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Abstract

The relationships between (strict, strong) convexity of non-differentiable functions and (strict,
strong) monotonicity of set-valued mappings, and (strict, strong, sharp) pseudo convexity of non-
differentiable functions and (strict, strong) pseudo monotonicity of set-valued mappings, as well as
quasi convexity of non-differentiable functions and quasi monotonicity of set-valued mappings are
studied in this paper. In addition, the relations between generalized convexity of non-differentiable
functions and generalized co-coerciveness of set-valued mappings are also analyzed.

0 2003 Elsevier Science (USA). All rights reserved.

Keywords:Generalized convexity; Generalized monotonicity; Generalized co-coerciveness; Clarke’s generalized
subdifferential mapping

1. Introduction

It is well known that the generalized monotonicity of set-valued mappings plays an
important role in studying the existence and the sensitivity analysis of solutions for vari-
ational inequalities, variational inclusions, and complementarity problems. In the case of
real-valued functions, this topic has been studied in the context of literature ([1-6] and ref-
erences therein) and related to the generalized convexity of differentiable functions [3,7,8],
which is a basis in investigating mathematical programming as well as economic theory [9].
Komlési in [10] discussed the relationships between quasi (pseudo, strict pseudo) con-
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vexity of lower semi-continuous functions and quasi (pseudo, strict pseudo) monotonic-
ity of their generalized derivatives by means of the generalized monotonicity of bifunc-
tions which are still single-valued functions. However, few research has been done on
the relationships of generalized convexity of non-differentiable functions and generalized
monotonicity of set-valued mappings.

This paper is devoted to study the relationships between generalized convexity of
non-differentiable functions and generalized monotonicity as well as generalized co-
coerciveness of set-valued mappings. It is organized as follows. In Section 2, we recall
some basic concepts and results used in the sequel. In Section 3, we establish the relation-
ships between (strict, strong) convexity of non-differentiable functions and (strict, strong)
monotonicity of set-valued mappings. In Section 4, we analyze the relationships between
(strict, strong, sharp) pseudo convexity and (strict, strong, sharp) pseudo monotonicity, and
in Section 5, we discuss the relation between quasi convexity and quasi monotonicity. In
Section 6, we investigate the relationships between other types of generalized monotonicity
and convexity, pseudo convexity as well as quasi convexity.

2. Preliminaries

Let X be a real Banach space endowed with a nprri and X* its dual space with a
norm| - ||«. We denote by 3*, (-, ), [x, y], and(x, y) the family of all non-empty subsets
of X*, the dual pair betweeX and X*, the line segment far, y € X, and the interior of
[x, y], respectively. Letk be a non-empty open convex subsetqf7 : X — 2X" a set-
valued mapping andg : X — R a non-differentiable real-valued function. The following
concepts and results are taken from [11].

Definition 2.1. Let f be locally Lipschitz continuous at a given poing X andv any other
vector in X. The Clarke’s generalized directional derivative fofat x in the directionv,
denoted byfC(x; v), is defined by

£Ox; v) = limsup SO+ = fG)
y—x, t}0 t

Definition 2.2. Let f be locally Lipschitz continuous at a given point X andv any
other vector inX. The Clarke’s generalized subdifferential pfat x, denoted by° f (x),
is defined as follows:

0 f)={eeXx*: fOx;v) > (5, v), YoeX}.
Lemma 2.1. Let f be locally Lipschitz continuous with a constdnat x € X. Then
(i) a¢f(x) is a non-empty convex weak*-compact subset’dvfand ||£||. < L for each

& €0 f(x);
(i) Foreveryve X, fO(x;v) =max(&, v): £ €9°f(x)}.
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Lemma 2.2 (Mean value theorem).et x and y be points inX and suppose thaf is
Lipschitz continuous near each point of a non-empty closed convex set containing the line
segmenfx, y]. Then there exists a pointe (x, y) such that

F@) = f) e(dfw),x—y)

Lemma 2.3. If f is convex onk and locally Lipschitz continuous ate K, thena® f(x)
coincides with the subdifferentialf (x) of f at x in the sense of convex analysis, and
£9(x; v) coincides with the directional derivativg (x; v) for eachv € X, where

) ={seX™ f(y) = fx)=(E,y—x), VyeK},
fx+1v) = fx)
p .

fi(x; v):ltlig

3. Convexity and monotonicity

In this section, we establish the relations between (strict, strong) convexityamid
(strict, strong) monotonicity of its Clarke’s generalized subdifferential mapptig,
which is a set-valued mapping.

Definition 3.1. (i) f is said to be convex oK if for any x, y € K and any € [0, 1],
flex+@=0y) <tf@)+ Q=0 fO)
(ii) f is said to be strictly convex ok if forany x, y € K with x # y and any € (0, 1),
fex+ QA =0y) <tf @)+ A=) f();

(iii) [7] f is said to be strongly convex ok if there exists a constant> 0 such that
foranyx, y € K and any € [0, 1],

flex+@A=0y) <tf@+ A= f () —ar@=n)]x — ]2

It is evident that strong convexity implies strict convexity and strict convexity implies
convexity. But the converses are not true in general. For example, the function
1-x, xe€[01],
f(x)=10, x€[1,2],
x—2, x€[273],
is convex but not strictly convex on the interyél 3] and the functionf (x) = (14 x%)1/2
is strictly convex but not strongly convex @t for details see [12].

Definition 3.2. (i) [7] T is said to be monotone ok if for any x, y € K and anyu € T (x),
v e T(y) one has

(w—v,x—y) =0
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(i) T is said to be strictly monotone ok if for any x, y € K with x # y and any
ueT(x),veT(y)onehas

(w—v,x—y) >0

(i) [7] T is said to be strongly monotone da if there exists a constant > 0 such
that for anyx, y € K and anyuz € T(x), v € T(y) one has

—v,x—y) =allx —yl%

(iv) [13] T is said to be partially relaxed strongly monotone knif there exists a
constan{ > 0 such that for any, y, z € K and anyu € T'(x), v € T(y) one has

—v,z—y)>—Bllx —z|2

We can easily see from Definition 3.2 that the class of strictly monotone mappings
includes the class of strongly monotone mappings and the class of monotone mappings
includes the classes of strictly monotone and partially relaxed strongly monotone map-
pings. But the converses are not true in general, for the sake of convenience, we observe
the following several real-valued functions.

Itis clear that a constant functidh(x) = ¢ is partially relaxed strongly monotone but
neither strictly monotone nor strongly monotone®n

The functionT (x) = x? is strictly monotone but neither strongly monotone nor partially
relaxed strongly monotone on the interi{@|+o00). Indeed, for any real numbgr> 0, let
x=48,y=28,andz = B. Then

(T(x) =T, z—y)+Bllx —zI?= (x* = y?)(z — y) + B(x —2)? = =383 <0,

which indicates that" is not partially relaxed strongly monotone ) +00).

Similarly, we can prove that the functiofi(x) = x2 is strongly monotone but not
partially relaxed strongly monotone on the interyal+o00). In fact, it suffices to take
x=48+1,y=28+1, andz = 8 + 1 for any real numbeg > O.

Proposition 3.1. Let f be locally Lipschitz continuous aki. Then

(i) fisconvexorX if and only if for anyx, y € K and anyn € 3¢ f (y) one has

S =f) =M x—y) (3.1)

(i) f is strongly convex oK with a constanty > 0 if and only if for anyx, y € K and
anyn € 9 f (y) one has

fO)=fO) = (nx—y) +alx —y|% (3.2)
Proof. We only prove the assertion (ii). With the similar way, we can prove the if part of (i)

and the only if part is trivial. Suppose first thAtis strongly convex orK with a constant
a > 0. Then for any, y € K and anyr € (0, 1) one has

([ (12 + L= 0y) = F@O] + A= D[ £ (tx + L= 1Dy) = F )]
<—ar(L=nlx -yl
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Consequently, from Lemma 2.3 it follows that

FO) = F)+ Oy x —y) < —allx — yII2
By Lemma 2.1 (ii), we can deduce that inequality (3.2) holds forgaay* f (y).
Conversely, assume that inequality (3.2) holds for any € K and anyn € 3¢ f (y).
Then for anyr € [0, 1] and anyy € 0 f(tx + (1 —1t)y), one has
tf () —tf (tx + (L= 0y) 2 1A =)y, x = y) +at(L—)?|x — y|%,
A-Df—-A-0)f(tx+A—1)y)
>—1(L—0)(y,x = y) +ar’L—Dlx — y|*.
Hence,
L) +A=0f () — f(tx+A—1y) > ar@—1)x - y|I?,
which indicates thay is strongly convex oK with o > 0. O

The following theorem was stated in [11, Proposition 2.2.9] without proof. For the sake
of completeness, we provide a proof here.

Theorem 3.2. Let f be locally Lipschitz continuous oK. Thenf is convex orK if and
only if its Clarke’s generalized subdifferential mappisfgf is monotone ork .

Proof. We first assume thaf is convex onK . For any givernx,y € K, & € 9 f(x), and
n € 3¢ f (y), according to inequality (3.1), we have

E—nx—y)=—Ey—x)—mx—y)=2fx)—fM+f) - fx)=0.
Hence ¢ f is monotone oIk .

Conversely, suppose thétf is monotone orK . For any giverx, y € K with x £ y and
t € (0,1), inview of Lemma 2.2, there exigt / € (0,1): O<h <t <l <1, p € df(u),
andqg € 9¢ f (v) such that

f) = flex+A=0y)=A-)(p.x — ),

FO) = fltx+@=0y)=—t{g.x —y),
whereu=y+Ii(x—y)e(x,tx+A—t)y)andv=y+h(x—y)e(@tx+ (1 —1)y,y).In
view of the monotonicity ob¢ f, we can deduce that

(p—q.u—v)y=~IU—-h){p—g,x—y) =20
Therefore, for any, y € K with x # y and anyr € (0, 1) one has

flex+ QA —=0y) <tf @)+ A=) (). (3.3)
Itis clear that inequality (3.3) holds whenewet y ort = 0 and 1. The proof is complete.
O

Theorem 3.3. Let f be locally Lipschitz continuous oK. If 3¢ f is strictly monotone
on K, thenf is strictly convex orK .
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The proof is similar to that of Theorem 3.2 and we omit it.

Theorem 3.4. Let f be locally Lipschitz continuous oki. Thenf is strongly convex on
K with @ > 0if and only if3¢ f is strongly monotone oR with 2«.

Proof. The only if partis immediate consequence of Proposition 3.1(ii). It suffices to prove
the if part. Letd“ f be strongly monotone oK with g > 0. Assume to the contrary thgt

is not strongly convex ok, then, for anyx > 0, there existvg, yo € K with xg # yg and

no € 3¢ f (yo) such that

f(x0) — £ (o) < (10, x0 — yo) + allxo — yoll.

From Lemma 2.2 it follows that there exigte (0, 1) andyg € 3¢ f (ug) such that
{¥0 = 10, X0 — yo) < al|xo — yoll,

whereug = toxo + (1 — 70) yo. Consequently, we have

Bi5l1xo — yoll> = Blluo — yoll* < (vo — no, uo — yo) < atollxo — yoll?,
thatis,a > 18, which contradicts the arbitrarinessaof
Suppose thaf is strongly convex orK with « > 0. We want to show thag = 2«. For
any givenx, y € K, £ € 0° f(x), andn € 3¢ f (), it follows from Proposition 3.1(ii) that
)= FO) =0 x = y) +ealx -yl
FO) = f@) = (& y —x) +alx —y]2

Proceeding to the next step, we hage- n, x — y) > 2a||x — y||2. Therefore = 2a. The
proof is complete. O

4. Pseudo convexity and pseudo monotonicity

This section discusses the relationships between strict (strong, sharp) pseudo convexity
of the non-differentiable functioy and strict (strong) pseudo monotonicity of its Clarke’s
generalized subdifferential mappiagf .

Definition 4.1. Let f be locally Lipschitz continuous ok . Then:

(i) f is saidto be pseudo convex &hif for any x, y € K and anyy € 8¢ f (y),

(n,x—y) >0 implies f(x)= f(y);
(i) f is said to be strictly pseudo convex &hif for any x, y € K with x # y and any
nevfy,

(n,x—y)=0 implies f(x)> f(y);

(iif) f is said to be strongly pseudo convex &rif there exists a constant> 0 such that
foranyx, y € K and anyy € 3¢ f (),

(n,x—y) >0 implies f(x)>f() +alx—yl%
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(iv) f is said to be sharply pseudo convexrif there exists a constant> 0 such that
foranyx,ye K,r€[0,1],andn € 3¢ f (),

(n,x—y)>0 implies f(x)> f(x+1i(x—y)+ard—0lx -yl

Note that the concepts of pseudo convexity, strong pseudo convexity, and sharp pseudo
convexity in Definition 4.1 are natural generalizations of the corresponding notions
introduced in [3,7,14] for a differentiable function, respectively. It is obvious that the
class of pseudo convex functions includes the class of strictly pseudo convex functions and
the class of strictly pseudo convex functions includes the class of strongly pseudo convex
functions. We will prove that the class of strongly pseudo convex functions includes the
class of sharply pseudo convex functions.

Definition 4.2. (i) [5,7] T is said to be pseudo monotone &rif for any x, y € K and any
ueT(x),veT(y),onehasthat

(v,x —y) >0 implies (u,x—y)=>0;

(ii) [5] T is said to be strictly pseudo monotone &nif for any x, y € K with x # y
and anyu € T (x), v € T(y), one has that

(v,x —y)>0 implies (u,x —y)>0;

(iii) [5] T is said to be strongly pseudo monotonekorif there exists a constant> 0
such that for any, y € K and anyu € T'(x), v € T(y), one has that

(v,x —y) =0 implies (u,x —y)=>allx -yl

The pseudo monotonicity of a set-valued mapping was first introduced by Saigal [15]
in a finite dimensional space setting and this concept is also a generalization of that first
introduced by Karamardian [2]. From Definition 4.2, we can easily see that strict pseudo
monotonicity implies pseudo monotonicity. But the converse is not true, as an example in
[3] shows. Karamardian and Schaible established in [3] the relationship between pseudo
convex and pseudo monotone functions. Namely, a differentiable function is pseudo convex
if and only if its gradient is pseudo monotone. We now show that a similar result holds for
strict pseudo convexity of a non-differentiable function.

Theorem 4.1. Let f be locally Lipschitz continuous aki. Thenf is strictly pseudo convex
on K if and only if the set-valued mappif§ f is strictly pseudo monotone dq.

Proof. We first prove the only if part. Suppose thais strictly pseudo convex of . For
any givenx,y € K with x #y, & € 9° f(x), andn € 3° f (), let
(nx—y)=0. (4.1)

We want to show thaft, x — y) > 0. Assume to the contrary thét, x — y) < 0, then the
strict pseudo convexity of indicates that

F) > f). (4.2)
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On the other hand, it follows from inequality (4.1) thatx) > f(y), which contradicts
inequality (4.2). Hence&j f is strictly pseudo monotone af.

We now prove the if part. Suppose th#tf is strictly pseudo monotone ok. For
any givenx,y € K with x # y andn € 9¢ f(y), let inequality (4.1) hold. We want to
show thatf (x) > f(y). Assume to the contrary that(x) < f(y). By Lemma 2.2, there
existt € (0,1) andx € 9°f(tx + (1 — t)y) such thatf(x) — f(y) = (A,x — y) < 0.
Consequently,

(A,y=(x+@=1)y))=—t{L,x —y) >0.

The strict pseudo monotonicity 6f f implies that
(n.y—(tx+@A=0y))=—t(n.x —y) >0,

i.e., (n,x —y) < 0. This contradicts inequality (4.1). The proof is completes

It notices that the relationship between pseudo convexifyafid pseudo monotonicity
of 3¢ f is not clear.

Theorem 4.2. Let f be locally Lipschitz continuous k. Then itis sharply pseudo convex
on K with 8 > 0 if and only if the set-valued mappirdg f is strongly pseudo monotone
on K with 8.

Proof. Suppose first thaf is sharply pseudo convex aki with 8 > 0. For any given
x,y€e K, &edf(x), nedf(y),andr € [0, 1], let inequality (4.1) hold. From Defini-
tion 4.1(iv), we can deduce that
Iimsupf(x +i(y—x) - fx)
t|0 t

+ Bllx — yI> <0.

Since f is locally Lipschitz continuous an& is a non-empty open convex set, for any
givene > 0 andr € (0, 1) small enough, there exists a constént 0 such that for any’
with ||x" — x| < 8, 0one hast’, x’ +¢(y — x) € K and
SOt =) = [ _ St —x) = f()
p < ; +e.

Hence,

sy —x)+ Bllx — y|I?
f&+t(y—x)— fx)

= limsup +Blx — yl?
x'—x, t]0 t
. 1y — -
gllmsupf(xJr o tx)) f(x)+e+,3||x—y||2<e.
t0

The arbitrariness of indicates thatf%(x; y — x) 4+ Bllx — y||? < 0. According to Lem-
ma 2.1(ii), we have

(&, x =) = Bllx —yI%.
This shows thaé© f is strongly pseudo monotone éghwith 3.
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Now we prove the inverse implication. For any giveny € K, n € 3°f(y), and
t € (0,1), letx; :=x + t(y — x) and inequality (4.1) hold. By Lemma 2.2, there exist
h e (0, 1) andy € 9 f (x;) such thatf (x) — f(x;) =1(y,x — y), wherex, = x +h(y — x).
Since(n, x — y) > 0 implies(n, x, — y) > 0, by Definition 4.2(iii), we have

L=y, x = y) =y, xn = y) = Blon = I = BL—1)?|x — y|I%.
Therefore,
f@ = flx+1G6=x) 2 prL=llx =yl = pr(L—Dllx -yl
This shows thatf is sharply pseudo convex oki with 8 > 0. The assertion is proven

completely. O

Theorem 4.3. Let f be locally Lipschitz continuous oK. If the set-valued mappingf f
is strongly pseudo monotone é&with 8 > 0O, thenf is strongly pseudo convex &hwith

B/4.

Proof. For any givenx,y € K andn € 9 f(y), let z = (1/2)x + (1/2)y and inequal-
ity (4.1) hold. Then by Lemma 2.2, there existl € (0,1) withO<h <1/2 <1 <1,
y €9 f(u), ando € 3¢ f (v) such that

fX) = f@=0/D{y,x —y),
f@ =) =1/D{o,x —y),

whereu = x + h(y —x) andv =x + I(y — x). It is obvious that inequality (4.1) implies
that

(77:14_)’>>0 and (TIvU_Y)>0
From Definition 4.2(iii), it follows that
fO) = f(@)=(1/2A - 1)y, u—y) > (1/2(1— b)) Bllu — y|?
= (1/2)B(L—h)|lx — y||*.
Similarly, we can also deduce th#tz) — f(y) > (1/2)8(1—1)|lx — y||°. Hence,
f) = fO)=@/2B(A-h)+@Q=D)lIx —yl?
> (1/2)BL—W)llx — ylI> > (B/H]x — y|%.

This indicates that the assertion is truez
From Theorems 4.2 and 4.3, we can obtain the following corollary.

Corollary 4.4. Let f be locally Lipschitz continuous oK. If f is sharply pseudo convex
on K with 8 > 0, then it is strongly pseudo convex &nwith /4.
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5. Quasi convexity and quasi monotonicity

In this section, we establish the relationship between quasi convexity of the non-
differentiable functionf and quasi monotonicity of the set-valued mappifig.

Definition 5.1 [3,10]. f is said to be quasi convex ok if for any x,y € K and any
t €10, 1], one has that

f)< f(y) implies f(tx+ @A —0y) < f(y),
or

fltx+ @ =ny) <max{ fx), fF(n}.

Definition 5.2. (i) T is called quasi monotone di if for any x, y € K and anyu € T (x),
v € T(y), one has that
(v,x —y)>0 implies (u,x —y)>0;
(ii) T is called partially relaxed strongly quasi monotonefoif there exists a constant
B > 0 such that for any, y,z € K and anyu € T (x), v € T(y), one has that

(v,z—y)>0 implies (u,z—y)>—Bllx—z|>

Remark 5.1. (i) The concept of the quasi monotonicity here is an extension of that intro-
duced in [3].

(i) We can see from Definitions 4.2 and 5.2 that the pseudo monotonicity implies the
guasi monotonicity. But the converse is not true in general, as an example in [3] shows.

For a differentiable function, the following hybrid characterization presented by Arrow
and Enthovenin [16] is well known.

If f is differentiable, then it is quasi convex @& if and only if for anyx, y € K, one
has that

fx)< f(y) implies (Vf(y),x—y)<0.

This result was extended by Diewert to the following radially lower semi-continuous
function, for details see [10,17].

Lemma5.1. Let f be radially lower semi-continuous aki. Then it is quasi convex oki
if and only if for anyx, y € K, one has that

f@) < f@) implies fP(yix—y) <0,

where 1 (a; d) denotes the directional upper derivative pfat « in the directiond and
is defined by

£P(a: d) = limsup 1D = [(@)
t|0 t

1 f is called radially lower semi-continuous dt if the function S(z) := f(a + t(b — a)) is lower semi-
continuous on0, 1] for eacha, b € K.
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From Definition 2.1 and Lemma 2.1(ii), we can extend the above result to the form
below:

Proposition 5.1. Let f be locally Lipschitz continuous oK. Then it is quasi convex oki
if and only if for anyx, y € K and anyn € 9¢ f (y), one has that

f(x)< f(y) implies (n,x—y)<0. (5.1)

Proof. For any givenx, y € K, itis assumed thaf (x) < F(y).

We first prove the only if part. Definition 5.1 indicates thaty + ¢ (x — y)) < f(y) for
anyt € (0, 1). Sincef is locally Lipschitz continuous ok, for anye > 0 small enough,
one has

fO'+tx =) = fO)

£2y;x —y)= limsup

y'—=y, tl0 t
. t(x — —
ghmsupf(y-’_ (x =) f(y)+8<8_
t|0 t

The arbitrariness of shows thatf%(y; x — y) < 0. From Lemma 2.1(ii), it follows that
implication (5.1) is true.

Now we prove the if part. In view of implication (5.1) and Lemma 2.1(ii), we can obtain
that £9(y; x — y) < 0. Consequently,

SO+t =) - f)

fP(yix—y)=limsup

t0 t
< fimsup LY FE = ZTOD _ jory. oy <o
Y=y, 110 d

The locally Lipschitz continuity off implies for any giveru, b € K andtg € [0, 1], one
has

liminf S(t) =liminf f(a + (b — a)) = S(to).
t—1tp t—1to

This shows thayf is radially lower semi-continuous oki. According to Lemma 5.1f is
guasi convex orK . The proof is complete. O

Using the above proposition, we can prove the main result of this section.

Theorem 5.2. Let f be locally Lipschitz continuous oki. Then it is quasi convex oK if
and only if the set-valued mappid§ f is quasi monotone oK .

Proof. Assume first thay is quasi convex oK. For any givernx, y € K, &€ € 9¢ f (x), and
neadf(y),let

(n,x—y)>0. (5.2)

We want to show tha{g, x — y) > 0. Suppose to the contrary thét, x — y) < 0, then
from Proposition 5.1 it follows thaf (y) > f(x), which implies thatn, x — y) < 0. This
contradicts inequality (5.2). Hence, the only if part of the assertion is true.
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We now prove the if part. Suppose thé&is not quasi convex ot . By Definition 5.1,
there existx, y € K with x £ y andr € (0, 1) such thatf (x) < f(y) and f(z) > f(y),
wherez = x +f(y — x). By Lemma 2.2, there exiét,/ € (0,1) withO<h <t <l < 1,
a €0°f(u),andB € a¢ f (v) such that

f@— f)=(a,z—x)>0,

f@—=f=(B.z—y)>0,

whereu = x +h(y —x) € (x,z) andv = x +1(y — x) € (z, y). Proceeding to the next step,
we have

(oc,v—u):(l—h)(oc,y—x):#(a,z—x)>O,

I—h
(,B,U—u)=—(l—h)<,3:X—)7>=—E(,37Z—Y)<0~

This contradicts the quasi monotonicity@ff. The proof is complete. O

6. Generalized convexity and generalized co-coer civeness

This section gives some relationships between the generalized convexity of the non-
differentiable functionf and the generalized co-coerciveness of the set-valued mapping

s

Definition 6.1. (i) [13] The set-valued mapping is said to be co-coercive ok if there
exists a constarg > 0 such that for any, y € K with x £ y and anyu € T (x), v € T (y),
one has

—v,x—y)=Bllu—vl?

(i) The set-valued mappin@ is said to be strictly co-coercive ok if there exists a
constans > 0 such that for any, y € K with x # y and anyx € T (x), v € T (y), one has

—v,x—y)> Bllu—v|?

(iif) The set-valued mappin@ is said to be strictly pseudo co-coercive gnif there
exists a constarg > 0 such that for any, y € K with x # y and anyu € T (x), v € T (y),
one has that

(v, x —y) =0 implies (u,x —y)> Bllu—v|?

(iv) The set-valued mapping is said to be quasi co-coercive @ if there exists a
constants > 0 such that for any, y € K with x £ y and anyz € T (x), v € T (y), one has
that

(v,x —y)>0 implies (u,x —y)>Bllu— v||§.

Remark 6.1. (i) The co-coerciveness and pseudo co-coerciveness here are natural gener-
alizations of the corresponding notions, which are also called Dunn property and pseudo
Dunn property, introduced in [8,13] for a real-valued function, respectively.

(ii) It appears that the concept of quasi co-coerciveness is first introduced here.
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Definition 6.2. Let T : K — BC(X™*), whereBC (X*) denotes the family of all non-empty
bounded closed subsets %f. Then:

(i) T is called Lipschitz continuous oK if there exists a constant> 0 such that for all
x,y € K, one has

M(T(x), T(y) <eallx —yl,
whereM (-, -) denotes the Hausdorff metric &C (X*);

(i) T is called strongly Lipschitz continuous dq if there exists a constaat > 0 such
thatforallx,y € K, u € T(x), andv € T(y), one has

llu —vllx <ellx = yl.

Proposition 6.1. If the set-valued mapping is co-coercive ork with a constang > 0,
then it is partially relaxed strongly monotone é&hwith 1/(48).

Proof. The assertion can be proven by using the inequality
lul? + (u,v) > —A/Bvl% Vu,veX. O

Theorem 6.2. Let f be locally Lipschitz continuous oki. Then

(i) If the set-valued mappingc f is partially relaxed strongly monotone oki with a
constantg > 0, then f is convex orK;

(i) If the set-valued mappingf f is co-coercive ork with a constanis > 0, then f is
convex and‘ f is strongly Lipschitz continuous witty 38 on K.

Proof. From Definition 3.2 (i) and (iv), we can see thEtf is monotone if it is partially
relaxed strongly monotone oK. Hence, assertion (i) is an immediate consequence of
Theorem 3.2.

We now prove assertion (ii). In view of Proposition 6.1, it suffices to prove ahgt
is strongly Lipschitz continuous oK. Lemma 2.1(i) indicates that f (x) € BC(X*) for
any x € K. On the other hand, Definition 6.1(i) implies that for anyy € K and any
£e€df(x),nedf(y), one has

IE — nlls - lx — yll = (€ — n,x—) = BlIE — nll?,
thatis,||€ — n]l« < (1/8)]lx — y|I. This shows that assertion (ii) holdso

Theorem 6.3. Let f be locally Lipschitz continuous oK. If the set-valued mappingf f
is strictly co-coercive orK , then f is strictly convex orkK'.

Proof. We can easily see from Definitions 3.2(ii) and 6.1(ii) th&f is strictly monotone
if it is strictly co-coercive onK. Therefore, the assertion is an immediate consequence of
Theorem 3.3. O

Theorem 6.4. Let f be locally Lipschitz continuous oK. If the set-valued mappingf f
is strictly pseudo co-coercive dki, then f is strictly pseudo convex ak.
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Proof. From Definitions 4.2(ii) and 6.1(iii), it follows th&at® f is strictly pseudo monotone
if it is strictly pseudo co-coercive oK. Therefore, the assertion is an immediate
consequence of Theorem 4.10

Theorem 6.5. Let f be locally Lipschitz continuous oki. Then

(i) Ifthe set-valued mappingf f is quasi co-coercive oK , thenf is quasi convex ol ;
(i) If the set-valued mappingf f is partially relaxed strongly quasi monotone &n then
f is quasi convex oK .

Proof. Inview of Definitions 5.2 and 6.1(iv), we can easily see tfgf is quasi monotone
if it is quasi co-coercive or partially relaxed strongly monotone ionTherefore, the
assertions are immediate consequences of Theorem &.2.
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