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Abstract A mathematical model of the movement of the shoreline in a sedimentary ocean basin is

discussed. The model includes space–time fractional derivative in Caputo sense and variable latent

heat term. An approximate solution of the problem is obtained by Adomian decomposition method

and the results thus obtained are compared graphically with an exact solution of integer order

(b = 1, a = 1). Three particular cases, the standard diffusion, the time-fractional and the space-

fractional diffusions are also discussed. The model and solution are generalization of previous

works.
� 2013 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

An interesting moving boundary problem in the field of earth
surface science involves the movement of the shoreline in a sed-
imentary ocean basin (a shoreline problem). The classical dif-
fusion transport models [1–3] provide a reliable means of

modeling the sediment transport in fluvial depositional sys-
tems. The assumptions of the classical diffusion equation are
thin-tailed periods of inactivity and thin-tailed transport dis-
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tances for sediment particles. From the literature [4–7], the
deviation from normal (Fickian) diffusion in sediment tracer

dispersion is observed that violates the assumption of statisti-
cal convergence to a Gaussian. Therefore, the fractional diffu-
sion equations are widely used for the investigation of the

mechanism of anomalous diffusion in transport processes
through complex and/or disordered systems including fractal
media [8,9]. It is well known that fractional derivative is a good

tool for taking into account memory mechanism, particularly
in some diffusive processes [10]. Both space and time fractional
operators correspond to the diffusion limit of continuous time
random walk models with long-tailed waiting time and/or

jump length distributions [10,11]. Li et al. [12] used Caputo
derivative b 2 (0,1] and Riesz-Feller derivative a 2 (0,2] oper-
ators for the first order time derivative and second order space

derivative, respectively and presented an analytic solution to
fractional form of a moving boundary problem in drug release
devices in term of Fox H function. Voller [13] presented
ier B.V. All rights reserved.
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Nomenclature

h height of the earth’s crust (basement) above

datum, m
x space variable, m
t time
z(t) ocean level above datum, m

s(t) shoreline position, m
u(t) position of intersection between offshore sediment

wedge and basement, m

q prescribed sediment line flux, m3 m�1 t�1

a slope of off-shore sediment wedge

b slope of basement

Greek symbols
g height of sediment above datum, m
c a constant

m diffusion coefficient, m2 t�1

a fractional order of space derivative
b fractional order of time derivative
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fractional (non-integer) form of a limit Stefan problem using
Caputo derivatives for both space and time, and discussed

exact solution of the problem. Recently, some researchers
[14–17] also discussed various mathematical models governed
with different fractional derivatives for both the space and time.

The most commonly used definitions in mathematical mod-
els are the Riemann–Liouville and Caputo. Riemann–Liouville
fractional derivative requires initial conditions to be expressed

in terms of fractional integrals and their derivatives which have
no obvious physical interpretation. So, Riemann–Liouville
fractional derivative is not always the most convenient defini-
tion for real applications [18]. However, Caputo fractional

derivative requires the initial conditions (including the mixed
boundary conditions) in the same form as that of ordinary dif-
ferential equations with integer derivatives [18]. These integer-

order derivatives represent well-understood features of a phys-
ical situation and therefore their values can be measured accu-
rately. Another advantage is that the Caputo derivative of a

constant is zero, whereas the Riemann–Liouville fractional
derivative of a constant is not zero. Therefore, it is interesting
and applicable to use Caputo fractional derivative in diffusion
model of sediment transport on earth surface. It can be seen in

[19,20] that a pure power-law, heavy-tailed probability density
function for the periods of inactivity without any truncation
leads to a time-fractional diffusion equation which describes

the evolution of surface elevation in time. Voller and Paola
[21] presented the deviation of fluvial profiles from ones pre-
dicted by classical diffusion and proposed the exploration of

fractional diffusive model to describe the observed steady-state
fluvial profiles in a depositional system. Ganti et al. [22] dis-
cussed time fractional diffusion model for the surface dynam-

ics of depositional systems by considering the fact that the
periods of inactivity are heavy-tailed. They also discussed
physical mechanisms constrain the occurrence of extremes in
depositional systems and how these constraints reflect in the

probability distributions of the random variables. They also
presented that preliminary thoughts on continuum models
for surface evolution of depositional systems are consistent

with the documented probability distributions for erosional,
depositional and inactivity events. Martin et al. [23] also dis-
cussed the physical basis for anomalous diffusion in bed load

transport. Rajeev and Kushwaha [24] also discussed a mathe-
matical model with time-fractional derivative for a moving
boundary problem which occurs in sedimentation process.

These models motivate to discuss space–time fractional diffu-
sion model in sedimentation process to study the physical ef-
fect in complex domain.
The diffusion equation with a moving boundary (moving
boundary problem) is a special nonlinear problem which is dif-

ficult to get the exact solution [25,26]. Hence, many approxi-
mate and numerical methods have been used to solve the
moving boundary problems [27–33]. The approximate analyt-

ical approach taken in this literature is Adomian decomposi-
tion method (ADM). Adomian decomposition method was
developed by Adomian [34–36] and has been applied to solve

a wide class of non-linear differential and partial differential
equations [37,38]. Grzymkowski and Slota [39] presented the
solution of One-phase inverse Stefan problem by Adomian
decomposition method. Das and Rajeev [29] also used and

Adomian decomposition method to solve time-fractional dif-
fusion equation with a moving boundary condition which is re-
lated to the diffusional release of a solute from a polymer

matrix in which the initial loading is higher/lower than the
solubility.

In this study, we consider the non-classical or non-Fickian,

anomalous sediment transport in braided networks. Our atten-
tion in this paper is to discuss a moving boundary problem
governed by fractional space–time derivative in Caputo sense
which arises during the movement of the shoreline in a sedi-

mentary ocean basin. The main physical purpose for adopting
and investigating diffusion equations with fractional space–
time derivative is to describe phenomena of anomalous

(non-Fickian) sediment transport through complex and/or
disordered systems including fractal media which occurs in
sedimentation process. Adomian decomposition method is

successfully applied to solve the proposed problem. The ob-
tained results are compared with the existing exact solutions.
2. The fluvio-deltaic sedimentation model

Fluvio-deltaic sedimentation problem involves the shoreline
propagation in a sedimentary ocean basin due to a sediment

line flux, tectonic subsidence of the earth’s crust, and sea level
change. The mathematical model of fluvio-deltaic sedimenta-
tion process is discussed in [1–3]. In this paper, we consider a
fixed line flux, a constant ocean level (z = 0), no tectonic sub-

sidence of the earth’s crust, and a constant sloping basement
b< a. This scenario is a reasonable approximation for some
modern continental margins. A schematic cross section of such

a basin indicating the variables is revealed in Fig. 1 [2]. Under
this limit case, the dynamics of the sedimentation process be-

come a moving boundary problem with variable latent heat

(see in [2]) which is as follows



Figure 1 A schematic cross section of a basin with no tectonic

subsidence and sea level change.
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@g
@t
¼ m

@2g
@x2

; 0 < x < sðtÞ ð1Þ

with initial and boundary conditions

m
@g
@x

����
x¼0
¼ �qðtÞ ð2Þ

and

gðs; tÞ ¼ 0 ð3Þ

where g(x, t) is height of sediment above datum, m is a diffusion
coefficient, q(t) is the time-dependent sediment line flux and
s(t) is the moving contact point (moving interface).

The additional conditions on the moving interface are

�m
@g
@x

����
x¼sðtÞ

¼ cs
ds

dt
ð4Þ

and

sð0Þ ¼ 0 ð5Þ

where aðu� sÞ ¼ abs
a�b ¼ cs.

3. The fractional model

In order to describe phenomena of anomalous (non-Fickian)
sediment transport through complex and/or disordered sys-
tems including fractal media, we consider above moving

boundary problem with fractional space–time derivatives.
Using Caputo fractional derivatives for both space and time
as given in [13], a space–time fractional form of the Eqs. (1)–

(5) can be described as follows:

Db
t gðx; tÞ ¼ m

@

@x
Da

xgðx; tÞ
� �

ð0 < x < sðtÞ; 0 < a; b 6 1Þ

ð6Þ

with the following posed conditions

mDa
xgð0; tÞ ¼ �q ð7Þ

gðs; tÞ ¼ 0: ð8Þ

The additional conditions on the moving interface are

�mDa
xgðsðtÞ; tÞ ¼ csDb

t sðtÞ ð9Þ
and

sð0Þ ¼ 0 ð10Þ

where aðu� sÞ ¼ abs
a�b ¼ cs and q is prescribed sediment line flux

that is considered as a constant. The operator, Caputo frac-
tional derivative [13] is defined as

Db
t fðtÞ ¼ Db�n

t ½fðnÞðtÞ�

¼ 1

Cðn� bÞ

Z t

0

fðnÞðsÞ
ðt� sÞbþ1�n

ds ðn� 1 < b 6 n; n 2 NÞ

and

D�b
t fðtÞ ¼

Z t

0

ðt� sÞb�1

CðbÞ fðsÞds ðb > 0Þ

where C (.) is the Gamma function. In this paper, following
properties of fractional derivative [13,30] are used

(i) the Caputo derivative of a constant C is

DbC ¼ 0

(ii) for any real value m P 1 P b > 0or 0 < m 6 b 6 1

Db
t t

m ¼ Cð1þmÞ
Cð1þm� bÞ t

m�b ð11Þ

In particular, if b > 0.
Db

t t
bþ1 ¼ Cðbþ 2Þt and Db

t t
b ¼ Cðbþ 1Þ.

4. Solution of the problem by Adomian decomposition method

We first write the Eq. (6) in operator form

Lxxgðx; tÞ ¼ D1�a
x

1

v

@bgðx; tÞ
@bt

� �
ð12Þ

where Lxx ¼ @2

@x2
.

Assuming that the inverse operator L�1xx exists and

L�1xx ð:Þ ¼
Z x

0

Z x

0

ð:Þdxdx

Applying the inverse operator L�1xx on the both side of Eq. (12)

gðx; tÞ � gð0; tÞ ¼ L�1xx D1�a
x

1

v

@bgðx; tÞ
@bt

� �� �
ð13Þ

Choosing the following initial approximations of g(x, t) and
s(t) as given in [29]

g0 ¼ c sa0 � xa
� �

where c ¼ q
vCð1þaÞ

and s0 = a0t
b/2

where a0 ¼ cv
c

Cð1�b=2ÞCð1þaÞ
Cð1þb=2Þ

� �1=2
.

According to the Adomian decomposition method [34],
decomposing the unknown function g(x, t) as follows:

gðx; tÞ ¼ g0 þ g1 þ g2 þ � � � ð14Þ

From the Eqs. (13) and (14), the components g0,g1,g2 . . . are
recursively determined by

g0 ¼ gð0; tÞ ¼ c sa0 � xa
� �
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Figure 2 Plot of g(x, t) vs. x for q= 0.5, v = 2.0 and c = 10.
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and so on. Thus,
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which give height of the sediment above the datum.

Now, using (15) and writing the interface condition (9) in
operator form

sðtÞ ¼ s0 �D�b
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Accordingly [36], decomposing s(t) as

sðtÞ ¼
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sn ð17Þ

Using (16) and (17), we have
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where An are so-called Adomian polynomials for non-linear

terms and defined as
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and so on. Therefore, approximate analytical solution of
s(t) is given by

sðtÞ ¼ s0 þ s1 þ s2 þ � � � ð19Þ
5. Numerical comparison and discussion

In this section, numerical results for height of sediment g(x, t)
and shoreline positions s(t) are calculated using MATHEM-
ATICA software and depicted through figures. The solution
of the problem is discussed in detail by considering three par-
ticular cases:

Case1. When a = 1, b = 1, the Eqs. (6)–(10) reduce to the
Eqs. (1)–(5) which is standard moving boundary problem.

In order to show the accuracy of the proposed approximate
solution, we compare it with the existing exact solution for
integer order given by Voller et al. [2]. Figs. 2 and 3 repre-

sent the dependence of height of sediment g(x, t) on space x
for standard moving boundary problem (a = 1, b = 1) at
the fixed value of diffusion coefficient (v= 2.0), sediment

line flux (q = 0.5) and time t = 3.0 for c = 10 and
c = 15, respectively. Figs. 4 and 5 depict the dependence
of the shoreline position on time at the fixed value of
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Figure 6 Plot of s(t) vs. t for q= 0.5, v= 2 and c = 15.
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Figure 4 Plot of s(t) vs. t for q= 0.5, v = 2.0 and c = 10.
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Figure 3 Plot of g(x, t) vs. x for q= 0.5, v= 2.0 and c = 15.
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Figure 7 Plot of s(t) vs. t for q= 1.5, v= 2 and c = 15.
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Figure 8 Plot of s(t) vs. t for q= 0.5, v= 2 and c = 15.
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diffusion coefficient (v = 2.0) and sediment line flux

(q= 0.5) for c = 10 and c = 15, respectively. It can be seen
from Figs. 2–5 that the proposed approximate solution is
close to the exact solution. Moreover, it is clear from Figs. 4,

5 that the movement of shoreline position decreases as the
value of c increases. In this case the sedimentation process
becomes slow and the sediments will be deposited towards

the land side which causes the increase of the thickness of
earlier sediments. As a consequence of this there will be
least shifting of the contact point towards the land side
and sedimentation process will be slower.
Case 2. When a = 1,0 < b < 1, the Eqs. (6)–(10) degener-

ate into a moving boundary problem governed with time-
fractional derivative. Figs. 6 and 7 explain the dependence
of shoreline position on time for different Brownian motion

b ¼ 1
3
; 1
2
; 2
3
, and also for the standard motion b = 1.0 at the

fixed value of v = 2.0, c = 15 and a = 1. It is observed
from Figs. 6, 7 that the rate of increase of s(t) decreases
with the increase of b which confirms the exponential decay

of regular Brownian motion. This result is in good agree-
ment with the result of Das and Rajeev [28].
Case 3. When 0 < a < 1,b = 1, the proposed problem

becomes a moving boundary problem with space-fractional
derivatives. Figs. 8 and 9 show the plot of shoreline position
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s(t) on time for different values ofa ¼ 1
6
; 1
4
; 1
2
and 1 at the

fixed value of v = 2.0 and c = 15 for b = 1.

It can be seen from the Figs. 6–9 that if the sediment line
flux q increases(q= 0.5, 1.5), the movement of the contact
point (shoreline position) increases towards sea side with for-

mation of inclined strata along the off-shore sediment wedge.
This conclusion show the fact that the models are well consis-
tent with truth. Figs. 6–9 also show that trajectory of the

movement of contact point deviates more from standard mo-
tion for the case of time fractional than space fractional case
during sedimentation process.

6. Conclusion

In this work, we discussed a mathematical model governed by
space–time fractional derivative in Caputo sense for a moving

boundary problem which occurs in fluvio-deltaic sedimenta-
tion process on earth surface. The solution of the proposed
problem is obtained by Adomian decomposition method

(ADM). It is found that sedimentation process becomes slow
as the value of c increases and sedimentation process becomes
fast as the sediment line flux increases for standard as well as

fractional Brownian motion. It is observed that time fractional
is more pronounced than space fractional during sedimenta-
tion process. Moreover, it is seen that ADM is a powerful
and accurate method for finding the solution of moving

boundary problem. It is straight forward and avoids the hectic
work of calculations. The author believes that the procedure as
described in the present study will considerably benefit to engi-

neers and scientists working in this field.
Acknowledgement

The authors express their sincere thanks to the anonymous ref-

erees for their valuable suggestions for the improvement of the
paper.

References

[1] Swenson JB, Voller VR, Paola C, Parker G, Marr JG. Fluvio-

deltaic sedimentation: a generalized Stefan problem. Eur J Appl

Maths 2000;11:433–52.
[2] Voller VR, Swenson JB, Paola C. An analytic solution for a

Stefan problem with variable latent heat. Int J Heat Mass

Transfer 2004;47:5387–90.

[3] Capart H, Bellal M, Young DL. Self-similar evolution of semi-

infinite alluvial channels with moving boundaries. J Sediment Res

2007;77:13–22.

[4] Schumer R, Meerschaert MM, Baeumer B. Fractional advection–

dispersion equation for modelling transport at the earth surface. J

Geophys Res 2009;114. http://dx.doi.org/10.1029/2008JF001246.

[5] Ganti V, Singh A, Passalacqua P, Foufoula-Georgiou E. Subor-

dinated Brownian motion model for sediment transport. Phys Rev

E 2009;80. http://dx.doi.org/10.1103/Phys-RevE.80.011111.

[6] Nathan Bradley D, Tucker GE, Benson DA. Fractional disper-

sion in a sand bed river. J Geophys Res 2010;115:F00A09. http://

dx.doi.org/10.1029/2009JF001268.

[7] Foufoula-Georgiou E, Stark CP. Introduction to special section

on Stochastic transport and emergent scaling on earth’s surface:

rethinking geomorphic transport-stochastic theories, broad scales

of motion and nonlocality. J Geophys Res 2010;115:F00A01.

http://dx.doi.org/10.1029/2010JF001661.

[8] Li XC, Xu MY, Wang SW. Scale-invariant solutions to partial

differential equations of fractional order with a moving boundary

condition. J Phys A Math Theor 2008;41:155202.

[9] Junyi Liu, Mingyu Xu. Some exact solutions to Stefan problems

with fractional differential equations. J Math Anal Appl

2009;351:536–42.
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