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Abstract

The relationships between (strict, strong) convexity of non-differentiable functions and (
strong) monotonicity of set-valued mappings, and (strict, strong, sharp) pseudo convexity o
differentiable functions and (strict, strong) pseudo monotonicity of set-valued mappings, as
quasi convexity of non-differentiable functions and quasi monotonicity of set-valued mappin
studied in this paper. In addition, the relations between generalized convexity of non-differe
functions and generalized co-coerciveness of set-valued mappings are also analyzed.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

It is well known that the generalized monotonicity of set-valued mappings play
important role in studying the existence and the sensitivity analysis of solutions for
ational inequalities, variational inclusions, and complementarity problems. In the ca
real-valued functions, this topic has been studied in the context of literature ([1–6] an
erences therein) and related to the generalized convexity of differentiable functions [
which is a basis in investigating mathematical programming as well as economic theo
Komlósi in [10] discussed the relationships between quasi (pseudo, strict pseudo
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vexity of lower semi-continuous functions and quasi (pseudo, strict pseudo) mono
ity of their generalized derivatives by means of the generalized monotonicity of bi
tions which are still single-valued functions. However, few research has been do
the relationships of generalized convexity of non-differentiable functions and gener
monotonicity of set-valued mappings.

This paper is devoted to study the relationships between generalized conve
non-differentiable functions and generalized monotonicity as well as generalize
coerciveness of set-valued mappings. It is organized as follows. In Section 2, we
some basic concepts and results used in the sequel. In Section 3, we establish the
ships between (strict, strong) convexity of non-differentiable functions and (strict, st
monotonicity of set-valued mappings. In Section 4, we analyze the relationships be
(strict, strong, sharp) pseudo convexity and (strict, strong, sharp) pseudo monotonic
in Section 5, we discuss the relation between quasi convexity and quasi monotoni
Section 6, we investigate the relationships between other types of generalized mono
and convexity, pseudo convexity as well as quasi convexity.

2. Preliminaries

Let X be a real Banach space endowed with a norm‖ · ‖ andX∗ its dual space with a
norm‖ · ‖∗. We denote by 2X

∗
, 〈· , ·〉, [x, y], and(x, y) the family of all non-empty subse

of X∗, the dual pair betweenX andX∗, the line segment forx, y ∈ X, and the interior of
[x, y], respectively. LetK be a non-empty open convex subset ofX, T :X → 2X∗

a set-
valued mapping andf :X → R a non-differentiable real-valued function. The followi
concepts and results are taken from [11].

Definition 2.1. Letf be locally Lipschitz continuous at a given pointx ∈ X andv any other
vector inX. The Clarke’s generalized directional derivative off at x in the directionv,
denoted byf 0(x; v), is defined by

f 0(x; v) = lim sup
y→x, t↓0

f (y + tv) − f (y)

t
.

Definition 2.2. Let f be locally Lipschitz continuous at a given pointx ∈ X andv any
other vector inX. The Clarke’s generalized subdifferential off at x, denoted by∂cf (x),
is defined as follows:

∂cf (x) = {
ξ ∈ X∗: f 0(x; v)� 〈ξ, v〉, ∀v ∈ X

}
.

Lemma 2.1. Letf be locally Lipschitz continuous with a constantL at x ∈ X. Then:

(i) ∂cf (x) is a non-empty convex weak*-compact subset ofX∗ and ‖ξ‖∗ � L for each
ξ ∈ ∂cf (x);

(ii) For everyv ∈ X, f 0(x; v) = max{〈ξ, v〉: ξ ∈ ∂cf (x)}.



278 L. Fan et al. / J. Math. Anal. Appl. 279 (2003) 276–289

he line

nd

lies
Lemma 2.2 (Mean value theorem).Let x and y be points inX and suppose thatf is
Lipschitz continuous near each point of a non-empty closed convex set containing t
segment[x, y]. Then there exists a pointu ∈ (x, y) such that

f (x)− f (y) ∈ 〈
∂cf (u), x − y

〉
.

Lemma 2.3. If f is convex onK and locally Lipschitz continuous atx ∈ K, then∂cf (x)

coincides with the subdifferential∂f (x) of f at x in the sense of convex analysis, a
f 0(x; v) coincides with the directional derivativef ′(x; v) for eachv ∈ X, where

∂f (x) = {
ξ ∈ X∗: f (y)− f (x) � 〈ξ, y − x〉, ∀y ∈ K

}
,

f ′(x; v) = lim
t↓0

f (x + tv) − f (x)

t
.

3. Convexity and monotonicity

In this section, we establish the relations between (strict, strong) convexity off and
(strict, strong) monotonicity of its Clarke’s generalized subdifferential mapping∂cf ,
which is a set-valued mapping.

Definition 3.1. (i) f is said to be convex onK if for any x, y ∈ K and anyt ∈ [0,1],
f

(
tx + (1− t)y

)
� tf (x)+ (1− t)f (y);

(ii) f is said to be strictly convex onK if for any x, y ∈ K with x �= y and anyt ∈ (0,1),

f
(
tx + (1− t)y

)
< tf (x)+ (1− t)f (y);

(iii) [7] f is said to be strongly convex onK if there exists a constantα > 0 such that
for anyx, y ∈ K and anyt ∈ [0,1],

f
(
tx + (1− t)y

)
� tf (x)+ (1− t)f (y)− αt(1 − t)‖x − y‖2.

It is evident that strong convexity implies strict convexity and strict convexity imp
convexity. But the converses are not true in general. For example, the function

f (x) =
{1− x, x ∈ [0,1],

0, x ∈ [1,2],
x − 2, x ∈ [2,3],

is convex but not strictly convex on the interval[0,3] and the functionf (x)= (1+ x2)1/2

is strictly convex but not strongly convex onR, for details see [12].

Definition 3.2. (i) [7] T is said to be monotone onK if for any x, y ∈ K and anyu ∈ T (x),
v ∈ T (y) one has

〈u − v, x − y〉 � 0;
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(ii) T is said to be strictly monotone onK if for any x, y ∈ K with x �= y and any
u ∈ T (x), v ∈ T (y) one has

〈u − v, x − y〉 > 0;
(iii) [7] T is said to be strongly monotone onK if there exists a constantα > 0 such

that for anyx, y ∈ K and anyu ∈ T (x), v ∈ T (y) one has

〈u − v, x − y〉 � α‖x − y‖2;
(iv) [13] T is said to be partially relaxed strongly monotone onK if there exists a

constantβ > 0 such that for anyx, y, z ∈ K and anyu ∈ T (x), v ∈ T (y) one has

〈u − v, z − y〉 � −β‖x − z‖2.

We can easily see from Definition 3.2 that the class of strictly monotone map
includes the class of strongly monotone mappings and the class of monotone ma
includes the classes of strictly monotone and partially relaxed strongly monotone
pings. But the converses are not true in general, for the sake of convenience, we o
the following several real-valued functions.

It is clear that a constant functionT (x) = c is partially relaxed strongly monotone b
neither strictly monotone nor strongly monotone onR.

The functionT (x)= x2 is strictly monotone but neither strongly monotone nor parti
relaxed strongly monotone on the interval[0,+∞). Indeed, for any real numberβ > 0, let
x = 4β , y = 2β , andz = β . Then〈

T (x)− T (y), z− y
〉 + β‖x − z‖2 = (x2 − y2)(z − y)+ β(x − z)2 = −3β3 < 0,

which indicates thatT is not partially relaxed strongly monotone on[0,+∞).
Similarly, we can prove that the functionT (x) = x2 is strongly monotone but no

partially relaxed strongly monotone on the interval[1,+∞). In fact, it suffices to take
x = 4β + 1, y = 2β + 1, andz = β + 1 for any real numberβ > 0.

Proposition 3.1. Letf be locally Lipschitz continuous onK. Then:

(i) f is convex onK if and only if for anyx, y ∈ K and anyη ∈ ∂cf (y) one has

f (x)− f (y) � 〈η,x − y〉; (3.1)

(ii) f is strongly convex onK with a constantα > 0 if and only if for anyx, y ∈ K and
anyη ∈ ∂cf (y) one has

f (x)− f (y) � 〈η,x − y〉 + α‖x − y‖2. (3.2)

Proof. We only prove the assertion (ii). With the similar way, we can prove the if part o
and the only if part is trivial. Suppose first thatf is strongly convex onK with a constant
α > 0. Then for anyx, y ∈ K and anyt ∈ (0,1) one has

t
[
f

(
tx + (1− t)y

) − f (x)
] + (1− t)

[
f

(
tx + (1− t)y

) − f (y)
]

� −αt(1− t)‖x − y‖2.
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Consequently, from Lemma 2.3 it follows that

f (y)− f (x)+ f 0(y;x − y) � −α‖x − y‖2.

By Lemma 2.1 (ii), we can deduce that inequality (3.2) holds for anyη ∈ ∂cf (y).
Conversely, assume that inequality (3.2) holds for anyx, y ∈ K and anyη ∈ ∂cf (y).

Then for anyt ∈ [0,1] and anyγ ∈ ∂cf (tx + (1− t)y), one has

tf (x)− tf
(
tx + (1− t)y

)
� t (1− t)〈γ, x − y〉 + αt(1− t)2‖x − y‖2,

(1− t)f (y)− (1− t)f
(
tx + (1− t)y

)
� −t (1− t)〈γ, x − y〉 + αt2(1− t)‖x − y‖2.

Hence,

tf (x)+ (1− t)f (y)− f
(
tx + (1− t)y

)
� αt(1 − t)‖x − y‖2,

which indicates thatf is strongly convex onK with α > 0. ✷
The following theorem was stated in [11, Proposition 2.2.9] without proof. For the

of completeness, we provide a proof here.

Theorem 3.2. Let f be locally Lipschitz continuous onK. Thenf is convex onK if and
only if its Clarke’s generalized subdifferential mapping∂cf is monotone onK.

Proof. We first assume thatf is convex onK. For any givenx, y ∈ K, ξ ∈ ∂cf (x), and
η ∈ ∂cf (y), according to inequality (3.1), we have

〈ξ − η,x − y〉 = −〈ξ, y − x〉 − 〈η,x − y〉 � f (x)− f (y)+ f (y)− f (x) = 0.

Hence,∂cf is monotone onK.
Conversely, suppose that∂cf is monotone onK. For any givenx, y ∈ K with x �= y and

t ∈ (0,1), in view of Lemma 2.2, there existh, l ∈ (0,1): 0< h < t < l < 1, p ∈ ∂cf (u),
andq ∈ ∂cf (v) such that

f (x)− f
(
tx + (1− t)y

) = (1− t)〈p,x − y〉,
f (y)− f

(
tx + (1− t)y

) = −t〈q, x − y〉,
whereu = y + l(x − y) ∈ (x, tx + (1− t)y) andv = y + h(x − y) ∈ (tx + (1− t)y, y). In
view of the monotonicity of∂cf , we can deduce that

〈p − q,u− v〉 = (l − h)〈p − q, x − y〉 � 0.

Therefore, for anyx, y ∈ K with x �= y and anyt ∈ (0,1) one has

f
(
tx + (1− t)y

)
� tf (x)+ (1− t)f (y). (3.3)

It is clear that inequality (3.3) holds wheneverx = y or t = 0 and 1. The proof is complet✷
Theorem 3.3. Let f be locally Lipschitz continuous onK. If ∂cf is strictly monotone
onK, thenf is strictly convex onK.
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Theorem 3.4. Let f be locally Lipschitz continuous onK. Thenf is strongly convex on
K with α > 0 if and only if∂cf is strongly monotone onK with 2α.

Proof. The only if part is immediate consequence of Proposition 3.1(ii). It suffices to p
the if part. Let∂cf be strongly monotone onK with β > 0. Assume to the contrary thatf
is not strongly convex onK, then, for anyα > 0, there existx0, y0 ∈ K with x0 �= y0 and
η0 ∈ ∂cf (y0) such that

f (x0)− f (y0) < 〈η0, x0 − y0〉 + α‖x0 − y0‖2.

From Lemma 2.2 it follows that there existt0 ∈ (0,1) andγ0 ∈ ∂cf (u0) such that

〈γ0 − η0, x0 − y0〉 < α‖x0 − y0‖2,

whereu0 = t0x0 + (1− t0)y0. Consequently, we have

βt20‖x0 − y0‖2 = β‖u0 − y0‖2 � 〈γ0 − η0, u0 − y0〉 < αt0‖x0 − y0‖2,

that is,α > t0β , which contradicts the arbitrariness ofα.
Suppose thatf is strongly convex onK with α > 0. We want to show thatβ = 2α. For

any givenx, y ∈ K, ξ ∈ ∂cf (x), andη ∈ ∂cf (y), it follows from Proposition 3.1(ii) that

f (x)− f (y) � 〈η,x − y〉 + α‖x − y‖2,

f (y)− f (x) � 〈ξ, y − x〉 + α‖x − y‖2.

Proceeding to the next step, we have〈ξ −η,x −y〉 � 2α‖x −y‖2. Therefore,β = 2α. The
proof is complete. ✷

4. Pseudo convexity and pseudo monotonicity

This section discusses the relationships between strict (strong, sharp) pseudo co
of the non-differentiable functionf and strict (strong) pseudo monotonicity of its Clark
generalized subdifferential mapping∂cf .

Definition 4.1. Let f be locally Lipschitz continuous onK. Then:

(i) f is said to be pseudo convex onK if for any x, y ∈ K and anyη ∈ ∂cf (y),

〈η,x − y〉 � 0 implies f (x) � f (y);
(ii) f is said to be strictly pseudo convex onK if for any x, y ∈ K with x �= y and any

η ∈ ∂cf (y),

〈η,x − y〉 � 0 implies f (x) > f (y);
(iii) f is said to be strongly pseudo convex onK if there exists a constantα > 0 such that

for anyx, y ∈ K and anyη ∈ ∂cf (y),

〈η,x − y〉 � 0 implies f (x) � f (y)+ α‖x − y‖2;
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(iv) f is said to be sharply pseudo convex onK if there exists a constantα > 0 such that
for anyx, y ∈ K, t ∈ [0,1], andη ∈ ∂cf (y),

〈η,x − y〉 � 0 implies f (x) � f
(
x + t (x − y)

) + αt(1 − t)‖x − y‖2.

Note that the concepts of pseudo convexity, strong pseudo convexity, and sharp
convexity in Definition 4.1 are natural generalizations of the corresponding no
introduced in [3,7,14] for a differentiable function, respectively. It is obvious that
class of pseudo convex functions includes the class of strictly pseudo convex functio
the class of strictly pseudo convex functions includes the class of strongly pseudo c
functions. We will prove that the class of strongly pseudo convex functions include
class of sharply pseudo convex functions.

Definition 4.2. (i) [5,7] T is said to be pseudo monotone onK if for any x, y ∈ K and any
u ∈ T (x), v ∈ T (y), one has that

〈v, x − y〉 � 0 implies 〈u,x − y〉 � 0;
(ii) [5] T is said to be strictly pseudo monotone onK if for any x, y ∈ K with x �= y

and anyu ∈ T (x), v ∈ T (y), one has that

〈v, x − y〉 � 0 implies 〈u,x − y〉 > 0;
(iii) [5] T is said to be strongly pseudo monotone onK if there exists a constantα > 0

such that for anyx, y ∈ K and anyu ∈ T (x), v ∈ T (y), one has that

〈v, x − y〉 � 0 implies 〈u,x − y〉 � α‖x − y‖2.

The pseudo monotonicity of a set-valued mapping was first introduced by Saiga
in a finite dimensional space setting and this concept is also a generalization of th
introduced by Karamardian [2]. From Definition 4.2, we can easily see that strict ps
monotonicity implies pseudo monotonicity. But the converse is not true, as an exam
[3] shows. Karamardian and Schaible established in [3] the relationship between p
convex and pseudo monotone functions. Namely, a differentiable function is pseudo c
if and only if its gradient is pseudo monotone. We now show that a similar result hold
strict pseudo convexity of a non-differentiable function.

Theorem 4.1. Letf be locally Lipschitz continuous onK. Thenf is strictly pseudo conve
onK if and only if the set-valued mapping∂cf is strictly pseudo monotone onK.

Proof. We first prove the only if part. Suppose thatf is strictly pseudo convex onK. For
any givenx, y ∈ K with x �= y, ξ ∈ ∂cf (x), andη ∈ ∂cf (y), let

〈η,x − y〉 � 0. (4.1)

We want to show that〈ξ, x − y〉 > 0. Assume to the contrary that〈ξ, x − y〉 � 0, then the
strict pseudo convexity off indicates that

f (y) > f (x). (4.2)
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On the other hand, it follows from inequality (4.1) thatf (x) > f (y), which contradicts
inequality (4.2). Hence,∂cf is strictly pseudo monotone onK.

We now prove the if part. Suppose that∂cf is strictly pseudo monotone onK. For
any givenx, y ∈ K with x �= y and η ∈ ∂cf (y), let inequality (4.1) hold. We want t
show thatf (x) > f (y). Assume to the contrary thatf (x) � f (y). By Lemma 2.2, there
exist t ∈ (0,1) and λ ∈ ∂cf (tx + (1 − t)y) such thatf (x) − f (y) = 〈λ,x − y〉 � 0.
Consequently,〈

λ,y − (
tx + (1− t)y

)〉 = −t〈λ,x − y〉 � 0.

The strict pseudo monotonicity of∂cf implies that〈
η,y − (

tx + (1− t)y
)〉 = −t〈η,x − y〉 > 0,

i.e., 〈η,x − y〉 < 0. This contradicts inequality (4.1). The proof is complete.✷
It notices that the relationship between pseudo convexity off and pseudo monotonicit

of ∂cf is not clear.

Theorem 4.2. Letf be locally Lipschitz continuous onK. Then it is sharply pseudo conv
on K with β > 0 if and only if the set-valued mapping∂cf is strongly pseudo monoton
onK with β .

Proof. Suppose first thatf is sharply pseudo convex onK with β > 0. For any given
x, y ∈ K, ξ ∈ ∂cf (x), η ∈ ∂cf (y), andt ∈ [0,1], let inequality (4.1) hold. From Defini
tion 4.1(iv), we can deduce that

lim sup
t↓0

f (x + t (y − x))− f (x)

t
+ β‖x − y‖2 � 0.

Sincef is locally Lipschitz continuous andK is a non-empty open convex set, for a
givenε > 0 andt ∈ (0,1) small enough, there exists a constantδ > 0 such that for anyx ′
with ‖x ′ − x‖ < δ, one hasx ′, x ′ + t (y − x) ∈ K and

f (x ′ + t (y − x))− f (x ′)
t

� f (x + t (y − x))− f (x)

t
+ ε.

Hence,

f 0(x;y − x)+ β‖x − y‖2

= lim sup
x ′→x, t↓0

f (x ′ + t (y − x))− f (x ′)
t

+ β‖x − y‖2

� lim sup
t↓0

f (x + t (y − x))− f (x)

t
+ ε + β‖x − y‖2 � ε.

The arbitrariness ofε indicates thatf 0(x;y − x) + β‖x − y‖2 � 0. According to Lem-
ma 2.1(ii), we have

〈ξ, x − y〉 � β‖x − y‖2.

This shows that∂cf is strongly pseudo monotone onK with β .
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Now we prove the inverse implication. For any givenx, y ∈ K, η ∈ ∂cf (y), and
t ∈ (0,1), let xt := x + t (y − x) and inequality (4.1) hold. By Lemma 2.2, there ex
h ∈ (0, t) andγ ∈ ∂cf (xh) such thatf (x)−f (xt ) = t〈γ, x−y〉, wherexh = x+h(y−x).
Since〈η,x − y〉 � 0 implies〈η,xh − y〉 � 0, by Definition 4.2(iii), we have

(1− h)〈γ, x − y〉 = 〈γ, xh − y〉 � β‖xh − y‖2 = β(1− h)2‖x − y‖2.

Therefore,

f (x)− f
(
x + t (y − x)

)
� βt (1− h)‖x − y‖2 � βt (1− t)‖x − y‖2.

This shows thatf is sharply pseudo convex onK with β > 0. The assertion is prove
completely. ✷
Theorem 4.3. Let f be locally Lipschitz continuous onK. If the set-valued mapping∂cf
is strongly pseudo monotone onK with β > 0, thenf is strongly pseudo convex onK with
β/4.

Proof. For any givenx, y ∈ K andη ∈ ∂cf (y), let z = (1/2)x + (1/2)y and inequal-
ity (4.1) hold. Then by Lemma 2.2, there existh, l ∈ (0,1) with 0 < h < 1/2 < l < 1,
γ ∈ ∂cf (u), andσ ∈ ∂cf (v) such that

f (x)− f (z) = (1/2)〈γ, x − y〉,
f (z)− f (y) = (1/2)〈σ,x − y〉,

whereu = x + h(y − x) andv = x + l(y − x). It is obvious that inequality (4.1) implie
that

〈η,u − y〉 � 0 and 〈η, v − y〉 � 0.

From Definition 4.2(iii), it follows that

f (x)− f (z)= (
1/2(1− h)

)〈γ,u− y〉 �
(
1/2(1− h)

)
β‖u− y‖2

= (1/2)β(1− h)‖x − y‖2.

Similarly, we can also deduce thatf (z)− f (y) � (1/2)β(1− l)‖x − y‖2. Hence,

f (x)− f (y)� (1/2)β
(
(1− h)+ (1− l)

)‖x − y‖2

� (1/2)β(1− h)‖x − y‖2 > (β/4)‖x − y‖2.

This indicates that the assertion is true.✷
From Theorems 4.2 and 4.3, we can obtain the following corollary.

Corollary 4.4. Let f be locally Lipschitz continuous onK. If f is sharply pseudo conve
onK with β > 0, then it is strongly pseudo convex onK with β/4.



L. Fan et al. / J. Math. Anal. Appl. 279 (2003) 276–289 285

non-

t

ntro-

s the
ws.

rrow

ous
5. Quasi convexity and quasi monotonicity

In this section, we establish the relationship between quasi convexity of the
differentiable functionf and quasi monotonicity of the set-valued mapping∂cf .

Definition 5.1 [3,10]. f is said to be quasi convex onK if for any x, y ∈ K and any
t ∈ [0,1], one has that

f (x) � f (y) implies f
(
tx + (1− t)y

)
� f (y),

or

f
(
tx + (1− t)y

)
� max

{
f (x), f (y)

}
.

Definition 5.2. (i) T is called quasi monotone onK if for any x, y ∈ K and anyu ∈ T (x),
v ∈ T (y), one has that

〈v, x − y〉 > 0 implies 〈u,x − y〉 � 0;
(ii) T is called partially relaxed strongly quasi monotone onK if there exists a constan

β > 0 such that for anyx, y, z ∈ K and anyu ∈ T (x), v ∈ T (y), one has that

〈v, z − y〉 > 0 implies 〈u, z − y〉 � −β‖x − z‖2.

Remark 5.1. (i) The concept of the quasi monotonicity here is an extension of that i
duced in [3].

(ii) We can see from Definitions 4.2 and 5.2 that the pseudo monotonicity implie
quasi monotonicity. But the converse is not true in general, as an example in [3] sho

For a differentiable function, the following hybrid characterization presented by A
and Enthoven in [16] is well known.

If f is differentiable, then it is quasi convex onK if and only if for anyx, y ∈ K, one
has that

f (x) � f (y) implies
〈∇f (y), x − y

〉
� 0.

This result was extended by Diewert to the following radially lower semi-continu1

function, for details see [10,17].

Lemma 5.1. Letf be radially lower semi-continuous onK. Then it is quasi convex onK
if and only if for anyx, y ∈ K, one has that

f (x) � f (y) implies f D(y;x − y) � 0,

wherefD(a;d) denotes the directional upper derivative off at a in the directiond and
is defined by

f D(a;d) := lim sup
t↓0

f (a + td) − f (a)

t
.

1 f is called radially lower semi-continuous onK if the function S(t) := f (a + t (b − a)) is lower semi-
continuous on[0,1] for eacha,b ∈ K .
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From Definition 2.1 and Lemma 2.1(ii), we can extend the above result to the
below:

Proposition 5.1. Letf be locally Lipschitz continuous onK. Then it is quasi convex onK
if and only if for anyx, y ∈ K and anyη ∈ ∂cf (y), one has that

f (x) � f (y) implies 〈η,x − y〉 � 0. (5.1)

Proof. For any givenx, y ∈ K, it is assumed thatf (x) � F(y).
We first prove the only if part. Definition 5.1 indicates thatf (y + t (x − y)) � f (y) for

any t ∈ (0,1). Sincef is locally Lipschitz continuous onK, for anyε > 0 small enough
one has

f 0(y;x − y)= lim sup
y ′→y, t↓0

f (y ′ + t (x − y))− f (y ′)
t

� lim sup
t↓0

f (y + t (x − y))− f (y)

t
+ ε � ε.

The arbitrariness ofε shows thatf 0(y;x − y) � 0. From Lemma 2.1(ii), it follows tha
implication (5.1) is true.

Now we prove the if part. In view of implication (5.1) and Lemma 2.1(ii), we can ob
thatf 0(y;x − y)� 0. Consequently,

f D(y;x − y)= lim sup
t↓0

f (y + t (x − y))− f (y)

t

� lim sup
y ′→y, t↓0

f (y ′ + t (x − y))− f (y ′)
t

= f 0(y;x − y) � 0.

The locally Lipschitz continuity off implies for any givena, b ∈ K andt0 ∈ [0,1], one
has

lim inf
t→t0

S(t) = lim inf
t→t0

f
(
a + t (b − a)

) = S(t0).

This shows thatf is radially lower semi-continuous onK. According to Lemma 5.1,f is
quasi convex onK. The proof is complete. ✷

Using the above proposition, we can prove the main result of this section.

Theorem 5.2. Letf be locally Lipschitz continuous onK. Then it is quasi convex onK if
and only if the set-valued mapping∂cf is quasi monotone onK.

Proof. Assume first thatf is quasi convex onK. For any givenx, y ∈ K, ξ ∈ ∂cf (x), and
η ∈ ∂cf (y), let

〈η,x − y〉 > 0. (5.2)

We want to show that〈ξ, x − y〉 � 0. Suppose to the contrary that〈ξ, x − y〉 < 0, then
from Proposition 5.1 it follows thatf (y) > f (x), which implies that〈η,x − y〉 � 0. This
contradicts inequality (5.2). Hence, the only if part of the assertion is true.
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We now prove the if part. Suppose thatf is not quasi convex onK. By Definition 5.1,
there existx, y ∈ K with x �= y and t ∈ (0,1) such thatf (x) � f (y) andf (z) > f (y),
wherez = x + t (y − x). By Lemma 2.2, there existh, l ∈ (0,1) with 0< h < t < l < 1,
α ∈ ∂cf (u), andβ ∈ ∂cf (v) such that

f (z)− f (x) = 〈α, z − x〉 > 0,

f (z)− f (y) = 〈β, z − y〉 > 0,

whereu = x +h(y −x) ∈ (x, z) andv = x + l(y−x) ∈ (z, y). Proceeding to the next ste
we have

〈α,v − u〉 = (l − h)〈α,y − x〉 = l − h

t
〈α, z − x〉 > 0,

〈β,v − u〉 = −(l − h)〈β,x − y〉 = − l − h

1− t
〈β, z − y〉 < 0.

This contradicts the quasi monotonicity of∂cf . The proof is complete. ✷

6. Generalized convexity and generalized co-coerciveness

This section gives some relationships between the generalized convexity of th
differentiable functionf and the generalized co-coerciveness of the set-valued ma
∂cf .

Definition 6.1. (i) [13] The set-valued mappingT is said to be co-coercive onK if there
exists a constantβ > 0 such that for anyx, y ∈ K with x �= y and anyu ∈ T (x), v ∈ T (y),
one has

〈u − v, x − y〉 � β‖u− v‖2∗;
(ii) The set-valued mappingT is said to be strictly co-coercive onK if there exists a

constantβ > 0 such that for anyx, y ∈ K with x �= y and anyu ∈ T (x), v ∈ T (y), one has

〈u − v, x − y〉 > β‖u− v‖2∗;
(iii) The set-valued mappingT is said to be strictly pseudo co-coercive onK if there

exists a constantβ > 0 such that for anyx, y ∈ K with x �= y and anyu ∈ T (x), v ∈ T (y),
one has that

〈v, x − y〉 � 0 implies 〈u,x − y〉 > β‖u− v‖2∗;
(iv) The set-valued mappingT is said to be quasi co-coercive onK if there exists a

constantβ > 0 such that for anyx, y ∈ K with x �= y and anyu ∈ T (x), v ∈ T (y), one has
that

〈v, x − y〉 > 0 implies 〈u,x − y〉 � β‖u− v‖2∗.

Remark 6.1. (i) The co-coerciveness and pseudo co-coerciveness here are natural
alizations of the corresponding notions, which are also called Dunn property and p
Dunn property, introduced in [8,13] for a real-valued function, respectively.

(ii) It appears that the concept of quasi co-coerciveness is first introduced here.
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Definition 6.2. Let T :K → BC(X∗), whereBC(X∗) denotes the family of all non-emp
bounded closed subsets ofX∗. Then:

(i) T is called Lipschitz continuous onK if there exists a constantα > 0 such that for all
x, y ∈ K, one has

M
(
T (x), T (y)

)
� α‖x − y‖,

whereM(· , ·) denotes the Hausdorff metric onBC(X∗);
(ii) T is called strongly Lipschitz continuous onK if there exists a constantα > 0 such

that for allx, y ∈ K, u ∈ T (x), andv ∈ T (y), one has

‖u − v‖∗ � α‖x − y‖.

Proposition 6.1. If the set-valued mappingT is co-coercive onK with a constantβ > 0,
then it is partially relaxed strongly monotone onK with 1/(4β).

Proof. The assertion can be proven by using the inequality

‖u‖2 + 〈u,v〉 � −(1/4)‖v‖2, ∀u,v ∈ X. ✷
Theorem 6.2. Letf be locally Lipschitz continuous onK. Then:

(i) If the set-valued mapping∂cf is partially relaxed strongly monotone onK with a
constantβ > 0, thenf is convex onK;

(ii) If the set-valued mapping∂cf is co-coercive onK with a constantβ > 0, thenf is
convex and∂cf is strongly Lipschitz continuous with1/β onK.

Proof. From Definition 3.2 (i) and (iv), we can see that∂cf is monotone if it is partially
relaxed strongly monotone onK. Hence, assertion (i) is an immediate consequenc
Theorem 3.2.

We now prove assertion (ii). In view of Proposition 6.1, it suffices to prove that∂cf

is strongly Lipschitz continuous onK. Lemma 2.1(i) indicates that∂cf (x) ∈ BC(X∗) for
any x ∈ K. On the other hand, Definition 6.1(i) implies that for anyx, y ∈ K and any
ξ ∈ ∂cf (x), η ∈ ∂cf (y), one has

‖ξ − η‖∗ · ‖x − y‖ � 〈ξ − η,x−〉 � β‖ξ − η‖2∗,
that is,‖ξ − η‖∗ � (1/β)‖x − y‖. This shows that assertion (ii) holds.✷
Theorem 6.3. Let f be locally Lipschitz continuous onK. If the set-valued mapping∂cf
is strictly co-coercive onK, thenf is strictly convex onK.

Proof. We can easily see from Definitions 3.2(ii) and 6.1(ii) that∂cf is strictly monotone
if it is strictly co-coercive onK. Therefore, the assertion is an immediate consequen
Theorem 3.3. ✷
Theorem 6.4. Let f be locally Lipschitz continuous onK. If the set-valued mapping∂cf
is strictly pseudo co-coercive onK, thenf is strictly pseudo convex onK.
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Proof. From Definitions 4.2(ii) and 6.1(iii), it follows that∂cf is strictly pseudo monoton
if it is strictly pseudo co-coercive onK. Therefore, the assertion is an immedi
consequence of Theorem 4.1.✷
Theorem 6.5. Letf be locally Lipschitz continuous onK. Then:

(i) If the set-valued mapping∂cf is quasi co-coercive onK, thenf is quasi convex onK;
(ii) If the set-valued mapping∂cf is partially relaxed strongly quasi monotone onK, then

f is quasi convex onK.

Proof. In view of Definitions 5.2 and 6.1(iv), we can easily see that∂cf is quasi monotone
if it is quasi co-coercive or partially relaxed strongly monotone onK. Therefore, the
assertions are immediate consequences of Theorem 5.2.✷

References

[1] X.P. Ding, E. Tarafdar, Monotone generalized variational inequalities and generalized compleme
problems, J. Optim. Theory Appl. 88 (1996) 107–122.

[2] S. Karamardian, Complementarity over cones with monotone and pseudomonotone maps, J. Optim
Appl. 18 (1976) 445–454.

[3] S. Karamardian, S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl. 66 (1990) 37–
[4] S. Schaible, J.C. Yao, On the equivalence of nonlinear complementarity problems and least-eleme

lems, Math. Programming 70 (1995) 191–200.
[5] J.C. Yao, Multivalued variational inequalities with pseudomonotone operators, J. Optim. Theory Ap

(1994) 391–403.
[6] E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vols. 2A, 2B, Springer-Verlag, Berlin, 1
[7] G. Kassay, J. Kolumban, Multivalued parametric variational inequalities withα-pseudomonotone map

J. Optim. Theory Appl. 107 (2000) 35–50.
[8] D. Zhu, P. Marcotte, New classes of generalized monotonicity, J. Optim. Theory Appl. 87 (1995) 457
[9] M. Avriel, W.E. Dievert, S. Schaible, I. Zang, Generalized Convexity, Plenum, New York, 1988.

[10] S. Komlósi, Generalized monotonicity and generalized convexity, J. Optim. Theory Appl. 84 (1995
376.

[11] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[12] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Aca

Press, 1970.
[13] M.A. Noor, Some predictor–corrector algorithms for multivalued variational inequalities, J. Optim. T

Appl. 108 (2001) 659–671.
[14] B. Martos, Nonlinear Programming: Theory and Methods, Akad. Kiadó, Budapest, 1975.
[15] R. Saigal, Existence of the generalized complementarity problem, Math. Oper. Res. 1 (1976) 260–2
[16] K.J. Arrow, A.C. Enthoven, Quasiconcave programming, Econometrica 29 (1961) 779–800.
[17] W.E. Diewert, Alternative characterization of six kinds of quasiconcavity in the nondifferentiable cas

applications to nonsmooth programming, in: S. Schaible, W.T. Ziemba (Eds.), Generalized Conca
Optimization and Economics, Academic Press, New York, 1981, pp. 51–95.


