On the Maximal Index of Connected Graphs

F. K. Bell Department of Mathematics University of Stirling Stirling FK9 4LA, Scotland

Submitted by Richard A. Brualdi

ABSTRACT

Let $\mathscr{H}(n, e)$ denote the set of all connected graphs having *n* vertices and *e* edges. The graphs in $\mathscr{H}(n, n+k)$ with maximal index are determined for *k* of form $\binom{r}{2} - 1$ and *n* arbitrary.

1. INTRODUCTION

The graphs we consider are finite, undirected, and without loops or multiple edges. The *index* (or *spectral radius*) of a graph G is the largest eigenvalue of a (0, 1) adjacency matrix A of G, and we denote it by $\rho(G)$. Let $\mathscr{G}(n, e)$ be the set of all graphs with n vertices and e edges, and let $\mathscr{H}(n, e)$ be the set of all connected graphs in $\mathscr{G}(n, e)$. The problem of finding the graphs in $\mathscr{G}(n, e)$ with maximal index was solved by Brualdi and Hoffman [1] in the case when

$$e = \begin{pmatrix} d \\ 2 \end{pmatrix}$$
 for some d .

Further special cases were dealt with by Friedland [5, 6], who also proved an asymptotic result, and the problem was solved for all remaining values of e by Rowlinson [9]. However, the corresponding problem for $\mathcal{H}(n, e)$ has been solved only in certain cases. When e has its minimum value n-1, the set $\mathcal{H}(n, e)$ consists of all *n*-vertex trees, and it was shown by Lovász and

LINEAR ALGEBRA AND ITS APPLICATIONS 144:135–151 (1991)

© Elsevier Science Publishing Co., Inc., 1991

655 Avenue of the Americas, New York, NY 10010

0024-3795/91/\$3.50

Pelikán [8] that the star $K_{1,n-1}$ has maximal index. (See also Collatz and Sinogowitz [3].)

In order to discuss the other results known for $\mathscr{H}(n, e)$ we follow [4] in writing e = n + k ($k \ge 0$) and defining graphs $G_{n,k}$ and $H_{n,k}$. Both of these lie in $\mathscr{H}(n, n + k)$, and both have the star $K_{1,n-1}$ as a spanning subgraph. In $G_{n,k}$ the k + 1 edges not forming part of the spanning star are such that $G_{n,k}$ has as large a complete subgraph as possible. To be precise, let d be the largest integer such that

$$\binom{d-1}{2} \leqslant k+1,$$

and denote by $F_{n,d}$ the graph obtained from the complete graph K_d on d vertices by adding n-d pendant edges at one of its vertices. (Note that $d \le n$ and $F_{n,n}$ is just K_n .) In the case when

$$\binom{d-1}{2} = k+1$$

we define $G_{n,k}$ to be the graph $F_{n,d}$. In all other cases we can write (uniquely)

$$k+1 = \binom{d-1}{2} + t \quad \text{with} \quad 4 \le d \le n-1 \text{ and } 1 \le t \le d-2;$$

then $G_{n,k}$ is defined to be the graph obtained from $F_{n,d}$ by joining a vertex of degree 1 to t vertices of degree d-1. The graph $H_{n,k}$ is defined only for $k \le n-3$: it is the graph obtained from the star $K_{1,n-1}$ by joining a vertex of degree 1 to k+1 other vertices of degree 1. Note that $G_{n,k}$ and $H_{n,k}$ coincide if and only if k = 0 or 1.

The graph of maximal index in $\mathcal{H}(n, e)$ is known when

$$\binom{n-1}{2} < e \leq \binom{n}{2},$$

because the graph of maximal index in $\mathscr{G}(n, e)$ is then connected (see [9]); it is in fact $G_{n,e-n}$. Brualdi and Solheid [2] considered those cases in which e = n + k with $k \leq 5$. They showed that, when k = 0, 1, or 2, $G_{n,k}$ is the unique graph of maximal index in $\mathscr{H}(n, n + k)$; whereas when k = 3, 4, or 5, while $G_{n,k}$ has maximal index for some small values of n, it is $H_{n,k}$ which has maximal index for all sufficiently large values of n. These results were extended by Cvetković and Rowlinson in [4]. They proved that, for any fixed $k \ge 6$, $H_{n,k}$ is the unique graph of maximal index for all sufficiently large n.

These known results prompt two questions. For an arbitrary fixed $k \ge 6$, does $G_{n,k}$ have maximal index in $\mathscr{H}(n, n+k)$ for "small" values of n? And are there values of n and k for which neither of $G_{n,k}$ and $H_{n,k}$ has maximal index? In Section 3 of this paper we provide precise answers to these questions whenever k + 1 is equal to $\binom{d-1}{2}$ for some d > 4. This case is analogous to the basic case $e = \binom{d}{2}$ for $\mathscr{G}(n, e)$ considered by Brualdi and Hoffman, as can be seen by considering the adjacency matrices involved. A solution to the maximal index problem in this case is a natural first step towards understanding the general situation. We show that there is a "transition value" g(d) for n: if $n \le g(d)$ then $G_{n,k}$ has maximal index, while if $n \ge g(d)$ then $H_{n,k}$ has maximal index. No graph other than $G_{n,k}$ or $H_{n,k}$ has maximal index for any value of n. In Section 4 we derive some bounds for the index of a graph in $\mathscr{H}(n, n + k)$.

2. SOME PRELIMINARY RESULTS

As in [1], let $\mathscr{I}(n, e)$ denote the set of all adjacency matrices of graphs with *n* vertices and *e* edges, and let $\mathscr{I}^*(n, e)$ be the subset of $\mathscr{I}(n, e)$ consisting of those matrices $A = (a_{ij})$ satisfying the condition

if
$$i < j$$
 and $a_{ij} = 1$ then $a_{hk} = 1$ whenever $h < k \le j$ and $h \le i$.

Following [9], we refer to a matrix in $\mathscr{I}^*(n, e)$ as a stepwise matrix. Brualdi and Solheid [2] show that a graph in $\mathscr{H}(n, e)$ with maximal index has an adjacency matrix $A = (a_{ij}) \in \mathscr{I}^*(n, e)$; it follows that $a_{12} = \cdots = a_{1n} = 1$. From the theory of irreducible nonnegative matrices [7] we know that there exists a unique positive unit vector x such that $Ax = \rho x$, where ρ is the spectral radius of A. We shall refer to this vector x as the principal eigenvector of A. It is easily seen that if $\mathbf{x} = (x_1, \dots, x_n)^T$ then $x_1 \ge x_2 \ge \cdots$ $\ge x_n$ [9, Lemma 1].

Our standing assumption will be that e = n + k where

$$k = \begin{pmatrix} d-1\\2 \end{pmatrix} - 1 \tag{(*)}$$

for some $d \leq n$. We may assume in fact that 4 < d < n, because the cases

d = 2, 3, and 4 have been dealt with in [2], and the case d = n is trivial. (When d = 2, $\begin{pmatrix} d-1\\ 2 \end{pmatrix}$ is to be interpreted as zero, so that e = n - 1.) Under the assumption (*), the graph $G_{n,k}$ discussed in the introduction has a stepwise adjacency matrix $B = (b_{ij})$ given by

$$b_{1j} = 1 \ (2 \le j \le n), \quad b_{ij} = 1 \ (2 \le i < j \le d), \quad b_{ij} = 0 \ (i \ge 2, \ j > d).$$

Write $\gamma = \rho(G_{n,k})$, and let $y = (y_1, \dots, y_n)^T$ be the principal eigenvector of B. Note that $y_2 = \dots = y_d$ and $y_{d+1} = \dots = y_n$. The following equations hold:

$$(\gamma + 1)y_1 = y_1 + (d - 1)y_2 + (n - d)y_n,$$

$$(\gamma + 1)y_2 = y_1 + (d - 1)y_2,$$

$$\gamma y_n = y_1.$$
(1)

If k < n-3, the graph $H_{n,k}$ has a stepwise adjacency matrix $C = (c_{ij})$ satisfying

$$\begin{split} c_{1j} &= 1 \quad (2 \leq j \leq n), \qquad c_{2j} = 1 \quad (3 \leq j \leq k+3), \\ c_{2j} &= 0 \quad (j > k+3), \qquad c_{ij} = 0 \quad (3 \leq i < j). \end{split}$$

Write $\chi = \rho(H_{n,k})$, and let $\mathbf{z} = (z_1, \dots, z_n)^T$ be the principal eigenvector of C. Then $z_3 = \dots = z_{k+3}$ and $z_{k+4} = \dots = z_n$, and we have

$$(\chi + 1)z_1 = z_1 + z_2 + (k + 1)z_3 + (n - k - 3)z_n,$$

$$(\chi + 1)z_2 = z_1 + z_2 + (k + 1)z_3,$$

$$\chi z_3 = z_1 + z_2,$$

$$\chi z_n = z_1.$$
(2)

LEMMA 1. Let

$$d > 4$$
 and $k = {d-1 \choose 2} - 1 < n - 3.$

Then one of the following holds:

(i)
$$\rho(H_{n,k}) < \rho(G_{n,k}) < d + \frac{4}{d-4};$$

(ii) $\rho(H_{n,k}) = \rho(G_{n,k}) = d + \frac{4}{d-4};$
(iii) $\rho(H_{n,k}) > \rho(G_{n,k}) > d + \frac{4}{d-4};$

Proof. Write $\gamma = \rho(G_{n,k})$, $\chi = \rho(H_{n,k})$. We follow Rowlinson [9] in considering $y^T(B-C)\mathbf{z} = (\gamma - \chi)y^T\mathbf{z}$. The matrix B-C has 2r nonzero entries above the principal diagonal, where

$$r=\left(\begin{array}{c}d-2\\2\end{array}\right),$$

and $\mathbf{y}^{T}(B-C)\mathbf{z} = \alpha - \beta$, say, where α is the sum of r terms of the form $y_{i}z_{j} + y_{j}z_{i}$ with $3 \leq i < j \leq d$, and $\beta = y_{2}(z_{d+1} + \cdots + z_{k+3}) + z_{2}(y_{d+1} + \cdots + y_{k+3})$. Thus $\alpha = 2ry_{2}z_{3}$ and $\beta = r(y_{2}z_{3} + y_{n}z_{2})$, so that $(\gamma - \chi)\mathbf{y}^{T}\mathbf{z} = r(y_{2}z_{3} - y_{n}z_{2})$. Suppose that $\chi < \gamma$. Then, since $\mathbf{y}^{T}\mathbf{z} > 0$, we have $y_{2} / y_{n} > z_{2} / z_{3}$. It follows from (1) that

$$\frac{y_2}{y_n} = \frac{\gamma}{\gamma - (d-2)},\tag{3}$$

and from (2) that

$$\frac{z_2}{z_3} = \frac{\chi + \left(\frac{d-1}{2}\right)}{\chi + 1}.$$
 (4)

Therefore

$$\frac{d-2}{\gamma - (d-2)} > \frac{\binom{d-1}{2} - 1}{\chi + 1} > \frac{\binom{d-1}{2} - 1}{\gamma + 1},$$

which leads to

$$\gamma < d + \frac{4}{d-4},$$

so that (i) holds. The assumptions $\chi = \gamma$, $\chi > \gamma$ similarly yield (ii), (iii) respectively.

We can determine which of these three possibilities holds, for given n and d, by comparing $\rho(G_{n,k})$ with d+4/(d-4). This is done in Lemma 2, which involves the function g defined by

$$g(d) = \frac{1}{2}d(d+5) + 7 + \frac{32}{d-4} + \frac{16}{(d-4)^2} \qquad (d>4).$$
 (5)

LEMMA 2. Let

$$4 < d < n$$
 and $k = \begin{pmatrix} d-1\\ 2 \end{pmatrix} - 1$.

Then

$$\rho(G_{n,k}) \leq d + \frac{4}{d-4} \quad according \text{ as } n \leq g(d).$$

Proof. From (1), $\gamma = \rho(G_{n,k})$ is the largest eigenvalue of the matrix

$$\begin{bmatrix} 0 & d-1 & n-d \\ 1 & d-2 & 0 \\ 1 & 0 & 0 \end{bmatrix},$$

and is therefore the largest zero of

$$f(t) = t^{3} - (d-2)t^{2} - (n-1)t + (d-2)(n-d).$$

It may be verified that

$$f\left(d + \frac{4}{d-4}\right) = \frac{2(d-2)}{d-4} [g(d) - n],$$

so that

$$\gamma > d + \frac{4}{d-4}$$
 if $n > g(d)$.

The results for $n \leq g(d)$ also follow if we verify that we then have $f(t) \geq 0$ whenever $t \geq d + 4/(d-4)$. For this it is enough to note that

$$f'\left(d+\frac{4}{d-4}\right) = d^2 + 4d + 17 + \frac{80}{d-4} + \frac{48}{\left(d-4\right)^2} - n > 0,$$

while f''(t) = 6t - 2(d-2) > 0 for all $t \ge d + 4/(d-4)$.

3. THE MAIN RESULT

THEOREM. Let

$$4 < d < n$$
 and $k = \begin{pmatrix} d-1\\ 2 \end{pmatrix} - 1$,

and let G be a graph of maximal index in $\mathcal{H}(n, n+k)$. Then

(i) $G = G_{n,k}$ if n < g(d), (ii) $G = G_{n,k}$ or $H_{n,k}$, and $\rho(G_{n,k}) = \rho(H_{n,k})$, if n = g(d), (iii) $G = H_{n,k}$ if n > g(d),

where g(d) is defined by (5).

Proof. Note first that if $n \ge g(d)$ then certainly k < n-3, so $H_{n,k}$ is defined and Lemma 1 may be applied. By virtue of the result of Brualdi and Solheid mentioned earlier, we know that G has a stepwise adjacency matrix A. Write $\rho = \rho(G)$, and let $\mathbf{x} = (x_1, \dots, x_n)^T$ be the principal eigenvector of A. Recall that $x_1 \ge x_2 \ge \cdots \ge x_n > 0$. As in Section 2, let $G_{n,k}$ and $H_{n,k}$ have stepwise adjacency matrices B, C respectively, with corresponding principal eigenvectors y, z, and write $\gamma = \rho(G_{n,k}), \chi = \rho(H_{n,k})$.

(i): Let n < g(d) and suppose that $G \neq G_{n,k}$: we shall prove that $\rho(G) < \rho(G_{n,k})$. Suppose that the matrix B - A has 2r nonzero entries above the principal diagonal. Then $(\gamma - \rho)\mathbf{x}^T\mathbf{y} = \mathbf{x}^T(B - A)\mathbf{y} = \alpha - \beta$, where α is the sum of r terms $x_iy_j + x_jy_i$ for which $3 \le i < j \le d$, and β is the sum of r such terms for which $2 \le i < j$ and $j \ge d + 1$. Thus $\alpha \ge r(x_{d-1}y_2 + x_dy_2) \ge 2rx_dy_2$, and $\beta \le r(x_2y_n + x_{d+1}y_2) \le r(x_2y_n + x_dy_2)$, so that $(\gamma - \rho)\mathbf{x}^T\mathbf{y} \ge r(x_dy_2 - x_2y_n)$.

Suppose, by way of contradiction, that $\gamma \leq \rho$: then

$$\frac{x_2}{x_d} \geqslant \frac{y_2}{y_n}.$$
 (6)

Let *h* be maximal such that $a_{hd} = 1$, and let *m* be maximal such that $a_{2m} = 1$. (See Figure 1.) Since $A \neq B$, we have $2 \leq h \leq d-2$ and $d+1 \leq m \leq n$. Let 2u be the number of entries a_{ij} with $h+1 \leq i \leq d$, $h+1 \leq j \leq d$ which are equal to 1. Then

$$(\rho+1)x_{2} = \sum_{i=1}^{h} x_{i} + \sum_{i=h+1}^{m} x_{i} = \rho x_{d} + \frac{1}{\rho} \sum_{i=h+1}^{m} \rho x_{i}$$

$$\leq \rho x_{d} + \frac{1}{\rho} \left\{ (m-h) \sum_{i=1}^{h} x_{i} + 2ux_{h+1} \right\}$$

$$\leq (\rho+m-h)x_{d} + \frac{2u}{\rho} x_{h}$$

$$\leq (\rho+m-h)x_{d} + \frac{2u}{\rho} \cdot \frac{1}{h} \sum_{i=1}^{h} x_{i}$$

$$= \left(\rho+m-h + \frac{2u}{h} \right) x_{d}$$

$$\leq [\rho+m-h + (h-2)(d-h) + u] x_{d}.$$
(8)

Now

$$m-h+(h-2)(d-h)+u\leqslant \binom{d-1}{2},$$

because the expression on the left is less than or equal to the number of entries a_{ij} with 2 = i < j or $3 \le i < j \le d$ which are equal to 1. Thus

$$(\rho+1)x_2 \leq \left[\rho + \binom{d-1}{2}\right]x_d,$$

MAXIMAL INDEX OF CONNECTED GRAPHS

							(h)					(c)			(<i>d</i>)			(m)			(n)
	0	1	1	·	·	·	1	1	1	• •	·	1	1	• • •	1	1	• • •	1	1	•••	1
		0	1	·	•	·	1	1	1	••	·	1	1	•••	1	1	• • •	1	0	• • •	0
			·	·			•	•	٠			·	·		·						
				·	·		•	٠	·			•	·		•						
					•	٠	•	•	•			·	•		•		*				
						٠	•	•	·			•	•		·						
(h)							0	1	1	••	•	1	1		1						
								0	1	• •	•	1	1		0						
								1	0	• •	•	1	1		0						
								:		۰.		:	:	*	:						
(c)								i	1		:	ò	i		ò						
								ī	1			1	0 0		Õ						
													0 0		0						
										*			:	۰.							
(<i>d</i>)								0	0			0	0 0		0						

FIG. 1. Part of the matrix A.

and it follows from (3) and (6) that

$$\frac{\gamma}{\gamma - (d-2)} \leq \frac{\rho + \binom{d-1}{2}}{\rho + 1}.$$

This leads to $\gamma \ge d + 4/(d-4)$, but Lemma 2 then gives the contradiction $n \ge g(d)$. Thus $\rho < \gamma$, as asserted.

(ii): Let n = g(d); then

$$\gamma = \chi = d + \frac{4}{d-4}$$

by Lemma 1. Suppose that G is not equal to either $G_{n,k}$ or $H_{n,k}$. If we assume that $\gamma \leq \rho$, then the argument of (i) leads to the conclusion that $\gamma > d + 4/(d-4)$, unless equality holds throughout. But we need u = 0 for equality in (7), because $(\rho + 1)x_h \ge (\rho + 1)x_{h+1} + x_d$, so that $x_{h+1} < x_h$; and for equality in (8) we must have h = 2. However, if u = 0 and h = 2 then A = C, a further contradiction. Thus $\rho < \gamma$.

(iii): Let n > g(d), and suppose that $G \neq H_{n,k}$. Define h and m as in the proof of (i): this time we have $2 \le h \le d-1$ and $d \le m < k+3 < n$. Let c be maximal such that $a_{c,c+1} = 1$. (See Figure 1.) Since $A \neq C$, we have

 $3 \le c \le d-1$. For $3 \le i \le c$, let m(i) be maximal such that $a_{i,m(i)} = 1$. Then $\sum_{i=3}^{c} [m(i)-i] = r$, where r is the number of entries a_{ij} with $3 \le i < j$ which are equal to 1. (We also have r = k + 3 - m.) Let v be the number of entries a_{ij} with $h+1 \le i < j \le d$ which are equal to 0; then v is also the number of entries a_{ij} with $2 \le i \le h$, $d+1 \le j \le m$ which are equal to 1. Consider $(\chi - \rho)\mathbf{x}^T\mathbf{z} = \mathbf{x}^T(C - A)\mathbf{z} = \alpha - \beta$, where $\alpha = x_2(z_{m+1} + \cdots + z_{k+3}) + z_2(x_{m+1} + \cdots + x_{k+3})$, and β is the sum of r terms $x_i z_j + x_j z_i$ for which $3 \le i \le c$, $i+1 \le j \le m(i)$. Since $x_{m+1} = \cdots = x_n$ we have $\alpha = r(x_2 z_3 + z_2 x_n)$. Also, $\beta \le r x_2 z_3 + z_3 \sum_{i=3}^{c} \sum_{j=i+1}^{m(i)} x_j = r(x_2 + q) z_3$, where $q = (1/r) \sum_{i=3}^{c} \sum_{j=i+1}^{m(i)} x_j$. Therefore $(\chi - \rho)\mathbf{x}^T\mathbf{z} > r(x_n z_2 - q z_3)$. Suppose, by way of contradiction, that $\rho \ge \chi$: then

$$\frac{q}{x_n} \ge \frac{z_2}{z_3}.\tag{9}$$

We will show that

$$\frac{q}{x_n} \le \frac{\rho}{\rho - (d-2)} \,. \tag{10}$$

To this end, write $q = q_1 + q_2$, where

$$q_1 = \frac{1}{r} \sum_{i=3}^{h} \sum_{j=i+1}^{m(i)} x_j, \qquad q_2 = \frac{1}{r} \sum_{i=h+1}^{c} \sum_{j=i+1}^{m(i)} x_j.$$

(Put $q_1 = 0$ if h = 2, and $q_2 = 0$ if h = c.)

For each $i \in \{3, ..., h\}$ we have $m(i) \ge d$, and therefore, since $x_2 \ge \cdots \ge x_m$,

$$\frac{\sum_{j=i+1}^{m(i)} x_j}{m(i)-i} \leq \frac{\sum_{j=2}^d x_j}{d-1} = a_1, \qquad \text{say}.$$

Thus

$$q_1 \leq \frac{a_1}{r} \sum_{i=3}^{h} \left[m(i) - i \right].$$

Now

$$(\rho+1)a_{1} = \frac{1}{d-1} \sum_{j=2}^{d} (\rho+1)x_{j}$$
$$= \frac{1}{d-1} \left\{ (d-1) \sum_{i=1}^{d} x_{i} + (v \text{ terms } x_{s}) - (2v \text{ terms } x_{t}) \right\},$$

where each $s \ge d + 1$ and each $t \le d$. Hence

$$(\rho+1)a_1 \leq \frac{1}{d-1} \{ (d-1)[x_1 + (d-1)a_1] - vx_d \}$$

$$\leq x_1 + (d-1)a_1.$$

Thus $[\rho - (d-2)]a_1 \leq x_1$, so that

$$[\rho - (d-2)]q_1 \leq \frac{x_1}{r} \sum_{i=3}^{h} [m(i) - i].$$
 (11)

Turning now to q_2 , we note that

$$x_{h+1} < \frac{\sum_{i=1}^d x_i}{\rho+1} = a_2, \qquad \text{say}.$$

It follows that if $i \ge h + 1$, then for each $j \in \{i + 1, ..., m(i)\}$ we have $x_j < a_2$, so that

$$q_2 \leq \frac{a_2}{r} \sum_{i=h+1}^{c} [m(i)-i].$$

From the above, we have $(\rho + 1)\sum_{i=2}^{d} x_i \leq (d-1)\sum_{i=1}^{d} x_i$, and it follows that

$$(\rho+1)a_2 \leq x_1+(d-1)a_2.$$

F. K. BELL

Thus $[\rho - (d-2)]a_2 \leq x_1$, so that

$$[\rho - (d-2)]q_2 \leq \frac{x_1}{r} \sum_{i=h+1}^{c} [m(i) - i].$$
 (12)

From (11) and (12), $[\rho - (d-2)]q \le x_1 = \rho x_n$, and (10) is established. From (4), (9), and (10) we obtain

$$\frac{\chi + \binom{d-1}{2}}{\chi + 1} \leqslant \frac{\rho}{\rho - (d-2)},$$

and this leads to $\chi \leq d + 4/(d-4)$. Lemmas 1 and 2 then give the contradiction $n \leq g(d)$. Thus $\rho < \chi$.

COROLLARY 1. When e is of the form

$$e = n - 1 + \begin{pmatrix} d - 1 \\ 2 \end{pmatrix}$$
 for some $d \in \{2, \dots, n\}$,

 $\mathscr{H}(n,e)$ has a unique graph of maximal index, except in the three cases n = 60, e = 69; n = 68, e = 88; n = 80, e = 85.

Proof. When d = 2, 3, or 4 the result is known from [2], and when d = n it is trivial. When $d \in \{5, ..., n-1\}$, it follows from the theorem that there is a unique graph of maximal index unless n = g(d), and for g(d) to be an integer we need d = 5, 6, or 8.

COROLLARY 2. Let e = n + k, where

$$k = \begin{pmatrix} d-1\\ 2 \end{pmatrix} - 1 \quad \text{for some} \quad d \in \{2, \dots, n\}.$$

If (i) n < 60 or (ii) $e \ge 2n - 47$, then $G_{n,k}$ is the unique graph in $\mathscr{H}(n, e)$ of maximal index.

Proof. When d = 2, 3, or 4, the result is known from [2], without the need for either of the conditions (i) and (ii); and when d = n it is trivial. When $d \in \{5, ..., n-1\}$ we have to show that if (i) or (ii) applies then

n > g(d). It is easily checked that the minimum value of g(d) for integers $d \ge 5$ is g(6) = 60, so that (i) is immediate. For (ii), note that if $e \ge 2n - 47$ then $n \le \frac{1}{2}d(d-3) + 47$, so

$$g(d) - n \ge 4(d - 10) + \frac{32}{d - 4} + \frac{16}{(d - 4)^2} \ge 0$$
 for all $d \ge 5$.

REMARK. The constant 47 in Corollary 2(ii) cannot be improved, because when n = 62 and e = 76 we have e = 2n - 48 and $H_{62,14}$ has maximal index. The coefficient 2 is also best possible, in the sense that if $\lambda < 2$ then there exist values of n and e of the required form, with $e > \lambda n$ and such that $H_{n,k}$ has maximal index in $\mathcal{H}(n, e)$. This is because if n = g(d) then

$$\frac{e}{n} = 1 + \frac{\frac{1}{2}d(d-3)}{g(d)} \to 2 \quad \text{as} \quad d \to \infty.$$

We can obtain a more precise expression of the relation between e and n at the "transition state" by inverting the condition n = g(d). We obtain

$$d = \sqrt{2n} - \frac{5}{2} - \frac{31}{8\sqrt{2n}} + O\left(\frac{1}{n}\right),$$

so that

$$e = 2n - 4\sqrt{2n} + 3 + O\left(\frac{1}{\sqrt{n}}\right),$$

as $n \to \infty$ with n = g(d).

4. SOME BOUNDS FOR THE INDEX

PROPOSITION 1. Let e = n + k, where

$$k = \binom{d-1}{2} - 1 \quad \text{for some} \quad d \in \{5, \dots, n-1\},$$

and write

$$b_1(n,d) = \sqrt{n + \frac{1}{2}d^2 - \frac{5}{2}d + 1}$$
, $b_2(n,d) = \sqrt{n + d^2 - 3d + 1}$.

Then

(i)
$$\max(d-1, b_1(n, d)) \le \rho(G_{n,k}) \le \min\left(d + \frac{4}{d-4}, b_2(n, d)\right)$$
 if $n \le g(d)$,

(ii)
$$\max\left(d+\frac{4}{d-4}\right), \sqrt{n-1} \ge \rho(G_{n,k}) \le \rho(H_{n,k}) \le b_1(n,d) \text{ if } n \ge g(d).$$

Proof. For simplicity we write $b_1 = b_1(n, d)$, $b_2 = b_2(n, d)$, and we denote $\rho(G_{n \cdot k}), \rho(H_{n,k})$ by γ, χ as before. The only inequalities requiring comment are

- (i) $b_1 \leq \gamma \leq b_2$ when $n \leq g(d)$,
- (ii) $\chi \leq b_1$ when $n \geq g(d)$.

For (i), recall that γ is the largest zero of

$$f(t) = t^{3} - (d-2)t^{2} - (n-1)t + (d-2)(n-d).$$
(13)

Suppose that $n \leq g(d)$. This implies that $b_1 \leq d + 4/(d-4)$, and it is easily verified that

$$f(b_1) = \frac{1}{2}(d-1)(d-4)\left[b_1 - \left(d + \frac{4}{d-4}\right)\right] \le 0.$$

Thus $\gamma \ge b_1$ [with equality when n = g(d)]. To see that $\gamma \le b_2$, note that

$$b_2 = \sqrt{(d-1)^2 + (n-d)} \ge d-1,$$

so $f(b_2) = (d-1)(d-2)[b_2 - (d-1)] \ge 0$. It may be checked that $f'(b_2) > 0$ and $f''(t) \ge 0$ for all $t \ge b_2$, so that $f(t) \ge 0$ for all $t \ge b_2$. It follows that $\gamma \le b_2$.

For (ii), note that χ is the largest eigenvalue of the matrix

$$\begin{bmatrix} 0 & 1 & k+1 & n-k-3 \\ 1 & 0 & k+1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

MAXIMAL INDEX OF CONNECTED GRAPHS

Thus χ is the largest zero of h(t), where

$$h(t) = t^{4} - (n+k)t^{2} - 2(k+1)t + (k+1)(n-k-3).$$
(14)

Suppose that $n \ge g(d)$: this gives $b_1 \ge d + 4/(d-4)$. Routine calculations show that

$$h(b_1) = \frac{1}{2}(d-1)(d-4)\left[b_1 - \left(d + \frac{4}{d-4}\right)\right](b_1 + d-2) \ge 0,$$

and that $h'(b_1) > 0$, h''(t) > 0 for all $t \ge b_1$. Thus $\chi \le b_1$ [with equality when n = g(d)].

Note that if

$$\binom{d-1}{2} + 3 \le n \le g(d)$$

then $H_{n,k}$ is defined, and we may replace (i) by

(i')
$$\max(d-1, b_1(n, d)) \le \rho(H_{n,k}) \le \rho(G_{n,k})$$

 $\le \min\left(d + \frac{4}{d-4}, b_2(n, d)\right),$

because we then have $h(b_1) \leq 0$, and therefore $\chi \geq b_1$.

From Proposition 1 and the theorem we obtain

PROPOSITION 2. Let e = n + k, where

$$k = \binom{d-1}{2} - 1 \quad \text{for some} \quad d \in \{5, \dots, n-1\},$$

and let G be any graph in $\mathscr{H}(n, e)$. Then

$$\rho(G) \leq \begin{cases} \min\left(d + \frac{4}{d-4}, b_2(n, d)\right) & \text{if } n \leq g(d), \\ b_1(n, d) & \text{if } n > g(d). \end{cases}$$

CONCLUDING REMARKS.

1. Since $b_1(n,d) < b_2(n,d) = \sqrt{2e - n + 1}$, we deduce that $\rho(G) \leq \sqrt{2e - n + 1}$ for all graphs in $\mathscr{H}(n, e)$, if e is of the given form. This bound has been shown to be valid for arbitrary e and n by Yuan [10], using a quite different method. The bound in Proposition 2 represents an improvement on $\sqrt{2e - n + 1}$ whenever

$$n > 3d + 7 + \frac{32}{d-4} + \frac{16}{(d-4)^2}$$

because $d + 4/(d-4) < b_2(n,d)$ for such n.

2. When d (> 4) is fixed and

$$k = \binom{d-1}{2} - 1,$$

the difference between the indices of $G_{n,k}$ and $H_{n,k}$ is surprisingly small for large values of n. Routine calculations using (13) and (14) lead to

$$\rho(G_{n,k}) = \sqrt{n} - \frac{1}{2\sqrt{n}} + \left(\frac{d-1}{2}\right) \cdot \frac{1}{n} + \frac{1}{8}(4d^3 - 20d^2 + 32d - 17) \cdot \frac{1}{n^{3/2}} + O\left(\frac{1}{n^2}\right),$$

and

$$\rho(H_{n,k}) = \sqrt{n} - \frac{1}{2\sqrt{n}} + \left(\frac{d-1}{2}\right) \cdot \frac{1}{n} + \frac{1}{8}\left(\frac{d^4 - 6d^3 + 15d^2 - 18d + 7}{16}\right) \cdot \frac{1}{n^{3/2}} + O\left(\frac{1}{n^2}\right).$$

Thus, for fixed d > 4,

$$\rho(H_{n,k}) - \rho(G_{n,k}) \sim \frac{1}{8}(d-1)(d-2)(d-3)(d-4) \cdot \frac{1}{n^{3/2}} \quad \text{as} \quad n \to \infty.$$

3. When

$$k = \binom{d-1}{2} - 1$$

for a fixed d > 4, and *n* is sufficiently large, we have $\rho(G) \leq \sqrt{n}$ for all G in $\mathcal{H}(n, n+k)$. How large must *n* be? It is straightforward to deduce from (14) that $\rho(H_{n,k}) \leq \sqrt{n}$ if and only if $n \geq N(d)$, where

$$N(d) = \left[\frac{1}{2}(d-1)(d-2) + \sqrt{\frac{1}{2}(d-1)(d-2)(d^2-3d+4)}\right]^2.$$

Thus $\rho(G) \leq \sqrt{n}$ whenever $n \geq N(d)$, and therefore whenever $n \geq cd^4$, where $c = (3 + 2\sqrt{2})/4 \approx 1.457$.

REFERENCES

- 1 R. A. Brualdi and A. J. Hoffman, On the spectral radius of (0, 1) matrices, *Linear Algebra Appl.* 65:133-146 (1985).
- 2 R. A. Brualdi and E. S. Solheid, On the spectral radius of connected graphs, Publ. Inst. Math. (Beograd) 39(53):45-54 (1986).
- 3 L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21:63-77 (1957).
- 4 D. Cvetković and P. Rowlinson, On connected graphs with maximal index, *Publ.* Inst. Math. (Beograd) 44(58):29-34 (1988).
- 5 S. Friedland, The maximal eigenvalue of 0-1 matrices with prescribed number of ones, *Linear Algebra Appl.* 69:33-69 (1985).
- 6 S. Friedland, Bounds on the spectral radius of graphs with *e* edges, *Linear Algebra Appl.* 101:81-86 (1988).
- 7 F. R. Gantmacher, The Theory of Matrices, Vol. II, Chelsea, New York, 1959.
- 8 L. Lovász and J. Pelikán, On the eigenvalues of trees, Period. Math. Hungar. 3:175-182 (1973).
- 9 P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, *Linear Algebra Appl.* 110:43-53 (1988).
- 10 H. Yuan, A bound on the spectral radius of graphs, *Linear Algebra Appl*. 108:135-139 (1988).

Received 19 October 1989; final manuscript accepted 6 March 1990