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Relativistic generalizations of gravity-induced localization models
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Abstract

Nonunitary versions of Newtonian gravity leading to wavefunction localization admit natural special-relativistic generaliza-
tions. They include the first consistent relativistic localization models. At variance with the unified model of localization and
gravity, the purely localizing version requires negative energy fields, which however are less harmful than usual and can be used
to build ultraviolet-finite theories.
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Despite many claims according to which environment induced decoherence has solved the measurement
problem in quantum mechanics, the issue is not yet settled [1]. One of the proposals to cope with the measurement
problem is the modification of the evolution law in such a way to get the emergence of classicality even in closed
systems [2—7]. Of course the modified dynamics must comply with strict constraints, imposed by the huge amount
of experimental data consistent with the ordinary unitary, linear and deterministic evolution law generated by the
Hamiltonian operator. Although it was shown that such constraints can be met by adding nonlinear stochastic terms
to the ordinary Schroedinger equation, that was achieved at some expense. First, the proposed models require the
introduction of phenomenological constants, which should be fitted by future experiments. Secondly, as observed
by John Bell, who considered the main idea behind these models as a viable one, the special role assigned to
position requires a smearing on space, which makes it quite problematic to find relativistic generalizations [6-8].

On the other hand the analysis of the possibility that the localization of macroscopic bodies is an unavoidable
effect of gravity has a long history [9,10]. That idea led to the introduction of localization models inspired by
gravity, with the unattained aim of getting rid of the mentioned free parameters [11,12]. It should also be mentioned
that a strong support to the idea that gravity may imply a nonunitary generalization of quantum dynamics came
from the emergence of the information loss paradox within black hole physics [13,14].
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In some recent papers it was shown that suitable nonunitary modifications of Newtonian gravity lead to
localization models without any free parameter [15—-17]. While for previous nonunitary models inspired by black
hole dynamics the basic idea is to have the given system interacting with a “hidden system” with “no energy of its
own and therefore... not... available as either a net source or a sink of energy” [18], in the present models energy
conservation is granted by the “hidden system” being a copy of the physical system, coupled to it only by gravity,
and constrained in its same state and then with its same energy. The unitary dynamics and the states referred tc
the doubled operator algebra are what we call meta-dynamics and meta-states, while, by tracing out the hidden
degrees of freedom, we get the nonunitary dynamics of the physical states. Pure physical states correspond then tc
meta-states without entanglement between physical and hidden degrees of freedom.

The hint that gravity may induce a nonunitary evolution came long ago even from the perturbative analysis of
Einstein gravity leading to the emergence of higher order theories, which however are either nonunitary or plagued
by ghosts [19,20]. An optimistic conclusion is that “the S matrix will be nearly unitary” [19]. In Ref. [21] a remedy
for the ghost problem, leading to a nonunitary theory, was suggested by a redefinition of the Euclidean path integral.
A different approach in real space—time was proposed in Refs. [22,23], thus avoiding analytical continuation, which
amounts to a tricky operation outside the realm of a fixed flat geometry. As in Ref. [21], classical instability is cured
at the expense of unitarity and the ensuing theory singles out one of the mentioned modifications of Newtonian
gravity as its Newtonian limit. Of course the fully relativistic model may present the usual problems ensuing from
the consideration of a general covariant theory of gravity within a quantum context.

In this Letter we want to prove that there are no fundamental obstructions to the building of relativistic
localization models, by showing that the mentioned nonrelativistic models have natural special-relativistic
generalizations, leading to the first well-defined localization models, both relativistic and without free parameters.

In particular the analysis of the possible relativistic extensions sheds some light on the ubiquitous presence of
a divergent injection of energy in the previous attempts [6,7]. Within the field theoretic setting of the relativistic
models presented here an uncontrollable energy injection may occur only in the presence of negative energy fields.
On the other hand such fields are unavoidable within our approach only if one requires that the localizing interaction
averages out to zero. On the contrary, if one accepts that the localizing interaction includes an average effect, which
in the nonrelativistic limit corresponds to the ordinary Newtonian interaction, negative energy fields can be avoided.

To be specific, leHo[vT, ¥] be the second quantized form of an ordinary matter Hamiltonian in the absence of
gravity. To define the nonunitary Newtonian limit of the general covariant model [23], we introduce a (meta-)matter
algebra that is the product of two equivalent copies of the observable matter algebra, respectively generated by the
v, v andy T, ¢ operators and a meta-Hamiltonian
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acting on the producky ® F& of the Fock spaces of thg¢ andy, operators. Here two couples of meta-matter
operatorsw;, ¥; and ij ; appear for every particle species and spin component, whijlés the mass of

the jth particle species. Th{yj operators obey the same statistics as the corresponding opegatovehile

[V, ¥]- =y, ¥T]-=0.
The meta-state spadds defined by a symmetry constraint as the subspaég & Fy including the meta-states
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and symmetrical with respect to the interchagge< v T, which, then, have the same numberjoindy, meta-
particles of each species. As the observable algebra is identified with tperator algebra, expectation values
can be evaluated by preliminarily tracing out theoperators.

It was shown that the ensuing nonunitary dynamics, while embodying the ordinary Newton interaction, gives
rise to a dynamical localization that is compatible both with the wavelike behavior of microscopic particles and the
emergence of classicality for macroscopic bodies [15-17,23,24].

In an interaction representation, where the free meta—HamiItoniHa[@T, v+ HO[W, V1, if for simplicity
we refer to one particle species only andly denotes a quadratic scalar expression, the time evolution of a generic
meta-statél @ (0))) is represented by

||q5(z)))=Texp%GmZ/drfdxdy

[Wu)w)w*(y)m) GOV OVTOMT ) v Dy, r)&*(y,t)m,t)]
X + +
4x — y| 4x — y| 2|x —y|

x| &)
=U(@1)||9(0)). (2

Then, by a Stratonovich—Hubbard transformation [25], we can rewfite as a functional integral over an
auxiliary real scalar fielg:

ic? 2
U(t):/D[go] expz—h/dtdx [¢V20]
X Texp[-i%ﬁﬂ;/dtdx<p(x,t)(1p“(x,t)w(x,t)+1}*(x,t)1}(x,r))]. (3)

This allows, in particular, to obtain, by tracing out the hidden degrees of freedom, an expression for the physical
stateopn evolving from the generic pure stgt&(0)), which can be taken as an alternative definition of the model,
independent of any reference to the hidden degrees of freedom [17,23]:

.2
PPh(t):/D[(p,(p’] exp%/dtdx [¢V2<p—<p’V2¢/]
x ¢,(Q§(O)|Tlexp|:i$«/2ntdtdx (p’wTWj|Texp|:—i%\/%/dtdx WW]|¢(0))¢,

x Texp[—i%\/ZnG/dtdxgm//Tl/f]|Q>(O))¢/ w(cb(O)|T1exp|:i$«/2nG/dtdx¢’1//Tl//i|.
(4)

The announced relativistic model is obtained by the immediate generalization of the equation above
corresponding to the replacement of the matter fields with their relativistic generalization and of the Laplacian
with the d’Alambertian operator. The same replacement transforms Eq. (3) into a mixed operator and path integral
expression for a theory with meta-matter interacting with a quantum neutral scalar field by a Yukawa interaction.
The ensuing theory is of course a well-defined renormalizable field theory without any instability leading to an
uncontrollable increase of the matter energy.

If one assumes that the ensuing relativistic model is a real improvement on its Newtonian limit, one has to see
if using the latter is consistent at all. In order to do that, consider that the Newtonian model gives a localization
length A ~ (#2R3/ G M3)Y/* for a body whose linear dimension K and whose masa is above the threshold,
which for ordinary densities is- 10! proton massesr(,) [15,23]. The localization process implies a localization
energyE 4 ~ h?/(M A?) ~ hGY/2p1/2, depending only on the body densjty which, for ordinary densities is
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E ~ 10720 eV. This process takes a tinfg; ~ 10°9(M/m ,)~>/3 s [17,23] and consists of the transformation of
potential into kinetic meta-energy, corresponding to twice the physical kinetic energy.

To estimate the radiated energy in the relativistic model, consider that the bound metastates, corresponding
to localized states, are small oscillations in a potertigt) ~ (G M?2/R3)r2, namely with a frequency ~
v GM/R3. The corresponding classical radiating power for il harmonic frequency is easily seen to be
wy, = (nw)>GM?/c, wherep(x,t) =3, pa(x) eXplinwt), M, = [ dx p,(x). For ordinary densities antf =
10'2m ,, just above the threshold, one gets a total radiating pawgr10-37 eV/s, which in the localization time
Tc ~ 1 s amounts to an irrelevant fractior L0~17) of the localization energ¥ 4. This means that, in order to
estimate relativistic corrections, it makes sense just to replace in Eg. (1) the instantaneous interactions with the
ones mediated by the retarded propagator.

Also in Pearle’s proposal [7,26] matter is coupled to a scalar field by a Yukawa interaction. The main differences
consistin the field being massive and in the fact that here it is coupled to a hidden copy of matter, whereas in Pearle’s
model it is coupled to a classical stochastic field, whoseimber character leads to an infinite growth rate of the
energy of the scalar field [7]. Moreover, while our aim was to build a unified model of localization and gravity, the
interaction introduced in Pearle’s model is meant to produce localization only.

If one wanted to introduce a scalar field leading only to dynamical localization, without an average ensuing
force, then one would be forced to take a negative energy field, namely an evolution operator

Uo(t) = / Dly] expzl—h / dtdx [—c?oV2¢ + ¢82¢]

x Texp[—i%x/ZnG/dtdxq)(x,t)(lpT(x,t)lp(x,t) - &T(x,t)&(x,t))}. (5)

In fact, if one integrates out the scalar field, in analogy with the Feynman’s elimination of the electromagnetic
potential [27] and one takes the> oo limit, one gets a Hamiltonian like the one in Eq. (1), but for the replacement

G — —G in the last two terms. By paraphrasing the analysis performed in Refs. [15,23], one sees that, once the
symmetry constraint is considered, no net force survives and that the localization properties are exactly the same as
for the original model, since they depend only on the interaction between physical and hidden degrees of freedom.
It should be remarked that if in Eq. (5) one replaces the scalar field with a positive energy one, by changing the sign
in the exponent of the first exponential, one gets a model still with a vanishing net force, but without localization
properties, as the interaction between physical and hidden degrees of freedom is repulsive.

Although our aim was the introduction of a well-defined relativistic theory, on a heuristic level one can introduce
another relativistic model where both positive and negative energy fields are present, with the further bonus of
Pauli-Villars-like cancellations, like in the general covariant theory [20,22,23]. In fact, if we consider a relativistic
action

A= Aoy, w]+ Ad[v T, 7]
+ % / dtdx [6‘2§01V2§01 - 9013,2901 - 62¢2V2§02 + @23;2902
—2meN2n G (YT + 9" ) o1 — 2mev2r G (v Ty — 1)), (6)

where Ao[vT, ¥ is the ordinary relativistic matter action, its Newtonian limit is obtained by the elimination
of the second and the third term and the replacement afith 2G in Eq. (1). This nonrelativistic model is
qualitatively equivalent to the Newtonian limit of the general covariant theory, apart from little quantitative changes
in the localization properties due to the doubling of the localizing interaction. As to the relativistic model (6), it is
remarkable that it contains no new ultraviolet divergences with respect to the ones already present in the traditional
theory with actiondo[v T, /], as there is a complete cancellation of all self-energy and vertex graphs corresponding
to the interaction of meta-matter with the scalar fields, due to the difference in sign of their propagators.

In conclusion some remarks are in order.
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First it should be added that in our models (the avoidable) negative energy fields are less harmful than expected,
since their average values are constrained to vanish, which makes such models stable, at least within a naive
classical analysis, like it happens in the general covariant theory [22,23]. This follows from the fact that, in order
for the evolution to be compatible with the symmetry constraint, one has to generalize the latter by replacing the
symmetry transformation exchanging physical and hidden degrees of freedom with

1[/_)&’ ‘(/'}_>‘(//’ Y —> —9, (7)

whereg is the negative energy field, in analogy to Eq. (12) in Ref. [23].

Secondly we should stress that, even though the obstruction to the formulation of consistent relativistic
localization models is removed within a unified theory of localization and gravity, this does not mean that our
special relativistic extensions may include a relativistic theory of gravity. In fact the Newtonian interaction is
obtained starting from a Yukawa interaction, while a relativistic theory of gravity should involve the matter energy—
momentum tensor. However, the present results, together with the observation that renouncing unitarity may tame
the instabilities inherent in higher order gravity [22,23], appear to us to be a rather compelling indication that a
unified relativistic theory of spontaneous localization and gravity may be easier to construct than a unitary theory
of gravity.

Finally one can look in principle for spontaneous localization models in terms of a stochastic dynamics for
pure states, which, when averaged, leads to our nonunitary evolution of the density operator [2—7]. Apart from
the nonuniqueness of stochastic realizations [6], stochastic models can certainly be useful as computational tools.
However the view advocated here considers density operators as the fundamental characterization of the systen
state and not just as a bookkeeping tool for statistical uncertainties. This point of view, apart from possibly being
relevant to the quantum foundations of thermodynamics [23], avoids the ambiguities of the stochastic viewpoint,
where the expectation of a local observable depends on the choice of a particular space-like surface in its entirety
(Ref. [7], Section 14.2). The fact that, in measurement processes, the apparent uniqueness of the result seems t
imply a real collapse is perhaps more an ontological than a physical problem, and presumably, if one likes it, that
can be addressed by a variant of the Everett interpretation [28].
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