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Abstract 

Snow loading poses a significant problem to the integrity of photovoltaic (PV) modules. The weight of accumulated 
snow exerted on the PV modules can cause breakage of the glass cover and cells. The mechanical load test in IEC 
61215 is designed to test the reliability of PV modules subjected to 2400 Pa, and subsequently to 5400 Pa of uniform 
load, in the revised standard. In this paper, finite element analysis is conducted to study the stresses in PV modules 
with non-tempered float glass, subjected to conditions in the mechanical load test. In this analysis, residual stresses 
that are induced during the module lamination process are taken into account in order to give an accurate 
representation of the existing stresses in the module. These residual stresses arise when the temperature of the PV 
laminate is lowered from the lamination temperature (typically 145 ºC) to room temperature, due to the differences in 
coefficient of thermal expansion (CTE) of the constituent PV laminate materials. The results show that in the glass 
cover of the PV module, the region around the point where the aluminium frame of the module is secured experiences 
a high tensile principal stress, which may cause the glass to fracture. The solar cells experience tensile stresses, but 
this is not crucial as the values do not approach the failure stress of the silicon cells. 
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1. Introduction 

Photovoltaic (PV) modules are expected to have a lifetime of at least 20 years in the field. To ensure 
this, the mechanical integrity of PV modules is of great importance. In countries which experience heavy 
and continuous snowfall, snow loading poses a significant problem to the integrity of PV modules. The 
weight of accumulated snow exerted on the PV modules can cause breakage of the glass cover and cells. 
Figure 1 shows the clearing of accumulated snow off PV modules [1]. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Clearing of accumulated snow off PV modules [1] 
 
A PV module is made up of several layers of different materials bonded together. One of the most 

common is the glass/EVA/cell/EVA/backsheet laminate. During the lamination process, a high 
temperature is required to cure the ethylvinylacetate (EVA) which acts as the bonding material. The cells 
are embedded in the EVA, and the glass and backsheet layers are also adhered to the EVA. Due to the 
differences in the coefficients of thermal expansion (CTE) of the materials, warpage and deformation of 
the laminate occur and stresses are induced in the laminate as the temperature is brought down to room 
temperature. After the lamination process, the laminate is framed up, secured onto a support structure, and 
put into operation under the sun. For clarity, in this paper an unframed solar module is called a PV 
laminate and a framed one is called a PV module.  

 
IEC 61215 consists of the examination of all the parameters which contribute to the ageing of PV 

modules and describes the range of qualification tests required for certification. In particular, the 
mechanical load test in IEC 61215 is appropriate for the qualification of the PV module subjected to snow 
loading.  The standard (IEC 61215) specifies the mechanical load test to be performed on one module 
after damp heat exposure. Kajari-Schröder et al. [2] presented results from 27 modules that have been 
investigated with research purposes. No major visible damage and degradation of the maximum power 
output at standard test conditions (STC) is to be observed for a PV module to pass the test. In this paper, a 
uniform loading of 5400 Pa is applied to a PV module in the Finite Element Analysis (FEA) simulations 
to examine the stresses experienced by the PV module in the mechanical load test.  

 
PV modules are exposed to heavy loads in their lifetime. During production, the soldering and 

lamination processes can lead to small cracks in the solar cells. These grow due to thermo mechanical 
loads as experienced in day and night as well as summer and winter cycles in the outdoors. The most 
consequential mechanical loads for PV modules after manufacturing result from transportation [3, 4] as 
well as from wind and snow loads [5-7]. Any of these mechanical loads may lead to cracks in wafer-
based solar cells. To make it more challenging, the PV industry is moving to larger and thinner silicon 
wafers to reduce costs [8]. The thickness of the wafers has decreased from about 300 μm in 2003 to about 
150 μm in 2010 [9]. As wafers get thinner, considerations have to be given to their mechanical strength as 
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they are more sensitive to mechanical damages. Some studies have been conducted to analyze the stresses 
in wafers during the manufacturing cycle where the wafers are subjected to mechanical loads such as 
sawing, manual handling, liquid jets, transport systems and pick and place equipment [10]. Breakage 
analysis of Si wafers during handling and transport has also been done by a combination of wafer 
deformation measurements and finite element analysis [11]. Stress analysis of solar cells has also been 
taken to the PV pre-lamination process of soldering, to determine the residual stresses induced by this 
process [12, 13]. In relation to IEC 61215 tests, push and pull loads with 5400 Pa uniform distribution are 
applied on PV modules to determine the spatial distribution of cracks in PV modules. This also helps to 
assess how the crack orientation in solar cells affects the criticality of cracks. It could be shown that 
cracks parallel to the busbars have substantial impact on the power output of the PV modules [2, 14]. A 
solar module, with its different materials and mounting, is a complex system [15]. Different types of 
mounting systems will result in different stress situations within the PV module. In [16], four types of 
mounting systems: long edge and line support (LSL),  long edge and two clips per edge (LSC), short edge 
and line support (SSL) and short edge and two clips per edge (SSC)  are compared for mechanical load 
testing to determine which type of mounting system would results in less cell failure during mechanical 
load testing. The frame in the finite element model used in this paper should closely resemble the LSC 
mounting. It is secured at the quarter length of the frame along the long edge, however there is no 

as to where the two clips are secured on the LSC frame. In addition, results of 
the LSC frame is not 
Crack formation and crack growth in encapsulated cells during mechanical load testing are also 
investigated in [17]. 

 
In this paper, the mechanical stresses of a PV module under a 5400 Pa uniform loading in accordance 

to IEC 61215 are studied using FEA. The stresses induced in the non-tempered float glass as well as in 
the silicon cells are investigated. The impact of snow loading on PV modules in practical cases can thus 
be studied. 

 

2. Simulation model 

The modelled PV laminate has the dimensions of an actual 12×6-cell laminate, measuring 1580 mm by 
790 mm. The solar cells used are monocrystalline silicon wafer cells, each measuring 125 mm by 125 
mm. Each solar cell is separated from its neighboring cells by a gap of 2 mm. The row of cells along the 
width is 21 mm from the frame while that along the length is 6 mm from the frame. The copper ribbons 
providing the series connection of the cells are not modeled, to reduce the complexity of the model. 
Details of simulations involving stringed cells with copper ribbons can be found in [15] and [18]. 
However, the bus-bar that links each column of cells at the top and bottom of the laminate is modelled as 
they may have an effect on the temperature distribution over the module exposed to the sun. The layers 
within the PV laminate consist of a top glass cover, solar cells and busbar, ethylvinylacetate (EVA) and 
Tedlar backsheet. Their thicknesses are 3.2 mm, 240 μm, 400 μm and 350 μm respectively. The solar 
cells and busbar are embedded in the EVA. Figure 2 shows the cross-section of the framed PV module 
and Table 1 gives the properties of the materials used. 
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Fig. 2. Cross section of one half of the PV module 
 
Table 1. Material properties 
 

3. Simulation methodology 

3.1. Lamination process 

The model used in this step of the simulation is the PV laminate consisting of the glass sheet, EVA, 
cells and backsheet only. To cut down on computational cost and effort, symmetry of the laminate about 
the x and y axes is made use of, and thus, only a quarter model is required.  

 
The laminate is placed such that the glass cover is on top and the backsheet layer is in contact with a 

surface such as a tabletop. Initial simulations have indicated that the edges of the laminate have 
approximately zero displacement from the tabletop, with only the centre of the laminate bowing upwards 
after the lamination process. Hence, a boundary condition of zero displacement is the z direction is 
applied to the edges of the laminate. Weight is taken into consideration by the application of gravity in the 
z-direction. During the actual lamination process, the assembled layers are pressed together in the 
laminator to remove any air that may be trapped in the layers. The temperature is then raised. At 120 °C, 
the EVA will start to soften. The temperature will be increased further to between 140 °C to 150 °C. At 
this higher temperature, the EVA will then be cured and the layers start to bond to one another [19]. At 
this higher temperature, called the lamination temperature, the laminate is at a stress-free state. Stresses 
will only be induced when the laminate subsequently cools down, due to the difference in CTE of the 
materials. For the purpose of this simulation, the lamination temperature is taken to be 145 °C. In the 
subsequent step of the simulation, the temperature of the laminate is brought down to a room temperature 
of 30 °C. 

Material  Poisson ratio CTE/ ppm 

Glass 66 0.23 4.5 

EVA 0.0677 0.33 90 

Silicon 112.4 0.28 2.49 

Backsheet 2.075 0.33 88 

Aluminium 69 0.33 23.4 

Silicone sealant 1 0.33 270 

glass EVA cells

backsheet silicone sealant

frame
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3.2. Mechanical loading 

The laminate is then placed in an aluminum frame as shown in Fig. 2 and silicone is used to fill up the 
gap between the laminate and the frame at room temperature to form the PV module. When the PV 
module thus formed is then applied with a uniform loading, the residual stress in the laminate will 
redistribute, and stresses in the silicone sealant and aluminum frame to be induced. To perform the FEA 
of the stress distribution in the PV module subjected to mechanical loading, the initial stress distribution 
and deformation of the laminate obtained earlier from the FE simulation of the lamination process are 
first imported into the FE model. The silicone sealant and aluminium frame are then included in this 
model. As stipulated in IEC 61215, the mounting of the PV module structure is to be done as per the 

In the simulation model, a hole for fixing the PV module to a support 
structure is created at the quarter length of the frame and given the encastre boundary condition which 
constrains its displacement and rotation in all directions. A uniform distribution of 5400 Pa is then 
applied on the upper surface of the PV module. 

4. Results and discussion 

The stress distribution in the non-tempered glass cover of the PV module is shown in Fig. 3, where the 
units used in the scale is Pa. The region around the point where the aluminium frame of the module is 
secured experiences a high tensile principal stress, with the highest value at 207.6 MPa. This implies that 
failure due to fracture is bound to occur when a 5400 Pa uniform load is applied as the tensile strength of 
float glass ranges from only 24 MPa to 69 MPa [20].  

 
The stress distribution in the cells of the glass cover is shown in Fig. 4. The cells near the centre of the 

modules experience tensile stresses, with the cell at the centre of the module experiencing the highest 
tensile stress of 106 MPa. The cells at the edges of the modules experience compressive stress, hence they 
are safe from fracture. The mechanical strength of a cell is dependent on the processing parameters and 
cell crystallinity. Four-point bending tests have been conducted on cell specimens of varying etching 
conditions during manufacturing, crystallinity, aluminium paste type and aluminium paste thickness [21]. 
From these studies, the bending tensile stresses at fracture in silicon are investigated and a range of values 
obtained. The failure bending tensile stress of silicon is about 200 MPa [21]. Stresses induced in the 
mechanical load test are lower than the maximum tensile stress of silicon, but as silicon is a brittle 
material that shows a large scattering of fracture stress, and practical experiments indicate the failure of 
silicon under the same situation, the simulated stress value may not be a foolproof indicator of reliability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Maximum principal stresses (Pa) in the non-tempered float glass cover 
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Fig. 4. Maximum principal stresses (Pa) in the cells of the PV module 

5. Conclusions 

A non-tempered glass PV module is successfully modelled with a finite element package and 
mechanical analysis was conducted for the situation when the modules were subjected to a 5400 Pa 
uniform load, as stipulated in the mechanical load test in IEC 61215. Failure due to fracture is bound to 
occur for the non-tempered glass as the tensile strength of non-tempered glass is way lower than the 
maximum principal stresses experienced by the glass cover in the simulation. The cells near the centre of 
the modules experience tensile stresses, with the cell at the centre of the module experiencing the highest 
tensile stress. The failure bending tensile stress of silicon is about 200 MPa. Stresses induced in the 
mechanical load test are lower than the maximum tensile stress of silicon, but as silicon is a brittle 
material that shows a large scattering of fracture stress, and practical experiments indicate the failure of 
silicon under the same situation, the simulated stress value may not be a foolproof indicator of reliability. 
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