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ABSTRACT

Let &#(n,e) denote the set of all connected graphs having n vertices and e
edges. The graphs in &#(n,n + k) with maximal index are determined for k of form

(; —1 and n arbitrary.

1. INTRODUCTION

The graphs we consider are finite, undirected, and without loops or
multiple edges. The index (or spectral radius) of a graph G is the largest
eigenvalue of a (0,1) adjacency matrix A of G, and we denote it by p(G).
Let &(n,e) be the set of all graphs with n vertices and e edges, and let
#(n,e) be the set of all connected graphs in #(n,e). The problem of
finding the graphs in #(n, e) with maximal index was solved by Brualdi and
Hoffman [1] in the case when

e=(‘2i) for some d.

Further special cases were dealt with by Friedland [5, 6], who also proved an
asymptotic result, and the problem was solved for all remaining values of e
by Rowlinson [9). However, the corresponding problem for #(n,e) has
been solved only in certain cases. When ¢ has its minimum value n —1, the
set H#(n,e) consists of all n-vertex trees, and it was shown by Lovasz and
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Pelikdn [8] that the star K, ,_, has maximal index. (See also Collatz and
Sinogowitz [3].)

In order to discuss the other results known for #(n, e) we follow [4] in
writing ¢ =n + k (k > 0) and defining graphs G, ; and H, ;. Both of these
lie in #'(n,n + k), and both have the star K, ,_, as a spanning subgraph.
In G, , the k +1 edges not forming part of the spanning star are such that
G, . has as large a complete subgraph as possible. To be precise, let d be
the largest integer such that

d—1
<Kk +1,
( 2 ) <k +1
and denote by F, ; the graph obtained from the complete graph K, on d
vertices by adding n — d pendant edges at one of its vertices. (Note that
d<nand F,  is just K .) In the case when

d—1\_
( ; )—k+1

n

we define G, ; to be the graph F, ;. In all other cases we can write
(uniquely)

d-1

k+1=( 9

)+t with 4<d<n-—1and 1<t <d—2;

then G, ; is defined to be the graph obtained from F, , by joining a vertex
of degree 1 to t vertices of degree d —1. The graph H, , is defined only for
k <n—3: it is the graph obtained from the star K, ,_, by joining a vertex of
degree 1 to k +1 other vertices of degree 1. Note that G, ; and H, ,
coincide if and only if k =0 or 1.

The graph of maximal index in #(n, ¢) is known when

("3 1) <e=(3)

because the graph of maximal index in Z(n, e) is then connected (see [9]); it
is in fact G, ,_,. Brualdi and Solheid [2] considered those cases in which
e=n+k with k <5. They showed that, when k=0, 1, or 2, G, ; is the
unique graph of maximal index in Z#(n, n + k); whereas when k =3, 4, or 5,
while G, , has maximal index for some small values of n, it is H, ; which
has maximal index for all sufficiently large values of n. These results were
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extended by Cvetkovié and Rowlinson in [4]. They proved that, for any fixed
k >6, H, ; is the unique graph of maximal index for all sufficiently large n.

These known results prompt two questions. For an arbitrary fixed k > 6,
does G, ; have maximal index in #(n,n + k) for “small” values of n? And
are there values of n and k for which neither of G, ; and H, ; has maximal
index? In Section 3 of this paper we provide precise answers to these
questions whenever k +1 is equal to d;l) for some d > 4. This case is

analogous to the basic case e =( d) for #(n,e) considzred by Brualdi and

Hoffman, as can be seen by considering the adjacency matrices involved. A
solution to the maximal index problem in this case is a natural first step
towards understanding the general situation. We show that there is a
“transition value” g(d) for n: if n < g(d) then G, ; has maximal index,
while if n > g(d) then H, ; has maximal index. No graph other than G, ; or
H, ;. has maximal index for any value of n. In Section 4 we derive some
bounds for the index of a graph in #(n,n + k).

2. SOME PRELIMINARY RESULTS

As in [1], let .#(n, e) denote the set of all adjacency matrices of graphs
with n vertices and e edges, and let #*(n,e) be the subset of .#(n,e)
consisting of those matrices A =(a,;) satisfying the condition

if i<jand a;=1 then a,;, =1 whenever h<k<jand h<i.

Following [9], we refer to a matrix in #*(n, e) as a stepwise matrix. Brualdi
and Solheid [2] show that a graph in J#(n,e) with maximal index has an
adjacency matrix A =(a;;) € S *(n,e); it follows that a), = -+ =q,, =1
From the theory of irreducible nonnegative matrices [7] we know that there
exists a unique positive unit vector x such that Ax = px, where p is the
spectral radius of A. We shall refer to this vector x as the principal
eigenvector of A. It is easily seen that if x =(x,...,x,)" then x; 2 x, > - --
> x, [9, Lemma 1].
Our standing assumption will be that ¢ = n + k where

k=(d;1)—1 (%)

for some d < n. We may assume in fact that 4 <d < n, because the cases
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d=2, 3, and 4 have been dealt with in [2], and the case d=n is trivial.
(When d =2, d—1

the assumption (*), the graph G, discussed in the introduction has a
stepwise adjacency matrix B =(b,;) given by

is to be interpreted as zero, so that ¢ =n —1.) Under

b,=1(2<j<n), b;=1(2<i<j<d), b;=0(i>2, j>d).

Write y = p(G, ;), and let y =(y,,...,y,)” be the principal eigenvector of
B. Note that y,= -+ =y, and y,,,= -+ =y,. The following equations
hold:

(y+D)y, =y, +(d-Dy, +(n—d)y,,

(y+Dy, =y, +(d-1)y,, (1)

yyn = yl'

If k<n-—3, the graph H,, has a stepwise adjacency matrix C={(c,;)
satisfying

c;=1 (2<j<n), ;=1 (3<j<k+3),
cy; =0 (j>k+3), c; =0 (3<i<yj).

Write x = p(H, ), and let z=(z,,...,2,)" be the principal eigenvector
of C. Then z;= -+ =z;,5 and z;,,= - - =z, and we have

(x+Dz,=z,+2,+(k+1)z;+(n—k =3)z,,

(x+Dzy=2,+2,+(k +1)z;, 2

X33 =2;t2,,

X%, =31.
LevMma 1. Let

d>4 and k=(d;l)—1<n—3.
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Then one of the following holds:
@D p(H, ) <p(G, )<d+ FEvE

4
(ll) p(an)= P(Gn,k)= d+ m;

4
(i) p(H, )> p(G, )>d+ =1

Proof. Write y=p(G, ), x=p(H, ). We follow Rowlinson [9] in
considering y"(B — C)z=(y — x)y"z. The matrix B— C has 2r nonzero
entries above the principal diagonal, where

=("2%)

and y"(B—C)z=a — B, say, where a is the sum of r terms of the form
yiz; ;3 with 3<i<j<d, and B=yy(z .+ +2,,4)+ 2,(y .,
+ 0+ i) Thus @ =2ry,z,5 and B = r(y,2, + y,2,), so that (y — y)y'z
=r(yy2;5 — y,3,). Suppose that y <. Then, since y’z > 0, we have Ys / Yn
>z, /2. It follows from (1) that

P Y
e — 3
v, 7—(d-2) ®
and from (2) that
d-—1
QZM (4)
2 Xx+1

Therefore

() ()

>
y—(d—-2) x+1 v+1

which leads to

4
y<d+-—
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so that (i) holds. The assumptions y =7y, y >y similarly yield (i), (ii)
respectively. m

We can determine which of these three possibilities holds, for given n
and d, by comparing p(G, ;) with d +4/(d —4). This is done in Lemma 2,
which involves the function g defined by

(d> 4). (5)

g(d)=3d(d+5)+7+ Tt a2y

Lemma 2. Let
4<d<n and k=(d;1)—l.
Then

4
(G, ) § d+ — according as n> g(d).

Proof. From (1), vy = p(G,, ;) is the largest eigenvalue of the matrix
0 d-1 n~d
1 d-2 0o |
1 0 0
and is therefore the largest zero of
f()=2—(d-2)t>—(n—-1t+(d—2)(n—d).

It may be verified that

4y 2(d-2
flar ) - A2 et =),
so that

4
'y>d+-"iT4' if n>g(d).
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The results for n < g(d) also follow if we verify that we then have f(¢)> 0
whenever t > d +4/(d —4). For this it is enough to note that

d ! d?+4d+17 50 + 8 0
— | = -n>
f( =3 ) +ad 17+ —— a2 n>0,

while f"(#)=6t —2(d —2)>0forall t > d+4/(d —4). [ |

3. THE MAIN RESULT
THEOREM. Let

4<d<n and k=(d;l)—1,

and let G be a graph of maximal index in # (n,n + k). Then

() G=G,, if n< g(d),
(i) G=G,; or H, ;, and p(G, )= p(H, ), if n=g(d),
(iii) G=H, ; if n> g(d),

where g(d) is defined by (5).

Proof. Note first that if n > g(d) then certainly k <n -3, so H, ; is
defined and Lemma 1 may be applied. By virtue of the result of Brualdi and
Solheid mentioned earlier, we know that G has a stepwise adjacency matrix
A. Write p=p(G), and let x =(x,,...,x,)" be the principal eigenvector of
A. Recall that x;>x,> -+ >x,>0. As in Section 2, let G, ; and H,
have stepwise adjacency matrices B,C respectively, with corresponding
principal eigenvectors y,z, and write y = p(G,, ,), x = p(H,, ;).

(i): Let n < g(d) and suppose that G # G,, ;: we shall prove that p(G) <
p(G, ;). Suppose that the matrix B— A has 2r nonzero entries above the
principal diagonal. Then (y — p)xTy = xT(B — A)y = & — B, where « is the
sum of r terms x,y; + x;y, for which 3<i<j<d, and B is the sum of r
such terms for which 2 <i<jand j>d+1. Thus @ > r(x;_ 1y, + x44,) >
214y, and B <r(xyy, + x4.1y0) <725y, + x4y5), so that (y — pxTy >
r(x 4y ~ %2y,).
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Suppose, by way of contradiction, that y < p: then

X Y
252 (6)

Xy Y,

Let h be maximal such that a;,,=1, and let m be maximal such that
ay,, = 1. (See Figure 1.) Since A # B, we have 2<h<d—2and d+1<m
< n. Let 2u be the number of entries a,; with h+1<i<d, h+1<j<d
which are equal to 1. Then

h m 1 m
(P+1)x2=zxi+ Y oy=prgt— L opx
i=1 i=h+1 Pi=h+1

1 h
<de+;{(m“h) )y xi+2uxh+l}

i=1

2u
<(p+m=h)x;+—zx, (7)
p
2u 1+
<(p+m—h)x;+—-— ¥ x,
p kD

2u
=(p+m—h+7)xd

<[lp+m—h+(h—-2)(d—h)+u]x,. (8)
Now

m—h+(h—2)(d—h)+u<(d;1),

because the expression on the left is less than or equal to the number of
entries a,; with 2 =i <j or 3 <i < j<d which are equal to 1. Thus

(p+1Dx, < [p+(d;1)]xd,
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h) (c) (d) (m) (n)
011 - 111-+- 11 - 11+ 11-+1
01 111 - 11 11 - 0 -
%
(R 011 - 1 -1
01 - 11 0
10 - 11 0
‘ Do x
(c) 11 01 0
11 100 - 0
00 - 0
* . T .
d) 00 -+ 000 -+ 0

Fic. 1. Part of the matrix A.

and it follows from (3) and (6) that

d—1
Y <”+( 2')
y=(d-2) = p+1

This leads to v > d +4/(d —4), but Lemma 2 then gives the contradic-
tion n > g(d). Thus p <'y, as asserted.
(ii): Let n = g(d); then

d 4
=y=(d+ —o
Y=X d—4

by Lemma 1. Suppose that G is not equal to either G, ; or H, ;. If we
assume that y < p, then the argument of (i) leads to the conclusion that
y>d+4/(d—4), unless equality holds throughout. But we need u =0 for
equality in (7), because (p + Dx, = (p + Dx, ,, + x4, so that x,,, <x,; and
for equality in (8) we must have h = 2. However, if u =0 and h =2 then
A = C, a further contradiction. Thus p < 7.

(iii): Let n > g(d), and suppose that G # H, ;. Define h and m as in the
proof of (i): this time we have 2<h<d—1and d<m<k+3<n. Let ¢
be maximal such that @, ., ,=1. (See Figure 1.) Since A # C, we have
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3<c<d-1 For 3<i<c, let m(i) be maximal such that g, ,,,=1. Then
re_ 3[m(z)—z]—-r where r is the number of entries a;; with 3<i<j
which are equal to 1. (We also have r = k +3—m.) Let v be the number of
entries a;; with h +1<i<j<d which are equal to 0; then v is also the
number of entries a;; with 2 <i<h, d+1<j<m which are equal to 1.
Consider (x —px"z2=x"(C — A)z=a — B, where a = x,(2,,,
+ otz ax,, +xk+3) and B is the sum of r terms x,z, +
x;z; for which 3<i<e¢, i+1<j<m(i). Since x,,,="" =x, we have
a=r(x,z;+ z,x,). Also, B<rx z3 + 2528 32"'("+1x =r(x, + q)zg, where
q=1/rE{_ L7, x,. Therefore (x — px” z>r(x 2% — Qz3). Suppose, by
way of contradlctlon that p = x: then

— . (9)

We will show that

5 S p=(d-D) o

n

To this end, write ¢ = g, + g,, where

1 h m(i) 1 m(i)
a== 2 X, Gp=- Y %
T i—3j=i+1 Toimh+1j=i+1
(Put g, =0if h=2,and g, =0if h=c.)
For each i €{3,...,h} we have m(i) > d, and therefore, since x, > - -
2 X,
Zm(;+lx 23'1—2751‘
a,, say.
m(i)—i  d-—-1 ! Y
Thus
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Now

1 d
(p+Da==— ¥ (p+Ds,
ji=2

dl ] {(d-—l) Y x,+ (v terms x,) ~ (20 terms x,)}

i=1
where each s > d +1 and each ¢t < d. Hence
1 . o . N
(p+l)al<E—:T{(d—l)[x1+(d—l)alj—vxd}
<x;+(d—1)a,.

Thus [p —(d —2)]a, < x;, so that

¥
[p—(d-2)]q, < 7 ; [m(i)—i]. (11)

i

Turning now to g,, we note that

It follows that if i > h + 1, then for each j €{i +1,..., m(i)} we have x, < ay,
so that

a4 ¢ N
gp<— X [m(i)-i].
T j=h+1

From the above, we have (p + DL ,x; < (d — DE?_,x;, and it follows that

(p+Da,<x,+(d—1)a,.
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Thus [p —(d —D]a, < x,, so that
X c
[p=(d-D]g<—= L [m(i)—i]. (12)
T ich+t

From (11) and (12), [p —(d —D)lg < x, = px,, and (10) is established. From
(4), (9), and (10) we obtain

d-1
(75 p

< ,
x+1 p—(d-2)

and this leads to ¥ < d +4/(d —4). Lemmas 1 and 2 then give the contradic-
tion n < g(d). Thus p < x. [ ]

CoroLLaRY 1. When e is of the form
e=n—1+(d;1) for some de{2,...,n},

#(n,e) has a unique graph of maximal index, except in the three cases
n=060, ¢e=69; n=68, ¢ =88; n=80, e =85.

Proof. When d=2, 3, or 4 the result is known from [2], and when
d=n it is trivial. When d €{5,...,n —1}, it follows from the theorem that
there is a unique graph of maximal index unless n = g(d), and for g(d) to be
an integer we need d = 5, 6, or 8. [ ]

CoroLLARY 2. Let e =n + k, where

k=(dg1)—l for some de<{2,...,n}.

If ) n <60 or (i) e > 2n — 47, then G, ; is the unique graph in #(n,e) of
maximal index.

Proof. When d =2, 3, or 4, the result is known from [2], without the
need for either of the conditions (i) and (ii); and when d = n it is trivial.
When d€{5,...,n—1} we have to show that if (i) or (ii) applies then
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n > g(d). Tt is easily checked that the minimum value of g(d) for integers
d>5is g(6) =60, so that (i) is immediate. For (ii), note that if ¢ > 2n —47
then n < 3d(d —3)+47, so

16

+ 7 >0 forall d=5. =
d—4 (d-4)

g(d)—n>4(d—-10)+

Remark. The constant 47 in Corollary 2(ii) cannot be improved, be-
cause when n =62 and ¢ =76 we have e = 2n —48 and H,, |, has maximal
index. The coefficient 2 is also best possible, in the sense that if A <2 then
there exist values of n and e of the required form, with ¢ > An and such that
H, ; has maximal index in &#(n, ¢). This is because if n = g(d) then

3d(d -3
i=1+A——)——>2 as d—oow.

n g(d)

We can obtain a more precise expression of the relation between e and n
at the “transition state” by inverting the condition n = g(d). We obtain

5 31 1
d=vV2n — —— ——=+0|—|,
2 8vY2n (n)

so that

e=2n—4v2n +34+ 0

|

5 -

as n — o with n= g(d).

4. SOME BOUNDS FOR THE INDEX
ProrosiTioN 1. Let e =n + k, where

k=(d;1)—1 for some de(5,....n—1},
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and write

bn,d)=yn+3d®-2d+1, by(n,d)=Vn+d*-3d+1.

Then

4
() max(d—1,b,(n,d))<p(G, ;) <min d+d—_Z,b2(n,d) if n<
g(d), .
(ii) max(d + E—_—4),Vn -1)<p(G, )< p(H, )< b(n,d)ifn>g(d).

Proof. For simplicity we write b, =b(n,d), by =by(n,d), and we
denote p(G,.;),p(H, ;) by v,x as before. The only inequalities requiring
comment are

(i) b, <y <b, when n < g(d),

(ii) x <b, when n> g(d).

For (i), recall that v is the largest zero of
f()y=t*—(d-2)t>—(n—1)t+(d-2)(n—d). (13)

Suppose that n < g(d). This implies that b, < d +4/(d ~4), and it is easily
verified that

4
1(b) =§(d—1)(d—4)[bl—(d+—d—_—4” <0.

Thus y > b, [with equality when n = g(d)]. To see that y < b,, note that

by=y(d=1°+(n—d) >d—1,

so f(b,)=(d —1Xd —2)b, —(d —1)] > 0. It may be checked that f'(by)>0
and f"(t)> 0 for all ¢ > b,, so that f(¢)>0 for all ¢ > b,. It follows that
y <b,.

For (ii), note that y is the largest eigenvalue of the matrix

0 1 k+1 n—-k-3
1 0 k+1 0
1 1 0 0
1 O 0 0



MAXIMAL INDEX OF CONNECTED GRAPHS 149

Thus yx is the largest zero of h(t), where
h(t)=t*—(n+k)t?-2(k+D)t+(k+1)(n—k-3). (14)

Suppose that n > g(d): this gives b, >d +4/(d —4). Routine calculations
show that

(by+d—-2)=0,

4
h(b,) =‘é(d—1)(d—4)[b_(d+.&___4)

and that h'(b,)> 0, h"(¢) > 0 for all ¢ > b,. Thus y < b, [with equality when
n=g(d)). ]

Note that if

(d—l
2

)+3<n< g(d)
then H, ; is defined, and we may replace (i) by
(i) max(d~1,b(n,d))<p(H, ) <p(G, )

4
<min{d + ——, ,d) |,
<mm( +d—4 by(n d))

because we then have h(b,) <0, and therefore y > b,.
From Proposition 1 and the theorem we obtain

ProrositioNn 2. Let e =n + k, where

k=(d;1)-—1 for some de{5,...,n-1},

and let G be any graph in 7 (n,e). Then

4
p(C) < min(d+d—__—4,b2(n,d)) if n<g(d),

b(n,d) if n>g(d).
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CONCLUDING REMARKS.

1. Since by(n,d)<byn,d)=v2e—n+1, we deduce that p(G)<
Y2e —n +1 for all graphs in #(n,e), if e is of the given form. This bound
has been shown to be valid for arbitrary e and n by Yuan [10], using a quite
different method. The bound in Proposition 2 represents an improvement on

v2e — n +1 whenever

16
+ >
d—4  (d-4)°

n>3d+7+

because d +4/(d —4) < b,(n,d) for such n.
2. When d (> 4) is fixed and

the difference between the indices of G, ; and H, , is surprisingly small for
large values of n. Routine calculations using (13) and (14) lead to

d-1) 1
G — P—
p(Cps) =V M 151 -
1 1
+§(4d3—20d2+32d—17)-m+o(—2),
n

and

o(H,) =~ —=+(41)

1 1
+§(d4—6d3+15d2—18d+7)-——n3/2 +o(——n2).
Thus, for fixed d > 4,

1
p(H, 1)~ p(C) ~H(d=1(d=2)(d=3)(d—4) =5 a5 now.
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3. When

k=(d;1)~1

for a fixed d > 4, and n is sufficiently large, we have p(G) <Vn for all G in
H(n,n+k). How large must n be? It is straightforward to deduce from
(14) that p(H,, ;) <Vn if and only if n > N(d), where

N(d) = [2(d~1D)(d-2) +y/E(d-1)(d-2)(d*~3d +4) | .

Thus p(G) < Vn whenever n 3> N(d), and therefore whenever n > cd?,
where ¢ =(3+2vy2)/4 = 1.457.
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