sending 0 to 0 is a surjective homomorphism. For u in
A* let f/ : T x T — C.q denote the function ¢f’¢ =[(z,(u)0t'), u, (H(u)0,¢)], and let
Ju: 8 x 8 — K.q denote the function s f,,s' = [(s, (u)Ps’), u, (s(u)¢,s’)] as before. Then
G(tf)Y)=tof,t'6. Since ¢ is onto, it follows that f, = f; implies f, = f,. Define 7
by (f,,u0) — ( fu,u¢). Then ubyG =(( f,,u8))6 =( fu,u$) =u¢ky, and the diagram
commutes. L[]

The expansion can be modified the same way as in Section 2.3 to get a semigroup
expansion based on the kernel.

5.3. Finiteness properties of SK()

Proposition 5.10. Ler S be finite and V be locally finite. Then SK) is finite.

Proof. Each of the local monoids of K are in V and so are locally finite. K is generated
by the finite set of arrows [(s7,5,),a,(s},5.)), a€ A4 and s;,5,,5,5, €S with sju¢p=s,
and u¢s, =s,. It follows from Lemma 2.10 that K is finite. As the block product of
finite monoids is finite, K!; 1S is finite. As SK") C K4S it must also be finite. [
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Corollary 5.11. If'S is finite ¢ above and V is locally finite then S¥V) is finite ¢
above.

SKV) —— (S/I)KW)

J N
LN

§ ——————— §/I,

Es/1s

Proof. As in Corollary 2.12, let ;= {s' in S: ' #,s}. As S is finite ¢ above S/I, is
finite, and it follows from Proposition 5.10 that (S/L,)X*) is finite. Let Y be the nat-
ural map from 4* to S/ls. Let Seseg' and L={feSK"): f 2, §}. If [, =ILe5!,
then I, CI; and thus SXV/I CSKPVI . We will show that (S/I,)K(¥) =KW/}
It follows that SX(V)/I; is finite and SX) is finite ¢ above.

Let u,v € 4% with u¢,ve ¢ I,. By Corollary 5.4 it suffices to show that if

[ udh), u (i, D] =, [(Log), v, (v, 1]

then
[(Lud),u,(up, 1)] =, [(1,v¢),v,(ve, 1)].

As ug, v & Is, Y(u) = ¢p(u) = ¢(v) = Y(v). By Lemma 5.1 the arrow [(1, ), u, (i, 1)]
in Dy, can be thought of as a path in a graph Y. Likewise the arrow [(1, u¢),u, (u¢, 1)]
is a path in the graph X as in Lemma 5.1. As u¢ ¢ I, the path [(1,u)),u, (i), 1)] never
passes through the vertex 0. Moreover, any path which does pass through the vertex 0
stays there and never goes back through any other vertex. Hence, any equation of V
which can be applied to a loop in the path [(1,u),u, (1, 1)] corresponds to a place
where that same equation can be applied to a loop in the path [(1,u¢),u, (u¢,1)]. So
by using the same sequence of equations which show [(1,uyy), u, (1, 1)] =, [(L,vgh), v,
(v, 1)], and applying them to the corresponding local monoids of Dy, we get [(1,u¢),
u (u, D] =, [(1,00), 0, (0, D). O

5.4. The example SKSL)

Once again for simplicity of notation we will assume that (S, ¢) is an object in M.
The expansion $?) is due to Karsten Henckell [1]. As with the other expansions in
this paper, we will describe S@ cut to generators. Let Z¢(S x S) be the set of all finite
subsets of S x §. Define 6 : 4* — P:(S x S) by

m k
aay...a+— {Ha,-d), H a;idp: 0 < m Sk}.

I=1 i=m+1
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Let v =gy ... a4 There is an associative multiplication on 4*0 given by

m k r k-+h
{Ha,-d), IT «¢: ongk}-{ IT @0 ] ai¢:k§r§k+h}
1=1

i=m+1] i=k+1 i=r+1
n k+h
Z{Ha,d),HatqﬁOSngk—&—h}
1=1 i=n+1

It follows from the definition of multiplication that #60v6 = (uv)f and 6 is a homomor-
phism. The image of 8 is ). Let o : §® — § be such that 8o = ¢, i.e. if (s1,52) € uf
then uflo =515, = u¢. It is easy to check that ¢ is a well defined homomorphism and
this construction defines a monoid expansion.

Lemma 5.12. The local monoids of K, are semilattices.

Proof. First we need to show that if [(s;, s, ), uf, (s;,s,)] is an element of a local monoid
of K,;, then it is equal to [(ss,s, ), (4?)6, (s, s,)]. If w,v € 4* are such that who = s; and
v0o =s,, we need to show (wuv)d=(wu?v)h. Let w=a,...ar, u=dap....dm, and

V=Qmy1...4qy.

(wutv)f = {ﬁa,d), ( ﬁ a,-¢> (uv)p: 0 <n < m}
i=1

i=n+1
n h
U{(wu)(j)( H a,-d)), H a;¢: mgngh}.
i=k+1 i=n+1

As s, =(uv)p=vp= H?=m+1 a;¢ and s; = (Wu)p=w¢ = Hf.;l a;¢, we can simplify
this expression to

{ﬁ“f¢’ ( 1_’"I ai¢) vp: 0 <n< m}
i=1

i=n+l
n h
U{wd)( H aiqb), H ai¢:m§n§h}
i=k+1 i=n+1i
n h
= {Hai([),Haid): 0<n< h} = wuvf.
i=1 nt+1

Let [(s1,5,),x0,(s1,5-)] be another loop at the same object with x = b, .obp.

n k
(wuxv)0 = {H a;p, ( H ai(]ﬁ) (uxv)p: 0 <n < k}
i=1

i=n+1

U{wd)( ﬁ a,-d)),( f[ a,-¢>(xv)¢:k+1§n§m}

i=k+1 i=n+l
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n P
U {(wu)d) (H b,-¢>> , ( H b,~¢>> vp: 0 < n < p}
i=11 i=n+1

n h
U{(wux)(l)( H a,-d)), H a,~¢):m+l§n§h}.

i=m+1 i=n+1

As (wu)p =wd = (wx)¢ and (uv)p =v¢p =(xv)¢ we can simplify this expression to

sy~ { Tl TT a6 st 0 <]

i=n+1

{ (Ha,) (Had))vd) k+1<n<m}
i=k+1 i=n+1

{qu(Hbqb) (H bqb)vd) ()<n<p}
i=11 i=n+1

{wd)( ) a¢>:m+1§n§h}.
i=m+1 i=n+1

n k
(wxuv) = {Haid), ( H a,-d)) (xuv)p: 0 < n < k}
i=1

i=n+1

n P
U {W¢ (Hbz¢> ) ( H bi¢> (ww)p: 0<n< p}
=11 i=n+1

U{(wx)qS( H ai(i)) ,( H aid)) vp k+1 gngm}
i=k+1 i=n+1

n h
U{(wxu)(,b( H aid)), H aip:m+1 gngh},

i=m+1 i=n+]

Similarly we have

and simplifying in the same manner as above we have

n k
(wxuv)p = {Haidr, ( H a,-d)) vp: 0 < n < k}
i=1

i=n+1

n ?
U{W¢(Hbi¢>,( H bid)) vd):Ogngp}
i=11 i=n+1
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U{qu( ﬁ a,»qS),( 1’"_[ a,~¢> vp: k+1 Sngm}
i=k+1 i=n+1

n h
U{wd)( H aiqb), H ai¢:m+1§n§h}.

i=m+1 i=n+1

So (wuxv)f = (wxuv)d and

[Cs,8r),ub, (51,5, )] (51,57, %0, (1,57 )]
= [(s15,),%0, (51,8 )W (s1, 8, ),u0, (s1,8,)]. - O

As before we can now ask how different is SXL) from S$®. We know by
Theorem 5.8 that it will be larger. It turns out that the relationship between S
and S¥D) is very similar to the relationship between the Rhodes expansion and S*-7,
which turned out to be the Karnofsky—Rhodes expansion.

Let X be the graph defined in Section 5.2. It follows from Corollary 5.4 and
Lemma 3.8 that the elements of S@ are determined by looking at the coterminal
paths in X from objects of the form (1,s) to (s,1) and identifying those which have
the same content.

Ifu=ay...a; is a word in 4* the content of the path starting at (1,u¢) and labelled
by u is the set of edges

n—1 k n k
{ [(Ha@,ﬂaid)) @, (Haiqﬁ, I1 ai¢):|30 <n< k}.
i=1 i=n i=] i=n+1

Comparing this to u, we see that uf is the set of all the vertices that this path passes
through. However, it does not remember the labels on the edges which are transversed.
This is the exact same difference as that between the Rhodes expansion and S’7.

Define y as the map which takes a word to the set of transition edges associated to
that word as above. There is an associative multiplication on 4*\ given by

(oo flec) o (floo [os)] 020

{{(Toot1oo) oo ({1 o0)] 02020}

i=n+1

it (f)o-o0)-

n k
(Ha,d),( H a,qb) (bl...bh)qﬁ)}:ogngk}
i=n+l
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[ (i o) £104).

n h
by, <(a1 ap)d (Hb,«(/)) 1 biqs)} 0<n< b}.
=1 i=n+1

Moreover this multiplication is such that uy - vy = uvyy, thus ¥ is a homomorphism.
The discussion above essentially proves the following.

Theorem 5.13. (SXSD) ¢y (s1)) = (4™ Y, ).

6. The expansion V)M
6.1. The definition of VoM

If #:T—S is a semigroup homomorphism such that for all idempotents e €S,
ed’ “'eV then T is said to be a Malcev product of S over V. In this section an
expansion which takes a monoid M (semigroup §) to the largest Malcev product of
M (S) over a given variety V which is in My (S4) is defined. The definitions for
monoids and semigroups are similar and will be given concurrently, with the relevant
changes for semigroups given in parenthesis. ¥ will be a locally finite variety, (M, ¢)
will denote an element of M4, and (S, ¢’) will denote an element of Sy4.

Let 64 (64/) be the congruence on 4™ (4) generated by imposing the identities
of ¥ on each e¢=' (e¢'™") for e an idempotent of M (S). Define udmvy (U y))
to be the 8, (04 ) congruence class of u and V@M =A%y (V@S =4y ). Let
em (es) be such that ¢ = duvyen (@' = Py \es)-

*
x

M

&M

A
The following is a well known theorem.
Theorem 6.1 (Brown). If T is a locally finite semigroup and o is a homomorphism
Sfrom S to T such that the inverse image of idempotents is locally finite, then To ™'
is locally finite.
The next theorem is a direct consequence of Brown’s theorem.

Theorem 6.2. Let M (S) be finite and V be locally finite. Then V@M (V®S) is
finite.
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By construction it is clear that if # : (N,a) — (M, ¢) is any other homomorphism
with ey~ € V for each idempotent e of M, then there is a surjective homomorphism
T (V@ M, pryy) — (N,n). That is, V@ M is the largest way to expand M by a Mal-
cev product over V.

Theorem 6.3. Given a homomorphism ¢ : (N, x) — (M, ¢) there is a homomorphism G
SJrom (VE@N, ouqvy) to (V@M, parcvy) such that the following diagram commutes,
and the functor taking (M, ¢) to (V@ M, ¢uy)) along with the natural transforma-
tion & is a monoid expansion. Similarly the functor taking (S,¢") to (V@ S, dyy))
gives rise to a semigroup expansion.

g

(V@ N, oyyy) (V @M, Sprvy)

eN &M

g

N, M.¢)

Proof. Suppose u,v € ex™!, with e=e? an idempotent of N and (u,v) € 6,. If f =ea,
then f is an idempotent of M, and u,v€ f¢~'. If w is any element of ex~!, then
w€ f¢~!, so imposing the equations of ¥ on f¢~! yields (u,v) € 6,. Hence 6, C 6,
and thus we can define & by o (v)& = ¢asr(rv). Replacing N and M by semigroups does
not change the proof. [J

It is important to know which category you are working in as the following example
illustrates. Let ¥ = A7 be the semigroup variety defined by the equation xy =x. Let §
be the cyclic monoid (z |z* =z). The members of § are z, z, and z> = 1. Let 4 = {a}.
Define ¢’ : AT — 8 as the extension of the map a¢’ =z. Define ¢ : 4* — S as the
extension of the map a¢ =z and e =z> = 1, where ¢ is the empty word.

1¢' ' ={a%,a% a°...}. Imposing the identity xy=x on this set we get a° =,
a® =, a’---. It follows that when working in the category Sy, V@S is the 5 ele-
ment cyclic semigroup generated by adjy,, With @@y =a’@j ) Note that this
semigroup is not a monoid.

197! ={e,a’,a%d’,...}, and imposing the identity xy =y on this set implies & =,
a’ =y, a®--.. It follows that when working inside the category My, V@S is the
3 element monoid {Sd)M(V),ad)M(V),(612)¢M(V)}, with (a3)¢M(y):s¢M(y): 1. In this
case V@mS=S.

6.2. The equivalence on groups

Theorem 6.4. If (G,¢) is an object of My, G a group, then (G¥,¢y)=(V®G,
bu))-
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Proof. Let ¢;: G — G be as in Section 2.2. The only idempotent in G is 1. Therefore
to show that G¥ is a Malcev product of G over ¥, we only need show that leg s
in V. Let u,0€ A™ be such that u¢p =vé=1, i.e. using the notation of Section 2.1
udy =(fy,1) and vdy =(f;, 1). By Corollary 2.4 (f,,1)=(f,, 1) if and only if f,(1)
= fo(1). Now (fu, D(fo, D =(fu' frs 1) =S 1). S0 1851 is isomorphic to the local
monoid of D=Dy/y at 1. The local monoids of D are in ¥ and thus so is leg'. It
follows that there is a surjective homomorphism 7, : (V@ G, darv)) — (GV. dp).

Let g€ G and t€ V@ G. If g(¢)puv) =g, then (#)¢a(yy=1 and the local monoid
of Dy,,,, at g is a homomorphic image of 1d);,},/). As lqb,"l;,/) €V, and varieties are
closed under homomorphic images, we see that the local monoids of Dy, ,, are in V.
By Theorem 2.8 there is a surjective homomorphism 7, : (GV,qSV) — (V@ G, dary),
and we have the following commutative diagram.

VG
* ¢

A ———— G Ty | T2
x\
GV
It follows that m; and #, are inverses. [

6.3. Expanding groups by bands

In Section 3.1 the Rhodes expansion S * was defined. There is an analogous Rhodes
expansion, § ¥, using the # order instead of the .# order of S. That is, if we let R be
the set of all strict Z-chains of S, i.e. R={s1>52"*Sp—1>5n" S1,...,8, €S}, where
s>s' means s is strictly above s’ in the # order, then there is an associative multipli-
cation on R given by

(51> - >s) (11> - >hy) =Red(s1> -+ >5, > Syl 2 -+ > Sul)

where Red(s; > -+ >s5, > 8,81 > -+ = Splp ) 18 the new chain you get by using the rule:
whenever there is a string of # equivalent elements keep only the right most element
of the string.

The Birget-Rhodes expansion, cut to generators and considered as a monoid expan-
sion, is the projective limit of S, SZ, SR §LRL ... in the category M.

(SBR, ppr) =lm(- - — (S TR LRy 5 (STE ™) — (S, 9))
=lim(--- = (S EL o F LYy (ST o) - (5, 9))

Let (G, ¢) be an element of M4 with G a group. Let I' (G,4) be the Cayley graph
of G, and let E be the set of edges of I' (G,4). Let B denote the semigroup variety of
bands (semigroups satisfying the identity x> =x) and let FB(E) be the free band on E.
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A variety V of semigroups is called local if for any category C whose local monoids
are in V there is some S € V such that C < S.

Theorem 6.5. The variety of bands is local.

A proof of this theorem can be found in [5, 12]. Let C be a category whose local
monoids are bands. If X is a subgraph of C that generates C, and F is the free band
on the edges of X, then a path in X corresponds to an element of F' and also gives
rise to an arrow in C. Define R from the arrows of C to subsets of ' by R(«) equals
the set of all elements of F which correspond to some path in X that gives rise to the
arrow o.

Corollary 6.6. R as defined above is a division.

Let GSBR denote the image of first applying the Cayley expansion to G and then
following with the Birget—Rhodes expansion. The corresponding homomorphism will
be denoted ¢C,BR-

Lemma 6.7. Let 0:(G%BR, ¢pc gr) — (G, @) be the natural homomorphism in My. The
local monoids of Dy are bands.

Proof. The only right stabilizer in G is 1. The inverse image of 1 under the Cayley
expansion is a band. An inverse image of an idempotent under the Birget—Rhodes
expansion is idempotent. So 167! is a band. If [g;, udc pr,¢1] is an element of the local
monoid Dg(g, g;) then u¢p = 1. Thus upc pr is in 16~! and therefore is idempotent. [J

Theorem 6.8. The largest Malcev product of a group over the variety of bands is
the same as expanding the group maximally such that the derived category is locally
in the variety of bands, and both are the same as first applying the Cayley ex-
pansion and then the Birget-Rhodes expansion. That is (B® G, ¢u)) = (G5, ¢p) =
(GSBR, de.pr).

Before giving the proof of this theorem we will establish a couple of useful lemmas.
Let c(u), called the content of u, be the set of edges appearing in P,, where u¢o =
(P,,u¢p). Let 0z be the natural map from 4* onto (G¢)* and let §; be the natural
map from 4* onto (G€)E. It is easy to check that u¢p¢ > (ua)¢c in the Z-order if and
only if c(u) is strictly smaller than c(ua). Likewise, (au)dc <u¢c in the ¥-order if
and only if the size of c(u) is less than the size of c(au).

Lemma 6.9. Let u=ay...a, and v=>b;...b, be in A* such that
ubr = (P1,g1)> -+ >(ay...a;)pc>udpc
and

UQR:(PZ,g2)> < >(by ...bj/)¢c>v¢c.
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If upc sr = vPc.pr then (a)...a;)¢cpr = (b1...by)dcpr. Dually, if
uly =(ay...am)pc<(ax...am)pc< --- <(Pl,4g})

and
00, =(b1...by)pec<(bp ...bp)pc < -+ <(P5,45)

then u¢c gr = vdc pr implies (ay ...am)Pc,Br = (bir ... bp)de R

Proof. Let 0, =0z, 0, be the natural map from 4* onto (G)® ™R and in general
let 0, be the natural map from A4* onto (G¢)RL R~ LR where "R has been applied
n times. Let i, be the natural map from A* onto (GS)RL, and in general let ), be
the natural map from 4™ onto (GS)RL R'L where "L has been applied » times.

If (a1...a;)¢cpr # (bi...by)pcpr there must be some n such that (a;...a;), #
(br...by Wi As (ai...a;)pc>(ar...a;a;41)¢c and there is a homomorphism from
(GC) RL-"R'L onto G, we have (aj ...a;Wn >(ai ...a;a; 4 1 Wy, and

ubpy=(ay...ay Wn> - >(ar...ajWn> - >u,.

Similarly
Vit = (b1 By W > oo > (b1 by Wy > - >0y

As u¢csr =vPc pr, U0y 1 =00,41. So (ar...a; W= (b1...b:), for some i. If i >
then c(by ...b;) = c(u)=c(v), which is strictly greater than c(a; ...a;). This is a contra-
diction as (a;...a;Wn =(b1...b;)y, implies (a,...a;)pc = (b ...b;)¢c. If j'>i then
(by...bj)pa=(ai...ay )P, for some i'>j, and we get a similar contradiction. The
proof of the second part is gotten by interchanging the roles of # and ¥ above. U

Foru=aja;...a, € A* define i € FB(E) in the following way. Let (Py, 1) = e¢¢ and
(B,(ay...a))p)=(ay...a;)pc. Denote by e; “the last edge drawn” when drawing P,
ie.e;=[(ay...aq;i_1)d,a;,(ar ...a;)¢p]. Note that if P; 3 P; | then e; is exactly the edge
that they differ by. Let #=eje;...¢,.

Lemma 6.10. Let u,v€ A*. Then upc.pr =v¢c.pr implies 4= 0.

Proof. If u¢c pr = véc pr then ude =vde and c(u) = c(v). We will induct on the size
of ¢(u). Note that |c(u)| =0 if and only if  is the empty word.

lc(u)| = 1: If |e(u)|=1 then u=da" and v=a* for some a € A. If either » or s is
greater than 1 then [1,4,1] is a loop, and #=9=ad.

lc(u)|=n: Let u=a...am, i=ej...em, V=b...b,, and 0= f1... f,. Let u; =
a1 ...a; be the largest initial segment of # whose content is strictly smaller than that
of u. That is, {e),...,e;} Cc(u), but is not equal to c(u). Let x, =e;, be the single
member of c(u)\c(u;). Let u; =a;...a, be the largest terminal segment of u such that
{ei,...,en} is strictly smaller than c(u). Let y, =e;—,. Define similarly v; =b,...b;,
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xXy=fp41, 2=by...b,, and y,= fr_;. By a well known property of bands, see [4],
G=ej...ejxyYu€i...ep, and = f1... fpx,yufor ... [p.
As you drop in the Z%-order in G¢ if and only if you see a new edge,
ubp=s51>--- >(a...a;)pc >u¢pc
and

vlg=s51>--- >(b1...bj/ Ve >vodc.

By Lemma 6.9 and the inductive hypothesis, we have ¢;...e; = f1... f», and as P, =P,
we must also have x, =x,.

Recall that there is a left action of G on I'(G,A), as defined in Section 3.2. As G
is a group (a;...a;—1)¢ acts as a graph isomorphism. If (P,g)=uy¢¢ and (P',¢')=
(ai—1u2)Pc, then {e;,...,e,} are exactly the edges appearing in (a1 ...2;_;)¢ - P and
P,=(ay...a;—)¢ - P'. So similarly we have

uly =up<(a;...an)p<--- <t
and
00, = v <(by bp)¢< e <M.

Again by Lemma 6.9 and the inductive hypothesis, w3 =v; and y,=y,. As G is
a group and (a;...am)¢=(by ...bp)¢, (a1...ai-1)Pp=(b1...by_1)¢. Let i =¢] .. €],
and v; = f, "'ler As G acts as isomorphisms, e; = f], k >i and / > ¢, implies e; = f7,
and if e, =e], for k,/>i, then e; =e¢;, and similarly for the f;. Hence e;...e, =
Jir ... fp and =7 as desired. [

Proof of Theorem 6.8. The first isomorphism is Theorem 6.4 with ¥'= B. It follows
from Lemma 6.7 that there exists a homomorphism  making the following diagram
commute.

GB
o
* '
m
GC.BR

By Corollary 2.4 we know that u¢g = (f,,g1) =vdp = (f1,¢2) if and only if f,(1)=
Jo(1). Now f,(1) and f,(1) are arrows in D = Dy /t4, which we consider as equivalence
classes of paths in I'(G,4). Lemma 6.10 showed that u¢c pr = v¢c,gr implies & =7.
It follows from Corollary 6.6 that u¢pg = v¢pg whenever d4=70. [l
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