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Podocalyxin (PODXL) is a type I membrane mucoprotein abundantly presented in the epithelial cells
(podocytes) of kidney glomeruli where it plays an important role in maintaining the plasma filtration. PODXL
is also expressed in other types of cells but its function is ignored. A recombinant soluble fragment of the
PODXL ectodomain modifies the signaling of the membrane bound PODXL. Based on this antecedent, we
aimed at investigating whether PODXL could be cleaved and released into the extracellular space as a soluble
peptide. In this study, we used a fusion protein of human PODXL and green fluorescent protein expressed in
CHO cells (CHO-PODXL-GFP) and a human tumor cell (Tera-1) inherently expressing PODXL. PODXL was
detected by wide-field microscopy in the Golgi, the plasma membrane and in a vesicular form preferentially
located at the leading edges of the cell and also progressing along the filopodium. We detected PODXL in the
insoluble and soluble fractions of the extracellular medium of CHO-PODXL-GFP cells. Stimulation of protein
kinase C (PKC) by Phorbol-12-myristate-13-acetate (PMA) enhanced the release of PODXL to the extracellular
space whereas this effect was prevented either by inhibitors of PKC or specific inhibitors of matrix
metalloproteinases. It is concluded that intact PODXL is released to the extracellular space as a cargo of
microvesicles and also as a soluble cleaved fragment of ectodomain.
s Biológicas (CSIC), Ramiro de
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1. Introduction

Podocalyxin (PODXL), also known as Myb-Ets transformed
progenitor, is a type I transmembrane sialoglycoprotein of the CD34
family [1], expressed abundantly in the luminal face of the epithelial
cells (podocytes) of kidney glomeruli [2,3]. The strong negative
charge of PODXL, due to heavy sulfation and sialylation, has been
suggested to play a role in maintaining the structural organization of
the kidney glomeruli and normal plasma filtration. Podocalyxin is also
expressed in tissues other than kidney, like multipotent hematopoi-
etic progenitor cells, vascular endothelium or heart cells [4–6]. Several
types of tumor cells express PODXL at rates that appear to correlate
with the degree of malignancy [7–9]. Despite its wide expression, the
physiological role of extrarenal PODXL is ignored. The soluble
recombinant ectodomain of PODXL (PODXLΔ429) counteracts the
PODXL effects on cell adhesion and cell–cell interactions and is also
capable of triggering cell responses [10]. Thus, we found of interest to
investigate whether a cleaved fragment of PODXL was released into
the extracellular space under physiological conditions. Some mem-
brane regulatory proteins are cleaved releasing a protein domain to
the extracellular medium. In certain cases, the experimental evidence
indicates that the released fragment exhibit autocrine or paracrine
properties [11].

The present work reports biochemical andmorphological evidence
showing that intact PODXL is released from CHO cells stably
expressing human PODXL or from human tumor cells (Tera1) to the
extracellular medium as a cargo of exocytic vesicles and also as a
soluble cleaved fragment of ectodomain.

2. Materials and methods

2.1. Materials

Phorbol 12-myristate 13-acetate (PMA), staurosporine, endoglycosi-
dase H, neuranimidase, PNGaseF and other general reagents were
purchased from Sigma (Sigma Chemicals Co.). The matrix metalloprotei-
nase inhibitor Ro31-9790 was provided by Hofmann-LaRoche, Basel,
Switzerland, and the specificMMP-14 inhibitor “GACFSIAHECG”aswell as
its control peptide was a generous gift from Drs. Suojanen and Pirilä,
University Helsinki, Finland.

Murine moAbs against human PODXL were either produced in our
laboratory, B34D1.3 [12], or purchased (3D3) from Santa Cruz
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Biotechnology (Santa Cruz, CA). Anti-GFP was also from Santa Cruz
Biotechnology and horseradish peroxidase (HRP)-conjugated secondary
goat anti-mouse IgG from Bio-Rad Laboratories (Hercules, CA).

2.2. Cell lines and culture conditions

CHO cells were maintained in DMEM medium (Gibco), supple-
mented with 10% FCS (ICN), hydroxytryptamin (HT), penicillin G
100 U/mL (Gibco) and streptomycin 100 μg/mL (Gibco), at 37 °C and
5% CO2. Tera-1 cells, originated from a germ cell human tumor of
seminomatous origin, were grown in McCoy's 5A medium containing
10% fetal calf serum and 1 mmol/L glutamine.

2.3. Preparation of expression plasmids encoding a fusion protein of
human podocalyxin and green fluorescent protein

The construct encoding a fusion protein with GFP linked in-frame
at the carboxylic end of PODXL was previously described [10]. To
generate a fusion protein in which GFP was linked in frame upstream
of PODXL, we first inserted the sequence of the PODXL signal peptide
at the 5′ end of GFP in the plasmid pEGFP-N1. For this purpose the
1–178 bp region of PODXL was amplified with the primers:

sp hpodxl SacII Kozak ATG:

5′-CCC CGC GGC GAC GCC ACC ATG GGC TGC GCG-3′

sp hpodxl BamH1 woSC:

5′-CGG CGA GGA TCC CGA CGG CAG CAG CGG CGG-3′

The 66 bp PCR amplification product was ligated into the SacII and
BamH I of pCR 2.1-TOPO. Secondly the stop codon of the GFP sequence
of pEGFP-N1 was removed by using the site directed mutagenesis kit
QuickChangeII (Stratagene, La Jolla, CA) using the following primers:

5′GCA TGGACGAGC TGT ACA AGT TAA GCGGCCGCT CGC CGT CGC
3′GCGACGGCGAGCGGC CGC TTA ACT TGT ACA GCT CGT CCA TGC

Finally, we amplified by PCR a DNA fragment from the expression
plasmid pcDNA3-podocalyxin cDNA using the primers:

5′ pcDNA3 hpodxl 1085–1114 Not I
5′-CTG CGC GGC CGC TCG CCG TCG CCG TCG CCG-3′
3′ pcDNA3 hpodxl 2611–2640 Not I
5′-CTG GAG GCC ACC GGC GCG GCC GCC TAG AGG-3′

The amplified DNA fragment was cloned into the pCR 2.1-TOPO
(Invitrogen), digested with NotI and ligated to the pEGFP-N1 vector
previously digested with the same restriction enzyme. All the steps
were verified by DNA sequencing.

2.4. Transfection of the podocalyxin transgene into Chinese hamster
ovary (CHO) cells

CHO cells were stably transfected with PODXL-GFP or GFP-PODXL
by the calcium-phosphate procedure using G-418 (400 μg/mL) in the
selection medium. The transfected cells were isolated by cell sorting.

2.5. Cell imaging of CHO-PODXL-GFP and CHO-GFP-PODXL by wide-field
microscopy

CHO cells stably expressing PODXL-GFP or GFP-PODXL were grown
in DMEMmedium (Gibco) containing 10% FCS, hydroxytryptamin (HT),
penicillin G 100 U/mL (Gibco) and streptomycin 100 μg/mL (Gibco), at
37 °C and5%CO2, in 25 mmmicroscopic quality plates (MatTek,USA). To
take images in vivo the cells were suspended in serum-freemedium, and
the plate fitted into a thermostatic controlled heating unit (37 °C) of a
LeicaAF7000 FluorescenceAdvancedWidefield System,with a Live Data
Mode interactive data recording allowing job-sequencing and online
evaluation. Imageswere takenwith a CCD camera Hamamatsu 9100-02.
A Plan-Apochromate 63×/1.4, glycerol immersion lens, or a 100×, oil
immersion lens, were used. The pair of wavelengths 470–490 nm
(excitation/emission) was used to visualize GFP.

2.6. Western blotting

Cell lysates from CHO-GFP or CHO-PODXL-GFP were prepared in
modified RIPA buffer (50 mM pH 7.4 Tris–HCl, 1% NP-40, 0.25% Na-
deoxicholate, 150 mM NaCl, 1 mM PMSF, 1 mM Na3PO4, 1 mM NaF
and a protease inhibitor cocktail (Roche, Indianapolis, IN) and loaded
into 7.5% SDS-polyacrylamide gels under reducing conditions. Pro-
teins were transferred to nitrocellulose membranes and visualized by
incubation with an anti-PODXL or anti-GFP moAb for 2 h at room
temperature, followed by HRP-conjugated secondary goat anti-mouse
IgG. Blots were developed using an enhanced chemiluminescence's
detection system (ECL).

2.7. Preparation of microvesicles (MV) from extracellular medium and
detection of PODXL

For immunoprecipitation of culture medium, the cells were
cultured in 6 well plates in DMEM medium with 10% FCS,
hydroxytryptamin (HT), and 100 U/mL penicillin/100 μg/mL strepto-
mycin, at 37 °C and 5% CO2. When 90% confluence was reached, cells
were washed three times with PBS and incubated in 3 mL of DMEM
serum-free medium for 2 h, collected and centrifuged at 1800×g for
20 min at 4 °C and the supernatant at 100,000×g for 1 h at 4 °C. The
supernatants were either concentrated down to 500 μL using Amicon
centriplus YM-3 columns (Amicon, Bedford, Ma) or immunoprecipi-
tated by incubation overnight at 4 °C with 2 μg of purified anti-PODXL
(B34.D1.3). After adding 50 μL of protein G-sepharose (Pharmacia)
the samples were incubated at 4 °C for 2 h and centrifuged at 1800×g
for 15 min. The pellet was washed three times with modified RIPA-
buffer and suspended in 50 mL of Laemmli buffer 2× [13], boiled for
5 min and centrifuged. The whole supernatant was electrophoresed in
SDS-PAGE (7.5%) and blotted as described above. Extracellular
microvesicles were obtained by centrifugation of the medium at
100,000×g and suspending the pellet directly in 2× Laemmli buffer.

2.8. Analysis of CHO-PODXL-GFP cells and extracellular microvesicles by
electron microscopy

The microvesicle-containing extracellular medium was obtained
by centrifugation at 100,000×g and the pellet was resuspended in
50 μL of 0.4 M HEPES (Gibco), mounted on carbon grids by electric
charge (Glow Discharge), washed, stained with 2% uranyl acetate,
visualized with a transmission electron microscope Jeol 1230 at
100 kV and images capture with a digital camera.

3. Results

3.1. Morphological features of CHO cells expressing human podocalyxin

We analyzed in vivo, by wide field microscopy, the morphological
features of cells stably transfected with either GFP (CHO-GFP) or
PODXL linked in frame to GFP (CHO-PODXL-GFP). The cells were
seeded into glass-bottom culture dishes and allowed to stand in an
incubator at 37 °C, under 5% CO2. The GFP fluorescence was
homogeneously diffuse in CHO-GFP cells (Fig. 1, left column) where
in the PODXL-GFP the fluorescence was perinuclear, likely in the Golgi
apparatus, as expected of a glycosylated protein like PODXL, in the
plasma membrane and in a cytoplasmic adopting a vesicular form
(Fig. 2, right column). A distinct feature of the PODXL-GFP containing
vesicles was their location at the leading edge of the cell, the sides of
intercellular contact (Fig. 2) and also progressing along the filopodia,



Fig. 1. Phase and fluorescence images of live CHO-GFP and live CHO-PODXL-GFP cells.
Cells were seeded in glass-bottom culture dishes coatedwith fibronectin and allowed to
stand in an incubator at 37 °C, under 5% CO2 as described in Materials and methods.
Phase contrast and fluorescence images of CHO-GFP (left column) and CHO-PODXL-GFP
cells (right column), ~8 h after seeding. In CHO-GFP the fluorescence was diffuse,
absent in the Golgi or in any other distinct structure. In contrast, PODXL-GFP
fluorescence was clearly detected in the Golgi apparatus, plasma membrane and
cytoplasmic vesicles. Images were captured using a Leica wide field setup with a ×100
oil immersion objective.

Fig. 2. Images of live CHO-PODXL-GFP. Phase and fluorescence images of PODXL-GFP
cells. Experimental conditions were those described in Fig. 1. Fluorescence of PODXL-
GFP was located at the Golgi apparatus, plasma membrane and in cytoplasmic vesicles
preferentially located at the leading edges of cells and along the filopodium. Images
taken with a Leica wide field setup using a ×100 oil immersion objective.

Fig. 3. Images of live CHO-PODXL-GFP. Experimental conditions were those described
in Fig. 1. These images illustrate the progression of PODXL-fluorescent vesicles along
the filopodia to apparently be released into the extracellular space. Images were taken
with a Leica wide-field setup using a ×100 immersion oil objective.
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accumulating at the tip to finally be released into the extracellular
space (Figs. 2,3). These experiments suggest that PODXL could be
released into the extracellular medium as a cargo of microvesicles.

3.2. Immunodetection of podocalyxin in total cell lysates and
extracellular medium of CHO-PODXL-GFP cells

Blotting proteins from PODXL-GFP cell lysates with the anti-
PODXL, B34D1.3, moAb revealed the presence of two distinct bands of
~160 and ~200 kDa (Fig. 4A). In contrast only the band of ~200 kDa
was detected, when blotting with anti-GFP (Fig. 4B).

To identify the nature of the anti-PODXL reacting bands, cell
lysates were immunoprecipitated with the anti-PODXL moAb 3D3
and electrophoresed in SDS-PAGE. Three bands were detected in the
anti-PODXL immunoprecipitate as compared with the immunopre-
cipitate made with an irrelevant IgG (Fig. S1). The three bands were
excised from the gels and identified by mass spectrometry (Table S1).
Band 1 was identified as the fusion protein PODXL-GFP, band 2 as
PODXL and the third one was identified as the constant region of the
IgG1 heavy chain.

image of Fig.�2
image of Fig.�3


Fig. 4. Detection of extracellular PODXL. CHO-PODXL-GFP cells were incubated as
described in Materials and methods. To determine whether PODXL was released into
the extracellular space, the cells were cultured for 18 h in 6 well plates in 7 mL of
serum-free culture medium. At the end of the incubation the cells were harvested in
500 μL of lysis buffer and the culture medium was concentrated by centrifugation.
A) The indicated amounts of protein of both, lysates and concentrated extracellular
medium were electrophoresed in SDS-PAGE and blotted with anti-PODXL moAb
B34D1.3. B) Proteins from cell lysates blotted with either anti-PODXL or anti-GFP.

Fig. 5. Detection of PODXL in cell lysates of Tera-1, CHO-PODXL-GFP and CHO-GFP-
PODXL cells. Tera-1 and CHO cells producing human PODXL-GFP linked to either the
amino or the carboxylic ends were cultured and lysates prepared as described in
Materials and methods. 50 μg of lysate protein was electrophoresed in SDS-PAGE and
blotted with anti-PODXL moAb B34D1.3 (upper panel) or with anti-GFP (lower panel)
as indicated.
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PODXL-immunoreactivematerial was also found in the extracellular
space. To investigate the mechanism of PODXL release to the medium,
we performed experiments using CHO cells expressing podocalyxin
with GFP fused in frame at either the carboxy (CHO-PODXL-GFP) or the
amino-terminus (CHO-GFP-PODXL). We have verified the presence of
both types of fusion proteins in the plasma membrane by either flow
cytometry or by wide field microscopy (results not shown). Digestions
with endoglycosidase H, neuraminidase and PGCaseF indicated that
both types of fusion proteins exhibited identical patterns of glycosyl-
ation (Fig. S2). Regardless of whether protein samples from CHO-
PODXL-GFP or CHO-GFP-PODXL lysates were blotted with anti-PODXL
or with anti-GFP, in both cases PODXL was detected as a band of similar
size than the native PODXL from the human teratocarcinoma Tera-1
cells [14] (Fig. 5).

PODXL was also found in the extracellular medium of both, CHO-
PODXL-GFP or CHO-GFP-PODXL when blotting with anti-PODXL,
indicating that PODXL was released from the cell as a full size
molecule (Fig. 6). However, PODXL was undetected in the extracel-
lular medium of CHO-PODXL-GFP cells when the proteins were
blotted with anti-GFP (Fig. 6). This observation suggests a deletion of
the carboxy terminus of PODXL-GFP. As indicated above, intact
PODXL, likely forming multimeric complexes, could have been
exported as a cargo of microvesicles.

In fact, we detected PODXL by western blot of microvesicles
(~100 μm) purified from the insoluble extracellular fraction of CHO-
PODXL-GFP cells (Fig. 7A) or TERA-1 cells (Fig. 7B). Moreover, we
observed the release of microvesicles content through the plasma
membrane of CHO-PODXL-GFP by electron microcopy (Fig. 7C). Panels
7C(c-f), show different steps in the release of microvesicles content.
Fig. 6. Detection of PODXL in the extracellular medium of cultured CHO-PODXL-GFP,
CHO-GFP-PODXL or Tera-1 cells. Culture medium from Tera-1 and CHO cells stably
producing human PODXL-GFP fused to either the amino or the carboxylic ends were
concentrated by centrifugation and processed as described in Materials and methods.
50 μL of concentrated extracellular medium were electrophoresed in SDS-PAGE and
blotted with anti-PODXL moAb B34D1.3 (upper panel) or with anti-GFP (lower panel).

image of Fig.�4
image of Fig.�5
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Fig. 7. Identification of PODXL in both the insoluble (microvesicles) and soluble
supernatant fractions of culture medium from CHO-GFP, CHO-PODXL-GFP or Tera-1
cells. The experimental conditions were those described in Fig. 5. Culture medium of
either CHO-GFP (A), CHO-PODXL-GFP (A) or Tera 1 cells (B) (7 mL) were centrifuged at
1800×g for 15 min and the supernatant at 100,000×g for 30 min. The pellet (MV) was
resuspended in 500 mL of lysis buffer and the supernatant (CM) concentrated to 500 μL.
50 μg of protein from cell lysates, MV and CM were electrophoresed in SDS-PAGE and
blotted with anti-PODXL moAb B34D1.3. (C) Electron micrographs of CHO-PODXL cells.
Panels c-f show different steps in the release of microvesicles content. Magnifications:
(a,f) 100,000; (b–e) 300,000.

Fig. 8. Detection of PODXL or GFP-containing PODXL fragments in cell lysates,
extracellular microvesicles (MV) and in the soluble supernatant fraction of culture
medium (CM) of CHO-PODXL-GFP cells. A) Cells were cultured in 30 mm plates with
3 mL of serum-free medium, for 2 h. The cells were harvested and suspended in 50 μL of
lysis buffer. The culture medium was processed as described in Fig. 5 and the
microvesicles (MV) suspended in 50 μL of lysis buffer. The culture medium (CM) was
immunoprecipitated with 2 μg of purified anti-PODXL moAb (B34D1.3) as described in
Materials and methods. 50 μg of lysate proteins, 50 μL of MV and 50 μL of CM
immunoprecipitated proteins were electrophoresed in SDS-PAGE and blotted with
anti-PODXL moAb B34D1.3 or with anti-GFP Ab. B) To determine whether the PKC
activity or inhibitors or matrix metalloproteinase altered the excretion of PODXL, CHO-
PODXL-GFP cells were incubated for 2 h in serum-free medium in the presence or the
absence of 100 nM phorbol-esters (PMA), 100 nM staurosporine, 100 nM of both
“GACFSIAHECG” and control peptide, 10 nM Ro31-9790, or the indicated combinations
of these reagents. At the end of the incubation the cell lysates (L) were processed as
indicated before. The extracellular medium was separated in two fractions: particulate
(microvesicles) (MV) and particle-free supernatant (CM). The latter was immunopre-
cipitated with anti-PODXL moAb and the precipitates electrophoresed and blotted with
anti-PODXL.
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The finding of similar distribution of PODXL in total cell lysates or
in soluble (not shown) or insoluble fractions of culture medium of
Tera-1 cells (Fig. 7B) seems to validate our results on cells expressing
recombinant human PODXL.

PODXL reactivity from the insoluble fraction (microvesicles) of
extracellular medium blotted with anti-GFP showed a similar size
than fully glycosilated PODXL (Fig. 8A). On the contrary, the size of the
PODXL-immunoreactive protein of the soluble extracellular fraction
was smaller than native PODXL, suggesting it was a form lacking the
carboxylic-GFP terminus. We estimate that the PODXL content in
microvesicles could account for less than b1% of the total cellular
content, while the extracellular content would be less than b0.3%.

Fig. S3 depicts the estimated matrix metalloproteinases (MMP)
sites in the PODXL molecule, analyzed according to the protease
cleavage sites described by Turk et al. 2001 [15]. Three of the PODXL
reactive proteins in cell lysates showed apparent molecular weights
that seem to agree with the estimated protein subproducts of PODXL
digestion by matrix metalloproteinases MMP-1,2,9 and 14 (Fig. S3).
MMP-1 is collagenase, MMP-2 and 9 are gelatinases and MMP-14 is a
membrane typemetalloproteinase (MT-MMP-14) [16] and all of them
have been shown to be active in CHO cells [17–19]. The additional
bands of≥80 and 50 KDa detected in concentrates of the particle-free
soluble fraction of extracellular medium may be irrelevant since they
were also found in cell transfected only with GFP (Fig. S3). To evaluate
the importance of metalloproteinases on the fate of cellular PODXL,
we studied the effect of activating the protein kinase C (PKC) by
phorbol 12-myristate 13-acetate (PMA) with or without inhibitors of
PKC. We have also studied the effects of the general inhibitor of zinc–
dependent matrix metalloproteinases, Ro31–9790, previously shown
to be effective in CHO cells [17], or the specific inhibitor of MMP-14,
the peptide “GACFSIAHECGA” [20], on CHO-PODXL-GFP cells incu-
bated for 2 h, in serum-free medium. Activation of protein kinase C
increased the amount of PODXL-immunoreactive material in anti-
PODXL immunoprecipitates of the soluble, particle-free, supernatants,
effect that was reversed by staurosporine or by the inhibitors of
metalloproteinases Ro31-9790 or “GACFSIAHECG” (Fig. 8B).

4. Discussion

By wide-field microscopy of fully extended migrating cells, we
detected PODXL-GFP-containing microvesicles at the leading edges of

image of Fig.�7
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the cell, regions of intercellular contact, andmoving forward along the
filopodia. The microscopic analysis suggested that PODXL was
released to the extracellular space as microvesicles of ≤100 nM.

The finding of full size, glycosylated, PODXL in the extracellular
insoluble particulate fraction (microvesicles) indicates that PODXL was
released as a cargo of microvesicles, presumably forming macromolec-
ular complexes with other exported proteins.

The analysis of soluble and insoluble extracellular fractions of cells
expressing PODXL with GFP linked to either the carboxylic (PODXL-
GFP) or the amino-terminal end (GFP-PODXL) and using anti-PODXL
or anti-GFP, allowed the detection of full size glycosylated PODXL-GFP
as well as a smaller soluble protein reacting with anti-PODXL but not
with anti-GFP, indicating it was an ectodomain fragment.

The release of PODXL is in line with observations made in other
plasma membrane regulatory proteins that undergo a process of
cleavage releasing an ectodomain fragment to the extracellular space
[11]. Plasma membrane proteins like CD40L [21], P-selectin [22],
growth hormone receptor [17], epidermal growth factor (EGF) [23] or
tumor necrosis factor (TNF) families [24], among others, are
synthesized as plasma transmembrane forms that undergo a process
of cleavage releasing a soluble fragment of the ectodomain. The
fragment of PODXL released could modulate the function of ligands
acting as either antagonists or agonists in the formation of active
signaling complexes, as it has been suggested for other proteins [25].

The soluble fragment of PODXL might have been cleaved by
metalloproteinases [26]. Based on the matrix metalloproteinases
(MMP) excision sites [15] we identify three potential cleavage sites in
the PODXL protein sequence that could eventually be responsible for
some of the PODXL peptide subproducts detected in cell lysates. Since
the activity of metalloproteinases is stimulated by PKC, we investi-
gated the role played by MMPs in releasing PODXL by stimulating the
activity of PKC or using specific inhibitors of matrix metalloprotei-
nases. Activation of PKC by PMA increased the amount of podocalyxin
in immunoprecipitates of particle-free supernatant of extracellular
medium. On the contrary, inhibition of PKC by staurosporine, matrix
metalloproteinase inhibitors, like Ro31-9790, or the peptide inhibitor
“GACFSIAHECG”, they both prevented the stimulatory effect of PMA.
These observations suggest that MMPs-mediated cleavage is a
relevant mechanism for the cellular release of soluble PODXL. We
estimate that, after 2 h of cell incubation, the PODXL content in the
extracellular insoluble material was ≤1% of the total cell PODXL,
whereas the soluble PODXL content was ≤0.3%. These values are in
line with the 2% reported for other shedded membrane proteins
whose released fragments are functionally active [11,18]. The
physiopathological significance of our findings is consonant with the
finding of a PODXL fragment of 2.3 kDa, comprising part of the
extracellular and transmembrane domains, found in the extracellular
medium of colon cancer cells [27].

Urinary excretion of PODXL is a useful marker for detection and
progression of kidney inflammatory disorders [28]. The need of
detergents to solubilize the urinary sediments of patients indicates
the association of PODXL with insoluble cellular materials. Recently,
Hara et al. reported the presence of intact PODXL in the urinary
sediment of nephritic patients as “podocalyxin positive granular
structures (PPGS)”, thought to originate from tip vesiculation of
podocyte microvilli [29]. This observation agrees with the normal
location of podocalyxin at the luminal face (microvilli) of glomerular
podocytes and with the cellular destruction caused by the inflamma-
tion injury. Moreover, Hara et al. failed to find podocalyxin in
exosomes, suggesting their findings may not be applicable to normal
physiological conditions or they may not reflect the trafficking of
podocalyxin in cells other than podocytes.

The soluble ectodomain of PODXL (PODXLΔ429) inhibits the PODXL
responses [10]. Thus, it seems plausible to consider PODXL as another
example of membrane proteinwith a duality of functions: as a full size
membrane protein sending inward signaling, or as a soluble portion of
extracellular domain exerting antagonistic effects and facilitating the
intercellular communication. The transfer of signaling molecules from
tumor cells microvesicles into other type of cells has been recently
demonstrated [30,31]. Thus, the possibility should be considered that
the released PODXL into the extracellular space could serve this
function.

To conclude, the morphological and biochemical data presented in
this work supports the idea that PODXL is secreted into the
extracellular medium as a cargo of microvesicles either as an intact
protein or as a cleaved fragment of the ectodomain. The presence of
both forms of extracellular PODXL should be taken into account when
the physiological action of this molecule was to be evaluated.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.bbamcr.2011.05.009.
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