14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO)

FEM-Based Modelling of the Influence of Thermophysical Properties of Work and Cutting Tool Materials on the Process Performance

Piotr Nieslonya*, Wit Grzesikb, Piotr Laskowskib, Witold Habratc

aOpole University of Technology, 76 Proszkowska str., 45-758 Opole, Poland
bPZL WSK Rzeszów, 120 Henariska str., 35-078 Rzeszów, Poland
cRzeszów University of Technology, 12 Powstańców Warszawy str., 35-939 Rzeszów, Poland

* Corresponding author. Tel.: +49 77 449 8460; fax: +49 77 449 8460; E-mail address: p.nieslony@po.opole.pl.

Abstract

The paper considers the problem of the influence of constitutive model parameters on the results of FEM-based modelling of the turning process under simple orthogonal arrangement. In these simulations C45 (AISI 1045) carbon steel and multilayer-coated carbide tool were used. The orthogonal cutting model was used with varying cutting speed of \(v_c = 100-330 \) m/min and constant feed rate \(f = 0.16 \) mm/rev and depth of cut \(a_p = 2 \) mm. The simulations were based on the power constitutive law (PL) with a special consideration of the temperature-related thermal influences. Both sets of literature data, i.e. Ozel’s and Kalhori’s models and own data in the form of multi-regressive equations for the substrate and coating components were applied. The novelty of this study is that the sensitivity analysis concerns the material flow stress in the PL model. As outputs, the average interface temperature, the distribution of temperature on the rake face and within wedge body, as well as cutting forces were determined, compared and discussed. Quite satisfactory results with simulation errors lower than 15% were obtained.

© 2013 The Authors. Published by Elsevier B.V.

Selection and peer-review under responsibility of The International Scientific Committee of the “14th CIRP Conference on Modeling of Machining Operations” in the person of the Conference Chair Prof. Luca Settineri

Keywords: FEM simulations; constitutive models; thermal softening index

1. Constitutive material models in FEM simulation

Modelling of machining processes in terms of multi-criteria optimization is currently developed in order to support the implementation of new technological chains into the production. For this reason the FEM based simulation is a basic engineering tool in modern industry. Unfortunately, all popular FEM simulation methods, i.e. Lagrangian, Eulerian, ALE methods are not able to include into the cutting model all corresponding physical phenomena with acceptable engineering accuracy [4,8,14].

According to the current knowledge of metal cutting the threshold is the development of more accurate and complete constitutive material models which consider the appropriate mechanical thermophysical properties of both workpiece and tool materials [1,3,15,17].

The success in developing the constitutive models depends on solving three important problems:

- Definition of mechanical properties of the workpiece material under cutting conditions,
- Specification of the thermophysical properties of the workpiece and cutting tool materials including thin layered coatings [3,11],
- Quantification of friction in the cutting zone [5,12,17].

The sensitivity analysis of the flow stress of 18 different materials based on the J-C material model indicated that it is predominantly governed either by strain hardening or thermal softening [6]. In addition, FEM predictions are greatly influenced by the friction coefficient [9].

It should be underlined that the FEM is one of the leading machining problems and is very popular among metal cutting experts and scientists. Moreover, the FEM constitutive material model should meet the HSC and HPC demands and can be validated for a wide range of machining parameters, especially the cutting speed.
In addition, it should cover a wide spectrum of cutting tool materials including multilayer coated and composite tools.

Bearing in mind all these modeling aspects and barriers, in this study the focus is made on the influence of model parameters for prediction accuracy under orthogonal cutting conditions. The second important consideration is the influence of temperature on the strain-stress diagram.

2. Methodology of investigations

In FEM simulations the modified Lagrangian equation was used to predict the thermal effects occurring during orthogonal cutting process of the C45 steel. The tool material was WC-6%Co sintered carbide coated with three-layer TiC/Al₂O₃/TiN (3L) coating. The investigation program includes the comparison between simulated and experimental results for two constitutive material models available in AdvantEdge commercial package [16], i.e. standard and PL-TD (Power Law – Temperature Dependent). In this study the PL-TD model considers two sets of model parameters of the machined C45 steel specified in Table 1.

During experimental study the components of the resultant cutting force were measured under free and non free orthogonal cutting conditions. In the first case a strain–gauge dynamometer with a SNAP Master data acquisition system was applied. In addition, the forces in semi-orthogonal cutting were measured using Kistler 9257B piezoelectric dynamometer equipped with 5019B amplifier and NI 6062E, National Instruments, A/D multi-channel board. The visualization of the recorded force signals and its processing was performed using CutPro data acquisition system.

Concerning the FEM modelling, both standard and PL-TD constitutive models are described by the same power model given by the following equation

$$\sigma_f(\varepsilon_p) = \sigma_0 \Theta(T) \left(1 + \frac{\varepsilon_p}{\varepsilon_0} \right)^{1/n}$$ \hspace{1cm} (1)

where σ_0 is the initial yield stress, ε_p is the plastic strain, ε_0 is the reference plastic strain, $1/n$ is the strain hardening exponent and $\Theta(T)$ is thermal softening index defined as a function of temperature according to (2). In equation (2) the c_0 through c_5 are coefficients for the polynomial fit, T is the temperature, T_{cut} is the linear cut off temperature, and T_{melt} is the melting temperature. The equation (2a) is defined for $T<T_{cut}$, where equation (2b) for $T\geq T_{cut}$.

$$\Theta(T) = c_0 + c_1 T + c_2 T^2 + c_3 T^3 + c_4 T^4 + c_5 T^5$$ \hspace{1cm} (2a)

$$\Theta(T) = \Theta(T_{cut}) \left[1 - \frac{T - T_{cut}}{T_{melt} - T_{cut}} \right]$$ \hspace{1cm} (2b)

Using the PL-TD constitutive model, the user can define their own model parameters based on literature data or experimental results. In the case of cutting tool material, the FEM model is mainly related to the thermal interactions ignoring the thermal softening effect. In this paper these data were the same as in Ref. [11]. The analysis of the influence of thermophysical properties of the machined C45 steel on the changes of the characteristics of machining process was carried out for three groups of relevant data presented by Kalhori [7], Özel and Karpat [12], as well as the data available in AdvantEdge (AE) package [16]. The thermophysical properties of the machined C45 steel were quantified based on own investigations [11] and own database MPDB [10]. In particular, they include temperature-based thermal conductivity, specific heat and thermal expansion (linear expansion coefficient a), which were kept constant for all material models considered in this comparative study. All the above mentioned data are specified in Figs. 1 and 2.

![Sample function determined by eq. (1) for a set of experimental data](image_url)

Fig. 1. Sample function determined by eq. (1) for a set of experimental data

It should be noted in Fig. 1 that in Kalhori’s analysis the values of stress as a function of plastic strain are generally lower than those determined by Özel and Karpat [12]. Moreover, Kalhori [7] has considered the relationships $\sigma(\varepsilon)$ for the wide range of temperature...
Table 1. Constitutive model parameters - equations (1) and (2) - calculated for the C45 carbon steel according to the data by Kalhori [7] and Özel and Karpat [12]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Kalhori</th>
<th>Özel and Karpat</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>1.0118</td>
<td>1.0162</td>
</tr>
<tr>
<td>c_1</td>
<td>-3.57×10^{-4}</td>
<td>-7.60×10^{-5}</td>
</tr>
<tr>
<td>c_2</td>
<td>-1.39×10^{-6}</td>
<td>-1.20×10^{-6}</td>
</tr>
<tr>
<td>c_3</td>
<td>5.95×10^{-10}</td>
<td>8.00×10^{-10}</td>
</tr>
<tr>
<td>σ_{0}, Pa</td>
<td>401×10^6</td>
<td></td>
</tr>
<tr>
<td>ϵ_0^p</td>
<td>0.00191</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>6.2</td>
<td>4.9</td>
</tr>
<tr>
<td>$T_{cut}^c, \text{°C}$</td>
<td>800</td>
<td>625</td>
</tr>
<tr>
<td>ϵ_{cut}</td>
<td>0.115</td>
<td>0.200</td>
</tr>
<tr>
<td>Error, %</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

In this analysis, the values of the yield stress and the reference plastic strain were assumed to be constant and equal to $\sigma_0 = 410 \text{ MPa}$ and $\epsilon_0^p = 0.00191$ respectively.

As a result, the relative errors determined for data provided by Kalhori and Özel were about 11% and 7% respectively. Changes of the thermal softening index, describing by function $\Theta(T)$ in eq. (1) are shown in Fig. 2.

It is seen in Fig. 2 that values of this index vary in the range <0;1>, where value 1 is related to the ambient of 20°C, and value 0 corresponds to the melting temperature. According to the computation algorithm of the AE program, the thermal softening function was assumed to be linear in the temperature range from that defined by own experiments up to the melting point. It can be pointed out that material plasticizing due to the thermal softening occurs faster when Kalhori’s model is used (20% and 40% at 400°C and 500°C respectively in relation to the Özel’s data). This means that for the same values of strain and yield stress, the calculated values of the stresses are lower than those determined by Özel’s model. In addition, this effect will be more pronounced by higher values of the strain-hardening exponent n.

3. Experimental results

The analysis of the experimental results was performed in two stages. The first part were focused on the variations of the cutting temperature resulting from variations of the thermophysical properties in the FEM model. In addition, the second part concerns the assessment of the influences of the mechanical properties. In this case, the main problems considered are changes of the cutting forces and the distributions of the reduced stresses on the tool rake face.

The average values of the cutting temperature determined by FEM simulations for four variants of the material models are presented in Fig. 3. First finding is that the predicted cutting temperatures based on the data collected in AE database were distinctly higher that those measured. This specifically concerns the AE PL-TD model in which the thermophysical properties of the tool material depend on the temperature [11]. In this case the workpiece material model is the same as the AE Standard model. It is reasoned that experimental results coincide well with simulated results using input data by Kalhori [7], taking into consideration relatively large variations of the experimental results.

Fig. 3. Comparison of the measured temperature with FEM simulation data. Confidence interval P = 95%.
It was also documented that predicted temperatures depend on the values of thermal softening index. For instance, for Ozel’s model they were equal to 0.62, 0.51 and 0.43 depending on the cutting speed used. On the other hand, for Kalhori’s model they were reduced by 12% (0.54, 0.45, 0.38). It should be noted that initial inputs (σ₀ = 410 MPa and α_p – 0.00191) are the same for both models considered.

It was observed that the variant of the constitutive model of workpiece material does not change markedly the temperature distribution on the rake face, as shown in Fig. 4. As a result, the maximum interface temperature is localized in a constant distance of about 0.22 mm from the cutting edge. For models by Kalhori and Özel, the characteristic “plateau” effect is visible. On the other hand, the application of the temperature-dependent thermophysical properties of the cutting tool material causes that the temperature decreases monotonically starting from the vicinity of the cutting edge. This effect can confirm an important influence of changes of the thermal conductivity and specific heat on the distribution of isotherms on the tool rake face.

The role of the constitutive model type in thermal simulations can be assessed from Fig. 5 which shows the temperature distribution beneath the rake face inside the tool body.

When using the Power Law Temperature Dependent (PL-TD) model, in which thermal properties of both contacted materials are dependent on temperature, the isotherms are parallel to each other at a certain distance between them. For these kinds of FEM models the temperature gradient inside the coating and the substrate is equal to 3–10°C/μm and 2–6°C/μm respectively.

The minimum variations of the temperature gradients are obtained for Kalhori’s model, for which also minimum average interface temperatures were predicted.

The standard model gives distinctly higher temperature gradients of 15°C/μm for the coating but lower ones of 2°C/μm for the substrate. The reason is that for the average cutting temperatures of about 900°C also the influence of temperature on the material properties can be a decisive factor. Moreover, it can be noted for both models that the multilayer coating including TiC, Al₂O₃ and TiN layer of 1μm, 6μm of 3μm in thickness, plays a role of the thermal barrier and restrains the heat transfer into the tool substrate. Similar temperature distributions were obtained for cutting speeds of 103 and 206 m/min.

The minimum variations of the temperature gradients are obtained for Kalhori’s model, for which also minimum average interface temperatures were predicted.

The role of the constitutive model type in thermal simulations can be assessed from Fig. 5 which shows the temperature distribution beneath the rake face inside the tool body.

When using the Power Law Temperature Dependent (PL-TD) model, in which thermal properties of both contacted materials are dependent on temperature, the isotherms are parallel to each other at a certain distance between them. For these kinds of FEM models the temperature gradient inside the coating and the substrate is equal to 3–10°C/μm and 2–6°C/μm respectively.

The minimum variations of the temperature gradients are obtained for Kalhori’s model, for which also minimum average interface temperatures were predicted.

The standard model gives distinctly higher temperature gradients of 15°C/μm for the coating but lower ones of 2°C/μm for the substrate. The reason is that for the average cutting temperatures of about 900°C also the influence of temperature on the material properties can be a decisive factor. Moreover, it can be noted for both models that the multilayer coating including TiC, Al₂O₃ and TiN layer of 1μm, 6μm of 3μm in thickness, plays a role of the thermal barrier and restrains the heat transfer into the tool substrate. Similar temperature distributions were obtained for cutting speeds of 103 and 206 m/min.

The role of the constitutive model type in thermal simulations can be assessed from Fig. 5 which shows the temperature distribution beneath the rake face inside the tool body.

When using the Power Law Temperature Dependent (PL-TD) model, in which thermal properties of both contacted materials are dependent on temperature, the isotherms are parallel to each other at a certain distance between them. For these kinds of FEM models the temperature gradient inside the coating and the substrate is equal to 3–10°C/μm and 2–6°C/μm respectively.

The minimum variations of the temperature gradients are obtained for Kalhori’s model, for which also minimum average interface temperatures were predicted.
The values of force components are compared in terms of FEM model types in Fig. 6. It is reasoned that this factor plays an important role in the simulation of the decohesion of the workpiece material.

The observed differences relate not only to the values of the cutting forces but also the courses of both components \(F_c \) and \(F_f \). In general, higher values of cutting force were obtained for the standard FE model which utilizes the input data from the AE database. The minimum values of both components resulted from the Kalhori’s model, as indicated by bar \#C in Fig. 6. This constitutive material model gives low stress values in the entire range of strains and temperatures.

Good agreement was achieved when using Özel’s model. In this case, the differences between measurements and predictions do not exceed 10% for the whole range of cutting speeds. On the other hand, it was revealed that the feed force predictions are very sensitive to the cutting speed. The prediction accuracy increases from 30% to 10% when cutting speed increases.

It was observed that values of cutting forces predicted by Özel’s model are of 34% higher than those predicted by Kalhori’s model. Moreover, for the cutting temperature of 600°C the difference between predicted values of the flow stress is about 48%. In turn, this fact can be related to different thermal softening indexes (0.43 and 0.70 respectively).

It should be noted that despite different measuring devices and different machining conditions (free orthogonal vs. non-free cutting) the measured values of the cutting force \(F_c \) and feed force \(F_f \) differ slightly from each other (Fig. 6 – bars \# 1 and 2). The standard deviations of the dynamic measuring signals are in the range of ±50N and ±10N for piezoelectric and strain-gauge dynamometers respectively. These data are very important in terms of the acceptability and the accuracy of FEM simulation and the constitutive models used.

It can be noted in Fig. 6 that simulation models result in higher variations of the values of the cutting force. For instance, for FEM simulations which utilize PL-TD model, the standard deviation of the cutting force signal is about ±100N regardless of the simulation variant adopted. In contrast, the standard FEM model gives very high scatters, especially for the feed force \(F_f \) (±300N). This fact can be explained by the poor identification of the thermal properties at high cutting temperature including the occurrence distinct material plasticizing.

4. Summary

Based on the experimental results and FEM predictions the conclusions are as follows:

- Changes of the model parameters which control the function \(\sigma_f (f_p) \) influence the simulation results.
- When keeping the same thermophysical properties \((\lambda, \kappa_p, \alpha) \) in the material models, the predicted values of cutting forces and the average cutting temperature as well the distribution of isotherms on the rake face differ substantially.
- The best agreement between the measured and simulated forces was achieved for the input data given by Özel.
- Better fitting of the measured temperatures to the predicted values was found for the input data given by Kalhori. The prediction accuracy increases from 86% to 98% for the highest cutting speed of \(v_c = 330 \text{m/min} \).
- The reason that these constitutive models cannot be universal in terms of both mechanical and thermal characteristics is the different approach to modeling of the thermal softening effect.

Acknowledgements

The authors would like to acknowledge, that this research has been carried out as part of a project funded by the Polish National Centre for Research and Development. Project No. PBS1-178595.

References

