
Journal of Computational and Applied Mathematics 236 (2012) 3174–3185

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Semilocal convergence of a continuation method with Hölder
continuous second derivative in Banach spaces
D.K. Gupta ∗, Prashanth M.
Department of Mathematics, Indian Institute of Technology, Kharagpur - 721302, India

a r t i c l e i n f o

Article history:
Received 15 September 2011
Received in revised form 9 February 2012

Keywords:
Continuation method
Lipschitz continuous
Hölder continuous
Cubic convergence
Recurrence relations
Majorizing sequence

a b s t r a c t

In this paper, the semilocal convergence of a continuation method combining the
Chebyshev method and the convex acceleration of Newton’s method used for solving
nonlinear equations in Banach spaces is established by using recurrence relations under
the assumption that the second Frëchet derivative satisfies theHölder continuity condition.
This condition is mild and works for problems in which the second Frëchet derivative fails
to satisfy Lipschitz continuity condition. A new family of recurrence relations are defined
based on two constants which depend on the operator. The existence and uniqueness
regions alongwith a closed form of the error bounds in terms of a real parameter α ∈ [0, 1]
for the solution x∗ is given. Two numerical examples are worked out to demonstrate
the efficacy of our approach. On comparing the existence and uniqueness regions for the
solution obtained by our analysiswith those obtained by usingmajorizing sequences under
Hölder continuity condition on F ′′, it is found that our analysis gives improved results.
Further, we have observed that for particular values of the α, our analysis reduces to those
for the Chebyshev method (α = 0) and the convex acceleration of Newton’s method
(α = 1) respectively with improved results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important and challenging problems in scientific computing is that of finding efficiently the solutions
of nonlinear equations by iterative methods in Banach spaces and establish their convergence analysis. There exists a
large number of applications in chemical engineering, transportation, operation research etc. that give rise to thousands
of such equations depending on one ormore parameters. The boundary value problems appearing in kinetic theory of gases,
elasticity and other applied areas are reduced to solving nonlinear equations. Dynamic systems aremathematicallymodeled
by difference or differential equations and their solutions usually represent the equilibrium states of the system obtained
by solving nonlinear equations. As a result, these problems are extensively studied and many methods of various orders
along with their local, semilocal and global convergence analysis are developed in [1–4]. Basically, two different kinds
of approaches are used for convergence analysis. The first one uses majorizing sequences obtained by the same iterative
method applied to a scalar function to majorize the iterates. The other one uses recurrence relations which has some
advantages over majorizing sequences because, one can reduce the initial problem in a Banach space to a simpler problem
with real sequences and vectors. Besides, we find a symmetry between some special properties of the iteration method
and the corresponding ones in the system of recurrence relations. Newton’s method and its variants are the quadratically
convergent iterative methods used to solve these equations. The well known Kantorovich theorem [5,6] gives sufficient
conditions for the semilocal convergence of Newton’s method as well as the error estimates and existence–uniqueness
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regions of solutions. Many researchers [7–12] have also studied the semilocal convergence of one point third-order iterative
methods such as the Chebyshev method, the Halley method and the Super-Halley method used for solving nonlinear
equations under Kantorovich-type assumptions [5] on the involved operator in Banach spaces. These methods are also used
in many applications. For example, they can be used in stiff systems [13], where a quick convergence is required. Their main
assumption for the convergence analysis was that the second Fréchet derivative satisfies Lipschitz continuity condition.
However, it is not always true as the following example illustrates.

Example. Let us consider the integral equation of Fredholm type [14]:

F(x)(s) = x(s) − f (s) − λ

 1

0

s
s + t

x(t)2+pdt,

with s ∈ [0, 1], x, f ∈ C[0, 1], p ∈ (0, 1] and λ is a real number.

Under the sup-norm on the operator F , the second Fréchet derivative of F satisfies

∥F ′′(x) − F ′′(y)∥ ≤ |λ|(1 + p)(2 + p) log 2∥x − y∥p, x, y ∈ Ω.

Hence, for p ∈ (0, 1), F ′′ does not satisfy the Lipschitz continuity condition, but it satisfies the Hölder continuity condition.
Hernández and Salanova [15] and Xintao Ye and Chong Li [16] studied the convergence of the Chebyshev method and the
Euler–Halley method by using recurrence relations under the assumption that F ′′ satisfies the Hölder continuity condition.
The convergence of the Chebyshev method and the convex acceleration of Newton’s method using majorizing sequences
under the Hölder continuity conditions are given in [17,18]. Further, A family of Newton-type iterative processes solving
nonlinear equations in Banach spaces, that generalizes the usually iterative methods of R-order at least three is considered
by Hernández and Romero in [19,20]. They weaken the usual semilocal convergence conditions, for this type of iterative
processes, assuming that the second Fréchet derivative isω-conditioned. This means that second Fréchet derivative satisfies
∥F ′′(x) − F ′′(y)∥ ≤ ω(∥x − y∥), where ω is a nondecreasing continuous real function.

A continuation method is a parameter based method, giving a continuous connection between two functions f and g .
Mathematically, a continuation method between two functions f , g : X → Y , where X and Y are Banach spaces, is defined
as a continuous map h : [0, 1] × X → Y such that h(α, x) = αf (x) + (1 − α)g(x), α ∈ [0, 1] and h(0, x) = g(x),
h(1, x) = f (x). The continuation method was known as early as 1930s. It was used by Kinemitician in the 1960s for solving
mechanism synthesis problems. It also gives a set of certain answers and a simple iteration process to obtain solutions more
exactly. For further literature survey on it, one can refer to the works of [21–23].

The aim of this paper is to study the semilocal convergence of a continuation method combining the Chebyshev method
and the convex acceleration of Newton’s method for solving nonlinear equations

F(x) = 0, (1)

where, F : Ω ⊆ X → Y be a nonlinear operator on an open convex domain Ω of a Banach space X with values in Banach
space Y . This is done by using recurrence relations under the assumption that the second Frëchet derivative satisfies the
Hölder continuity condition. The existence and uniqueness theorem is given. We have also derived a closed form of error
bounds in terms of α ∈ [0, 1]. Two numerical examples are worked out to demonstrate the efficacy of our approach. On
comparing the existence and uniqueness regions and error bounds for the solution obtained by our analysis with those
obtained by usingmajorizing sequences, it is found that our analysis gives improved results. Further, we have observed that
for particular values of the α, our analysis reduces to those for the Chebyshev method (α = 0) and the convex acceleration
of Newton’s method (α = 1) respectively.

This paper is organized in six sections. Section 1 is the introduction. In Section 2, some preliminary results are given.
Then, two real sequences are generated and their properties are studied. In Section 3, the recurrence relations are derived. In
Section 4, a convergence theorem is established for the existence and uniqueness regions alongwith a priori error bounds for
the solution. In Section 5, two numerical examples are worked out to demonstrate, the efficacy of our convergence analysis
and a comparison of the existence and uniqueness regions for the solution obtained by our analysis with those obtained by
using majorizing sequences under the Hólder continuity condition are done. Finally, conclusions form the Section 6.

2. Preliminary results

In this section, we shall derive a family of recurrence relations based on two constants in order to discuss the semilocal
convergence of a continuation method combining two third order iterative methods namely, the Chebyshev method and
the convex acceleration of Newton’s method used for solving (1). Let us assume that F ′(x0)

−1
∈ L(Y , X) exists at some

point x0 ∈ Ω , where L(Y , X) is the set of bounded linear operators from Y into X . The Chebyshev method and the
convex Acceleration of Newton’s method are defined as follows. For a suitable initial approximation x0 ∈ Ω , we define
for n = 0, 1, 2, . . . , the iterations

xn+1 = J0(xn) = xn −


I +

1
2
LF (xn)


F ′(xn)−1F(xn), (2)
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and

xn+1 = J1(xn) = xn −


I +

1
2
LF (xn)(I − LF (xn))−1


F ′(xn)−1F(xn) (3)

where I is identity operator and LF (x) is the linear operator given by

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F(x), x ∈ X . (4)

The continuation method between (2) and (3) can now be defined for a suitable initial approximation xα,0 ∈ Ω, α ∈ [0, 1]
and for n = 0, 1, 2, . . . , by the iteration

xα,n+1 = αJ1(xα,n) + (1 − α)J0(xα,n) n ≥ 0. (5)

Replacing xn by xα,n in (2) and (3) and substituting the expressions for J0(xα,n) from (2) and J1(xα,n) from (3) in (5), we get

yα,n = xα,n − Γα,nF(xα,n)

xα,n+1 = yα,n +
1
2
LF (xα,n)Gα(xα,n)(yα,n − xα,n)


(6)

where,

Gα(xα,n) = I + αLF (xα,n)Hα(xα,n)

for

Hα(xα,n) = (I − LF (xα,n))
−1

and

LF (xα,n) = F ′(xα,n)
−1F ′′(xα,n)F ′(xα,n)

−1F(xα,n).

Let Γα,0 = F ′(xα,0)
−1

∈ L(Y , X) exist at some xα,0 and, let the following assumptions hold.

1. ∥Γα,0∥ = ∥F ′(xα,0)
−1

∥ ≤ β,

2. ∥F ′(xα,0)
−1F(xα,0)∥ ≤ η,

3. ∥F ′′(x)∥ ≤ M, ∀x ∈ Ω,
4. ∥F ′′(x) − F ′′(y)∥ ≤ N∥x − y∥p, ∀x, y ∈ Ω, p ∈ (0, 1]

 . (7)

Let

a0 = Mβη and b0 = Nβη1+p (8)

f (x) =
2(1 − x)

2 − 4x + x2 − (α − 1)x3
, (9)

and

g(x, y) =
αx2

2(1 − x)
+

y(1 + (α − 1)x)
(1 − x)(p + 1)(p + 2)

+
x2(1 + (α − 1)x)

2(1 − x)
+

x3(1 + (α − 1)x)2

8(1 − x)2
. (10)

Now, define the real sequences {an} and {bn}, where,

an+1 = anf (an)2g(an, bn), bn+1 = bnf (an)2+pg(an, bn)1+p. (11)

Let r0 = 0.380778 be the smallest positive zero of the polynomial p(x) = (2α2
− 4α + 2)x6 − (α2

+ 2α − 3)x5 + (18α −

16)x4 − (8α + 1)x3 − (4α − 36)x2 − 32x+ 8 = 0 for α ∈ [0, 1]. We now describe the properties of the sequences {an} and
{bn} through the following Lemmas.

Lemma 1. Let f and g be the functions defined in (9) and (10), respectively. Then for x ∈ (0, r0)
(i) f is a increasing function and f (x) > 1 in (0, r0] for α ∈ [0, 1].
(ii) g is increasing in both arguments for y > 0 and α ∈ [0, 1].
(iii) f (γ x) < f (x) and g(γ x, γ p+1y) ≤ γ p+1g(x, y) for γ ∈ (0, 1), p ∈ (0, 1], and α ∈ [0, 1].

Proof. The proof of Lemma 1 is trivial and hence omitted here. �

Lemma 2. For a fixed p ∈ (0, 1] and α ∈ [0, 1], define the function

Φp(x) =
(p + 1)(p + 2)

8


(2α2

− 4α + 2)x6 − (α2
+ 2α − 3)x5 + (18α − 16)x4

8(1 + (α − 1)x)(1 − x)

−
(8α + 1)x3 − (4α − 36)x2 − 32x + 8

8(1 + (α − 1)x)(1 − x)


. (12)
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If 0 < a0 ≤ r0 and 0 ≤ b0 ≤ Φp(a0), then

(i) f (an)2g(an, bn) ≤ 1 for all n.
(ii) {an} and {bn} are decreasing and an ≤ r0 < 1, ∀n.

Proof. (i) can easily be proved for all n, as from the definitions of f and g , we get

f (an)2g(an, bn) ≤ 1

if and only if
4(1 − an)2

(2 − 4an + a2n − (α − 1)a3n)2


×


αa2n

2(1 − an)
+

bn(1 + (α − 1)an)
(1 − an)(p + 1)(p + 2)

+
a2n(1 + (α − 1)an)

2(1 − an)

+
a3n(1 + (α − 1)an)2

8(1 − an)2


≤ 1

or,

bn ≤
(p + 1)(p + 2)

8


(2α2

− 4α + 2)x6 − (α2
+ 2α − 3)x5 + (18α − 16)x4

8(1 + (α − 1)x)(1 − x)

−
(8α + 1)x3 − (4α − 36)x2 − 32x + 8

8(1 + (α − 1)x)(1 − x)


or,

bn ≤ Φp(an).

To prove (ii), we shall use induction. From (i) for 0 < a0 ≤ r0 and 0 ≤ b0 ≤ Φp(a0), we get f (a0)2g(a0, b0) ≤ 1. Using (11),

a1 = a0f (a0)2g(a0, b0) ≤ a0 < 1

and as f (x) > 1 in (0, r0], we get

b1 = b0f (a0)2+pg(a0, b0)1+p < b0f (a0)2g(a0, b0)[f (a0)2g(a0, b0)]p ≤ b0.

Let us assume that (ii) holds for n = k. Then, proceeding similarly as above, one can easily show that ak+1 ≤ ak ≤ r0 < 1
and bk+1 ≤ bk. Since, f and g are increasing functions, this gives

f (ak+1)
2g(ak+1, bk+1) ≤ f (ak)2g(ak, bk) ≤ 1.

Hence it is true for all n. This proves the Lemma 2. �

Lemma 3. Let 0 < a0 < r0 and 0 < b0 < Φp(a0). Define γ =
a1
a0
, then for n ≥ 1 we have

(i) an ≤ γ (2+p)n−1
an−1 ≤ γ ((2+p)n−1)/(1+p)a0 for n ≥ 1.

(ii) bn ≤ (γ (2+p)n−1
)(1+p)bn−1 ≤ γ (2+p)n−1b0.

(iii) f (an)g(an, bn) ≤ γ (2+p)n f (a0)g(a0,b0)
γ

=
γ (2+p)n

f (a0)
, n ≥ 0.

Proof. Induction will be used to prove (i) and (ii). Since a1 = γ a0 and a1 < a0 from Lemma 2(i), we get γ < 1. Also by
Lemma 1(i), we get

b1 = b0f (a0)p+2g(a0, b0)p+1 < (f (a0)2g(a0, b0))1+pb0 =


a1
a0

1+p

b0 = γ 1+pb0.

Suppose (i) and (ii) hold for n = k, then

ak+1 = akf (ak)2g(ak, bk) ≤ γ (2+p)k−1
ak−1f (ak−1)

2g(γ (2+p)k−1
ak−1, (γ

(2+p)k−1
)1+pbk−1)

≤ γ (2+p)k−1
ak−1f (ak−1)

2(γ (2+p)k−1
)1+pg(ak−1, bk−1) = γ (2+p)kak.

Hence,

ak+1 ≤ γ (2+p)kak ≤ γ (2+p)kγ (2+p)k−1
ak−1 ≤ γ (2+p)kγ (2+p)k−1

· · · γ (2+p)0a0

≤ γ ((2+p)k+1
−1)/(1+p)a0.

Again, from f (x) > 1 in (0, r0], we get

bk+1 = bkf (ak)2+pg(ak, bk)1+p
≤ bk[f (ak)2g(ak, bk)]1+p

≤ bk


ak+1

ak

1+p

≤ (γ (2+p)k)1+pbk.
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Hence,

bk+1 = (γ (2+p)k)1+pbk ≤ (γ (2+p)k)1+p(γ (2+p)k−1
)1+p

· · · (γ (2+p)0)1+pb0 ≤ γ (2+p)k+1
−1b0

(iii) follows from

f (an)g(an, bn) ≤ f (γ (2+p)n−1/(1+p)a0)g(γ (2+p)n−1/(1+p)a0, γ (2+p)n−1b0)

≤ γ (2+p)n f (a0)g(a0, b0)
γ

= γ (2+p)n/f (a0)

as γ = a1/a0 = f (a0)2g(a0, b0). Thus, the Lemma 3 is proved. �

3. Recurrence relations

In this section, the recurrence relations will be derived for themethod (6) under the assumptions of the previous section.
Now yα,0 exists as Γα,0 = F ′(xα,0)

−1 exists. Thus, we get

∥LF (xα,0)∥ ≤ M∥Γα,0∥∥Γα,0F(xα,0)∥ ≤ a0.

Using Banach Lemma, this gives

∥(I − LF (xα,0))
−1

∥ ≤
1

1 − a0
and

∥Gα(xα,0)∥ ≤ 1 +
αa0

1 − a0
.

Thus,

∥xα,1 − yα,0∥ ≤
a0
2


1 +

αa0
1 − a0


∥yα,0 − xα,0∥

and

∥xα,1 − xα,0∥ ≤ ∥xα,1 − yα,0∥ + ∥yα,0 − xα,0∥ ≤
(2 − a0 + (α − 1)a20)

2(1 − a0)
∥yα,0 − xα,0∥.

Also,

N∥Γα,0∥ ∥yα,0 − xα,0∥
1+p

≤ Nβη1+p
= b0. (13)

We shall now prove the following inequalities for n ≥ 1, α ∈ [0, 1].

(I) ∥Γα,n∥ = ∥F ′(xα,n)
−1

∥ ≤ f (an−1)∥Γα,n−1∥,
(II) ∥Γα,nF(xα,n)∥ ≤ f (an−1)g(an−1, bn−1)∥Γα,n−1F(xα,n−1)∥,
(III) ∥LF (xα,n)∥ ≤ M∥Γα,n∥ ∥Γα,nF(xα,n)∥ ≤ an,
(IV) N∥Γα,n∥ ∥Γα,nF(xα,n)∥

1+p
≤ bn,

(V) ∥xα,n+1 − xα,n∥ ≤


(2 − an + (α − 1)a2n)

2(1 − an)


∥Γα,nF(xα,n)∥,

(VI) yα,n, xα,n+1 ∈ B(xα,0, Rη), for R =
2 − a0 + (α − 1)a20
2(1 − a0)(1 − γ∆)

and ∆ =
1

f (a0)


. (14)

This will require the following Lemma.

Lemma 4. Let the sequence {xα,n} and {yα,n} be generated by (6). Then, for all n ∈ Z+, using Taylor’s theorem, we get

F(xα,n+1) =

 1

0
F ′′(xα,n + t(yα,n − xα,n))I − Gα(xα,n)(yα,n − xα,n)

2(1 − t)dt

+

 1

0
[F ′′(xα,n + t(yα,n − xα,n)) − F ′′(xα,n)]Gα(xα,n)(yα,n − xα,n)

2(1 − t)dt

+

 1

0
F ′′(xα,n + t(yα,n − xα,n))(yα,n − xα,n)(xα,n+1 − yα,n)dt

+

 1

0
F ′′(xα,n + t(xα,n+1 − yα,n))(1 − t)dt(xα,n+1 − yα,n)

2.
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Now, conditions (I)–(VI) can be proved by using induction. For xα,1 ∈ Ω , we get

∥I − Γα,0F ′(xα,1)∥ ≤ M∥Γα,0∥ ∥xα,1 − xα,0∥

≤
(2 − a0 + (α − 1)a20)

2(1 − a0)
M∥Γα,0∥ ∥yα,0 − xα,0∥

≤
a0(2 − a0 + (α − 1)a20)

2(1 − a0)
< 1.

Hence, Γα,1 = F ′(xα,1)
−1 exists. By using Banach Lemma, we get

∥Γα,1∥ ≤
∥Γα,0∥

1 − M∥Γα,0∥ ∥xα,0 − xα,1∥

≤
2(1 − a0)

2 − 4a0 + a20 − (α − 1)a30
∥Γα,0∥ = f (a0)∥Γα,0∥. (15)

Thus, yα,1 also exists. Using Lemma 4, we get

∥F(xα,1)∥ ≤
M
2

∥I − Gα(xα,0)∥ ∥yα,0 − xα,0∥
2
+ N

 1

0
tp(1 − t)dt∥yα,0 − xα,0∥

2+p
∥Gα(xα,0)∥

+M∥yα,0 − xα,0∥ ∥xα,1 − yα,0∥ +
M
2

∥xα,1 − yα,0∥
2.

From

∥I − Gα(xα,0)∥ ≤
αa0

1 − a0
,

we get

∥F(xα,1)∥ ≤
M
2

αa0
1 − a0

∥yα,0 − xα,0∥
2
+

N
(p + 1)(p + 2)

∥yα,0 − xα,0∥
p+2


(1 + (α − 1)a0)

(1 − a0)


+M∥yα,0 − xα,0∥

2 a0(1 + (α − 1)a0)
2(1 − a0)

+
M
8

∥yα,0 − xα,0∥
2

a20(1 + (α − 1)a0)2

(1 − a0)2


≤

M
2

αa0
1 − a0

η2
+

N
(p + 1)(p + 2)


(1 + (α − 1)a0)

(1 − a0)


ηp+2

+M
a0(1 + (α − 1)a0)

2(1 − a0)
η2

+
M
8

η2

a20(1 + (α − 1)a0)2

(1 − a0)2


.

This gives

∥Γα,1F(xα,1)∥ ≤ ∥Γα,1∥ ∥F(xα,1)∥

≤ f (a0)


αa20
2(1 − a0)

+
b0(1 + (α − 1)a0)

(p + 1)(p + 2)(1 − a0)
+

a20(1 + (α − 1)a0)
2(1 − a0)

+
a30(1 + (α − 1)a0)2

8(1 − a0)2


η

≤ f (a0)g(a0, b0)η. (16)

Also, we have

∥LF (xα,1)∥ ≤ M∥Γα,1∥ ∥Γα,1F(xα,1)∥ ≤ M∥Γα,0∥f (a0)2g(a0, b0)∥yα,0 − xα,0∥

≤ a0f (a0)2g(a0, b0) = a1 (17)

and

N∥Γα,1∥ ∥Γα,1F(xα,1)∥
1+p

≤ N∥Γα,0∥f (a0)f (a0)1+pg(a0, b0)1+p
∥yα,0 − xα,0∥

≤ b0f (a0)2+pg(a0, b0)1+p
= b1. (18)

By using Banach Lemma, this gives

∥(I − LF (xα,1))∥ ≤
1

1 − a1
as ∥LF (xα,1)∥ ≤ 1. Thus,

∥Gα(xα,1)∥ ≤ 1 +
αa1

1 − a1
.
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Hence,

∥xα,2 − yα,1∥ ≤
a1(1 + (α − 1)a1)

2(1 − a1)
∥yα,1 − xα,1∥

and

∥xα,2 − xα,1∥ ≤ ∥xα,2 − yα,1∥ + ∥yα,1 − xα,1∥

≤
(2 − a1 + (α − 1)a21)

2(1 − a1)
∥yα,1 − xα,1∥. (19)

Now, for ∆ =
1

f (a0)
, we have

∥yα,1 − xα,0∥ ≤
(2 − a0 + (α − 1)a20)
2(1 − a0)(1 − γ∆)

η = Rη (20)

and

∥xα,2 − xα,0∥ ≤
2 − a0 + (α − 1)a20
2(1 − a0)(1 − γ∆)

η = Rη. (21)

Using (15)–(21), the conditions (I)–(VI) hold for n = 1. Now let us assume that the conditions (I)–(VI) hold for n = k and
xα,k ∈ Ω for all α ∈ [0, 1]. Proceeding similarly as above, we can prove that these conditions also hold for n = k+ 1. Hence,
by induction they hold for all n.

4. Convergence theorem

In this section we shall establish the convergence theorem and a closed form of the error bounds based on α ∈ [0, 1] for

the method (6). Let us denote γ = a1/a0, ∆ = 1/f (a0) and R =
2−a0+(α−1)a20
2(1−a0)(1−γ∆)

for all α ∈ [0, 1]. Let B(xα,0, Rη) = {x ∈

X : ∥x − xα,0∥ < Rη} and B(xα,0, Rη) = {x ∈ X : ∥x − xα,0∥ ≤ Rη} represent the open and closed balls around xα,0.
Also, let us assume that 0 < a0 ≤ r0 and 0 ≤ b0 ≤ Φp(a0) hold, where r0 be the smallest positive zero of the polynomial
(2α2

− 4α + 2)x6 − (α2
+ 2α − 3)x5 + (18α − 16)x4 − (8α + 1)x3 − (4α − 36)x2 − 32x + 8 = 0 for all α ∈ [0, 1].

Theorem 1. Under the assumptions given in (7) andB(xα,0, Rη) ⊆ Ω , the method (6) starting from xα,0 generates a sequence of
iterates {xα,n} converging to the root x∗ of F(x) = 0with R-order at least (2+ p). In this case xα,n, yα,n and x∗ lie in B(xα,0, Rη)

and x∗ is unique in B(xα,0,
2

Mβ
− Rη) ∩ Ω . Further the error bounds on x∗ is given by

∥x∗
− xα,n∥ ≤

(2 − γ ((2+p)n−1)/(1+p)a0 + (α − 1)γ ((2+p)n−1)/(1+p)a20)
2(1 − γ ((2+p)n−1)/(1+p)a0)

γ ((2+p)n−1)/(1+p)∆nη

1 − γ (2+p)n∆
. (22)

Proof. It is sufficient to show that {xα,n} is a Cauchy sequence in order to establish the convergence of {xα,n}. Using (14), we
can give

∥yα,n − xα,n∥ ≤ f (an−1)g(an−1, bn−1)∥yα,n−1 − xα,n−1∥

≤ · ·


n−1
j=0

f (aj)g(aj, bj)


∥yα,0 − xα,0∥

≤


n−1
j=0

f (aj)g(aj, bj)


η (23)

and

∥xα,m+n − xα,m∥ ≤ ∥xα,m+n − xα,m+n−1∥ + · · · ∥xα,m+1 − xα,m∥

≤
2 − am+n−1 + (α − 1)a2m+n−1

2(1 − am+n−1)
∥yα,m+n−1 − xα,m+n−1∥ + · · ·

+
2 − am + (α − 1)a2m

2(1 − am)
∥yα,m − xα,m∥

≤
2 − am + (α − 1)a2m

2(1 − am)


m+n−2

j=0

f (aj)g(aj, bj) + · · · · · +

m−1
j=0

f (aj)g(aj, bj)


η. (24)
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Now, for a0 = r0, we have b0 = Φp(a0) = 0. Hence, from Lemma 2, we obtain f (a0)2g(a0, b0) = 1, an = an−1 = · · · · = a0
and bn = bn−1 = · · · · = b0 = 0. This gives

∥yα,n − xα,n∥ ≤ (f (a0)g(a0, b0))n∥yα,0 − xα,0∥ = ∆nη

and

∥xα,m+n − xα,m∥ ≤
(2 − a0 + (α − 1)a20)∆

m

2(1 − a0)


1 − ∆n

1 − ∆


η. (25)

Hence, if we takem = 0, we get

∥xα,n − xα,0∥ ≤
(2 − a0 + (α − 1)a20)

2(1 − a0)


1 − ∆n

1 − ∆


η. (26)

Thus, xα,n ∈ B(xα,0, Rη). Similarly we can prove that yα,n ∈ B(xα,0, Rη). Also, we can conclude that {xα,n} is a Cauchy
sequence. For 0 < a0 < r0 and 0 < b0 < Φp(a0) and from (14), we get on using Lemma 3(iii), for n ≥ 1,

∥yα,n − xα,n∥ ≤


n−1
j=0

f (aj)g(aj, bj)


η ≤

n−1
j=0

(γ (2+p)j∆)η = γ ((2+p)n−1)/(1+p)∆n.

Also from (24), we get

∥xα,m+n − xα,m∥ ≤
2 − am + (α − 1)a2m

2(1 − am)


m+n−2

j=0

f (aj)g(aj, bj) + · · · +

m−1
j=0

f (aj)g(aj, bj)


η

<
2 − am + (α − 1)a2m

2(1 − am)


γ ((2+p)m+n−1

−1)/(1+p)∆m+n−1
+ · · · · · · + γ ((2+p)m−1)/(1+p)∆m


<

(2 − am + (α − 1)a2m)∆m

2(1 − am)


γ ((2+p)m+n−1

−1)/(1+p)∆n−1
+ · · · · +γ ((2+p)m−1)/(1+p)


η

<
(2 − amγ ((2+p)m−1)/(1+p)

+ (α − 1)a2mγ ((2+p)m−1)/(1+p))∆m

2(1 − amγ ((2+p)m−1)/(1+p))

× γ ((2+p)m−1)/(1+p)

γ (2+p)m[(2+p)n−1

−1]/(1+p)∆n−1
+ · · · + γ (2+p)m[(2+p)−1]/(1+p)∆+1


η.

By Bernoulli’s inequality, we get

∥xα,m+n − xα,m∥ <
(2 − amγ ((2+p)m−1)/(1+p)

+ (α − 1)a2mγ ((2+p)m−1)/(1+p))∆m

2(1 − amγ ((2+p)m−1)/(1+p))


1 − γ (2+p)mn∆n

1 − γ (2+p)m∆


η. (27)

Thus, form = 0, we get

∥xα,n − xα,0∥ <
2 − a0 + (α − 1)a20

2(1 − a0)
(1 − γ n∆n)

(1 − γ∆)
η. (28)

Hence, xα,n ∈ B(xα,0, Rη). Also yα,n ∈ B(xα,0, Rη) follows from

∥yα,n − xα,0∥ ≤ ∥yα,n+1 − xα,n+1∥ + ∥xα,n+1 − xα,n∥ + · · · + ∥xα,1 − xα,0∥

≤ ∥yα,n+1 − xα,n+1∥ +
2 − an + (α − 1)a2n

2(1 − an)
∥yα,n − xα,n∥ + · · ·

+
2 − a0 + (α − 1)a20

2(1 − a0)
∥yα,0 − xα,0∥

< · · · <
2 − a0 + (α − 1)a20

2(1 − a0)
1 − γ n+2∆n+2

1 − γ∆
η < Rη.

On taking the limit as n → ∞ in (25) and (27), we get x∗
∈ B(xα,0, Rη). To show that x∗ is a solution of F(x) = 0. We have

that ∥F(xα,n)∥ ≤ ∥F ′(xα,n)∥ ∥Γα,nF(xα,n)∥ and the sequence {∥F ′(xα,n)∥} is bounded as

∥F ′(xα,n)∥ ≤ ∥F ′(xα,0)∥ + M∥xα,n − xα,0∥ < ∥F ′(xα,0)∥ + MRη.
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Since F is continuous, by taking limit as n → ∞ and α ∈ [0, 1] we get F(x∗) = 0. To prove the uniqueness of the solution,
if y∗ be the another solution of (1) in B(xα,0,

2
Mβ

− Rη) ∩ Ω then we have

0 = F(y∗) − F(x∗) =

 1

0
F ′(x∗

+ t(y∗
− x∗))dt(y∗

− x∗).

Clearly, y∗
= x∗, if

 1
0 F ′(x∗

+ t(y∗
− x∗))dt is invertible. This follows from

∥Γ0∥

 1

0
[F ′(x∗

+ t(y∗
− x∗)) − F ′(xα,0)]dt

 ≤ Mβ

 1

0
∥x∗

+ t(y∗
− x∗) − xα,0∥dt

≤ Mβ

 1

0
(1 − t)∥x∗

− xα,0∥ + t∥y∗
− xα,0∥dt

≤
Mβ

2


Rη +

2
Mβ

− Rη


= 1

and by Banach Lemma. Thus, y∗
= x∗. �

5. Numerical examples

Example 1. Let X be the space of all continuous functions on [0, 1] and consider the integral equation F(x) = 0 where

F(x)(s) = x(s) − f (s) − λ

 1

0

s
s + t

x(t)2+pdt (29)

with s ∈ [0, 1],x, f ∈ Ω ⊂ X, p ∈ (0, 1] and λ is a real number. The given integral equation is called Fredholm-type integral
equations. Here norm is taken as the sup-norm. Now, it is easy to find that first and second Frëchet derivatives of F as

F ′(x)u(s) = u(s) − λ(2 + p)
 1

0

s
s + t

x(t)1+pu(t)dt, u ∈ Ω

F ′′(x)uv(s) = −λ(2 + p)(1 + p)
 1

0

s
s + t

x(t)puv(t)dt, u, v ∈ Ω.

Clearly, F ′′ does not satisfy the Lipschitz continuity condition as for p ∈ (0, 1) and for all x, y ∈ Ω

∥F ′′(x) − F ′′(y)∥ = ∥λ(2 + p)(1 + p)
 1

0

s
s + t

[x(t)p − y(t)p]dt∥

≤ |λ|(2 + p)(1 + p) max
s∈[0,1]

 1

0

s
s + t

dt
 ∥x(t)p − y(t)p∥

≤ |λ|(2 + p)(1 + p) log 2∥x − y∥p.

However, it satisfies the Hölder continuity condition for p ∈ (0, 1] and N = |λ|(2 + p)(1 + p) log 2. To obtain a bound for
Γα,0, we find

∥F(xα,0)∥ ≤ ∥xα,0 − f ∥ + |λ| log 2∥xα,0∥
p

and

∥I − F ′(xα,0)∥ ≤ |λ|(2 + p) log 2∥xα,0∥
1+p.

Now, if |λ|(2 + p) log 2∥xα,0∥
1+p < 1, then by Banach Lemma, we get

∥Γα,0∥ = ∥F ′(xα,0)
−1

∥ ≤
1

1 − |λ|(2 + p) log 2∥xα,0∥
1+p

= β.

Also,

∥F ′′(x)∥ ≤ |λ|(2 + p)(1 + p) log 2∥x∥p.

Hence,

∥Γα,0F(xα,0)∥ ≤
∥xα,0 − f ∥ + |λ| log 2∥xα,0∥

p

1 − |λ|(2 + p) log 2∥xα,0∥
1+p

.

Now, for λ = 1/4, p = 1/5, f (s) = 1 and xα,0 = x0(s) = 1, we get ∥Γα,0∥ ≤ β = 1.61611, ∥Γα,0F(xα,0)∥ ≤ η = 0.280051,
N = 0.457477, and b0 = Nβη1+p

= 0.160518. The conditions of Theorem 1 requires to find the values of a parameter
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Fig. 1. Conditions on the parameters S.

Fig. 2. Conditions of the parameter S.

S such that S ∈ B(xα,0, Rη) ⊆ Ω. The values of S ∈ (1.25574, 11.0458) are obtained from Fig. 1 for α = 0 such that
S − (R(S)η + 1) > 0 and Φp(a0(S)) − b0 ≤ 0. Also, a0(S) ≤ r0 = 0.380778 if and only if S < 21.0365. From M = M(S) =

0.457477Sp, a0 = a0(S) = M(S)βη = 0.207051Sp for S = 9, we get Ω = B(1, 9),M = 0.709934, a0 = 0.321311 and
b0 = 0.160518 < 0.0284957 ≤ Φp(a0). Thus, the conditions of Theorem 1 are satisfied. Hence, a solution of (29) exists in
B(1, 0.735778) ⊆ Ω and the solution is unique in the ballB(1, 1.0074)∩Ω.Now, for α = 1,we get S ∈ (1.2117, 9.26314)
from Fig. 2. Again taking S = 9 then a0 = 0.321311 < 0.380778 and b0 < Φp(a0),we find that a solution of (29) exists in
B(1, 0.581361) ⊆ Ω and the solution is unique in the ball B(1, 1.16181) ∩ Ω.

On the other hand, working with majorizing sequences for α ∈ [0, 1], we get the solution exists in the ball
B(1, 0.355213) ⊆ Ω and unique in the ballB(1, 1.15516). On comparing these results, we see that forα = 0, our existence
region for the solution is improved but not the uniqueness region. However, for α = 1, both the existence and uniqueness
regions are improved.

Example 2. Consider the boundary value problem given by

y′′
+ y′

− y3 = 0, y(0) = y(1) = 0. (30)

To find the solution, we divided the interval [0, 1] into n subintervals by taking stepsize h =
1
n . Let {zk} be the points of the

subdivision with

0 = z0 < z1 < z2 < · · · · < zn = 1

and corresponding values of the function

y0 = y(z0), y1 = y(z1), . . . , yn = y(zn).

Using approximations for the first and second derivatives given by

y′

i = (yi+1 − yi)/h, y′′

i = (yi−1 − 2yi + yi+1)/h2, i = 1, 2, . . . , n − 1

and noting that y0 = 0 = yn, we define the operator F : Rn−1
→ Rn−1 by

F(y) = G(y) + hJ(y) − 2h2g(y),
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where,

G =


−4 2 0 · · · 0
2 −4 2 · · · 0
0 2 −4 · · · 0
...

...
...

. . . 0
0 · · · · · · · · · −4

 , J =


0 1 0 · · · 0

−1 0 1 · · · 0
0 −1 0 · · · 0
...

...
...

. . . 0
0 · · · · · · · · · 0



g(y) =


y31
y32
...

y3n−1

 , y =


y1
y2
...

yn−1

 .

Then, we get

F ′(y) = G + hJ − 6h2


y21 0 0 · · · 0
0 y22 0 · · · 0
0 0 y23 · · · 0
...

...
...

. . . 0
0 · · · · · · · · · y2n−1

 ,

F ′′(y) = −12h2


y1 0 0 · · · 0
0 y2 0 · · · 0
0 0 y3 · · · 0
...

...
...

. . . 0
0 · · · · · · · · · yn−1

 .

Let x ∈ Rn−1, A ∈ Rn−1
× Rn−1, and define the norms of x and A by

∥x∥ = max
1≤i≤n−1

|xi|, ∥A∥ = max
1≤i≤n−1

|aik|.

Now, we get

∥F ′′(x) − F ′′(y)∥ ≤ 0.12∥x − y∥.

This gives ∥Γα,0∥ ≤ β = 6.11998638, ∥Γα,0F(xα,0)∥ ≤ η = 0.168893, ∥F ′′(x)∥ ≤ M = 0.0202824,N = 0.12, a0 =

Mβη = 0.02096435, and b0 = 0.0209486.
Also, for α = 0, we get a0 < r0 = 0.380778, b0 < Φp(a0). Hence, all the conditions of Theorem 1 are satisfied. Thus, the
solution of Eq. (30) exists in the ball B(1, 0.171313) and unique in the ball B(1, 15.9411)∩Ω.Now for α = 1, a solution of
Eq. (30) exists in the ball B(1, 0.171405) and unique in the ball B(1, 15.941) ∩ Ω . But, by using Majorizing sequences, we
get the solution exists in B(1, 0.17017) for α ∈ [0, 1] and unique in B(1, 2.67306) ∩ Ω . Comparing these results, one can
easily conclude that the existence and uniqueness regions of solution for α = 0 and α = 1 are improved by our approach.

6. Conclusions

The semilocal convergence of a continuation method combining the Chebyshev method and the convex acceleration
of Newton’s method used for solving nonlinear equations in Banach spaces is established by using recurrence relations
under the assumption that the second Frëchet derivative satisfies the Hölder continuity condition. This condition is mild
and works for problems in which the second Frëchet derivative is either difficult to compute or fails to satisfy Lipschitz
continuity condition. A new family of recurrence relations are defined based on the two constants, which depend on the
operator. An existence–uniqueness regions along with a priori error bounds for the solution x∗ is given. A closed form of the
error bounds is also derived in terms of a real parameterα ∈ [0, 1]. Two numerical examples areworked out to demonstrate
the efficacy of our approach. On comparing the existence and uniqueness regions for the solution obtained by our analysis
with those obtained by using majorizing sequences under Hölder continuity condition, it is found that our analysis gives
improved results. Further, we have observed that for particular values of α, our analysis reduces to those for the Chebyshev
method (α = 0) and the convex acceleration of Newton’s method (α = 1) respectively, with improved results.
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