On the Maximal Index of Connected Graphs

F. K. Bell
Department of Mathematics
University of Stirling
Stirling FK9 4LA, Scotland

Submitted by Richard A. Brualdi

Abstract

Let $\mathscr{H}(n, e)$ denote the set of all connected graphs having n vertices and e edges. The graphs in $\mathscr{H}(n, n+k)$ with maximal index are determined for k of form $\binom{r}{2}-1$ and n arbitrary.

1. INTRODUCTION

The graphs we consider are finite, undirected, and without loops or multiple edges. The index (or spectral radius) of a graph G is the largest eigenvalue of a (0,1) adjacency matrix A of G, and we denote it by $\rho(G)$. Let $\mathscr{G}(n, e)$ be the set of all graphs with n vertices and e edges, and let $\mathscr{H}(n, e)$ be the set of all connected graphs in $\mathscr{G}(n, e)$. The problem of finding the graphs in $\mathscr{G}(n, e)$ with maximal index was solved by Brualdi and Hoffman [1] in the case when

$$
e=\binom{d}{2} \quad \text { for some } d
$$

Further special cases were dealt with by Friedland [5, 6], who also proved an asymptotic result, and the problem was solved for all remaining values of e by Rowlinson [9]. However, the corresponding problem for $\mathscr{H}(n, e)$ has been solved only in certain cases. When e has its minimum value $n-1$, the set $\mathscr{H}(n, e)$ consists of all n-vertex trees, and it was shown by Lovász and

Pelikán [8] that the star $K_{1, n-1}$ has maximal index. (See also Collatz and Sinogowitz [3].)

In order to discuss the other results known for $\mathscr{H}(n, e)$ we follow [4] in writing $e=n+k(k \geqslant 0)$ and defining graphs $G_{n, k}$ and $H_{n, k}$. Both of these lie in $\mathscr{H}(n, n+k)$, and both have the star $K_{1, n-1}$ as a spanning subgraph. In $G_{n, k}$ the $k+1$ edges not forming part of the spanning star are such that $G_{n, k}$ has as large a complete subgraph as possible. To be precise, let d be the largest integer such that

$$
\binom{d-1}{2} \leqslant k+1
$$

and denote by $F_{n, d}$ the graph obtained from the complete graph K_{d} on d vertices by adding $n-d$ pendant edges at one of its vertices. (Note that $d \leqslant n$ and $F_{n, n}$ is just K_{n}.) In the case when

$$
\binom{d-1}{2}=k+1
$$

we define $G_{n, k}$ to be the graph $F_{n, d}$. In all other cases we can write (uniquely)

$$
k+1=\binom{d-1}{2}+t \quad \text { with } \quad 4 \leqslant d \leqslant n-1 \text { and } 1 \leqslant t \leqslant d-2
$$

then $G_{n, k}$ is defined to be the graph obtained from $F_{n, d}$ by joining a vertex of degree 1 to t vertices of degree $d-1$. The graph $H_{n, k}$ is defined only for $k \leqslant n-3$: it is the graph obtained from the star $K_{1, n-1}$ by joining a vertex of degree 1 to $k+1$ other vertices of degree 1 . Note that $G_{n, k}$ and $H_{n, k}$ coincide if and only if $k=0$ or 1 .

The graph of maximal index in $\mathscr{H}(n, e)$ is known when

$$
\binom{n-1}{2}<e \leqslant\binom{ n}{2} \text {, }
$$

because the graph of maximal index in $\mathscr{G}(n, e)$ is then connected (see [9]); it is in fact $G_{n, e-n}$. Brualdi and Solheid [2] considered those cases in which $e=n+k$ with $k \leqslant 5$. They showed that, when $k=0,1$, or $2, G_{n, k}$ is the unique graph of maximal index in $\mathscr{H}(n, n+k)$; whereas when $k=3,4$, or 5 , while $G_{n, k}$ has maximal index for some small values of n, it is $H_{n, k}$ which has maximal index for all sufficiently large values of n. These results were
extended by Cvetković and Rowlinson in [4]. They proved that, for any fixed $k \geqslant 6, H_{n, k}$ is the unique graph of maximal index for all sufficiently large n.

These known results prompt two questions. For an arbitrary fixed $k \geqslant 6$, does $G_{n, k}$ have maximal index in $\mathscr{H}(n, n+k)$ for "small" values of n ? And are there values of n and k for which neither of $G_{n, k}$ and $H_{n, k}$ has maximal index? In Section 3 of this paper we provide precise answers to these questions whenever $k+1$ is equal to $\binom{d-1}{2}$ for some $d>4$. This case is analogous to the basic case $e=\binom{d}{2}$ for $\mathscr{G}(n, e)$ consid red by Brualdi and Hoffman, as can be seen by considering the adjacency matrices involved. A solution to the maximal index problem in this case is a natural first step towards understanding the general situation. We show that there is a "transition value" $g(d)$ for n : if $n \leqslant g(d)$ then $G_{n, k}$ has maximal index, while if $n \geqslant g(d)$ then $H_{n, k}$ has maximal index. No graph other than $G_{n, k}$ or $H_{n, k}$ has maximal index for any value of n. In Section 4 we derive some bounds for the index of a graph in $\mathscr{H}(n, n+k)$.

2. SOME PRELIMINARY RESULTS

As in [1], let $\mathscr{\rho}(n, e)$ denote the set of all adjacency matrices of graphs with n vertices and e edges, and let $\mathscr{\rho} *(n, e)$ be the subset of $\mathscr{\rho}(n, e)$ consisting of those matrices $A=\left(a_{i j}\right)$ satisfying the condition

$$
\text { if } i<j \text { and } a_{i j}=1 \text { then } a_{h k}=1 \quad \text { whenever } h<k \leqslant j \text { and } h \leqslant i .
$$

Following [9], we refer to a matrix in $\mathscr{\rho} *(n, e)$ as a stepwise matrix. Brualdi and Solheid [2] show that a graph in $\mathscr{H}(n, e)$ with maximal index has an adjacency matrix $A=\left(a_{i j}\right) \in \mathscr{\rho}^{*}(n, e)$; it follows that $a_{12}=\cdots=a_{1 n}=1$. From the theory of irreducible nonnegative matrices [7] we know that there exists a unique positive unit vector \mathbf{x} such that $A \mathbf{x}=\rho \mathbf{x}$, where ρ is the spectral radius of A. We shall refer to this vector \mathbf{x} as the principal eigenvector of A. It is easily seen that if $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ then $x_{1} \geqslant x_{2} \geqslant \cdots$ $\geqslant x_{n}[9$, Lemma 1].

Our standing assumption will be that $e=n+k$ where

$$
\begin{equation*}
k=\binom{d-1}{2}-1 \tag{*}
\end{equation*}
$$

for some $d \leqslant n$. We may assume in fact that $4<d<n$, because the cases
$d=2,3$, and 4 have been dealt with in [2], and the case $d=n$ is trivial. (When $d=2,\binom{d-1}{2}$ is to be interpreted as zero, so that $e=n-1$.) Under the assumption (*), the graph $G_{n, k}$ discussed in the introduction has a stepwise adjacency matrix $B=\left(b_{i j}\right)$ given by

$$
b_{1 j}=1 \quad(2 \leqslant j \leqslant n), \quad b_{i j}=1 \quad(2 \leqslant i<j \leqslant d), \quad b_{i j}=0 \quad(i \geqslant 2, j>d)
$$

Write $\gamma=\rho\left(G_{n, k}\right)$, and let $y=\left(y_{1}, \ldots, y_{n}\right)^{T}$ be the principal eigenvector of B. Note that $y_{2}=\cdots=y_{d}$ and $y_{d+1}=\cdots=y_{n}$. The following equations hold:

$$
\begin{align*}
(\gamma+1) y_{1} & =y_{1}+(d-1) y_{2}+(n-d) y_{n} \\
(\gamma+1) y_{2} & =y_{1}+(d-1) y_{2} \tag{1}\\
\gamma y_{n} & =y_{1}
\end{align*}
$$

If $k<n-3$, the graph $H_{n, k}$ has a stepwise adjacency matrix $C=\left(c_{i j}\right)$ satisfying

$$
\begin{array}{llll}
c_{1 j}=1 & (2 \leqslant j \leqslant n), & c_{2 j}=1 & (3 \leqslant j \leqslant k+3), \\
c_{2 j}=0 & (j>k+3), & c_{i j}=0 & (3 \leqslant i<j) .
\end{array}
$$

Write $\chi=\rho\left(H_{n, k}\right)$, and let $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)^{T}$ be the principal eigenvector of C. Then $z_{3}=\cdots=z_{k+3}$ and $z_{k+4}=\cdots=z_{n}$, and we have

$$
\begin{align*}
(\chi+1) z_{1} & =z_{1}+z_{2}+(k+1) z_{3}+(n-k-3) z_{n} \\
(\chi+1) z_{2} & =z_{1}+z_{2}+(k+1) z_{3} \tag{2}\\
\chi z_{3} & =z_{1}+z_{2} \\
\chi z_{n} & =z_{1}
\end{align*}
$$

Lemma 1. Let

$$
d>4 \quad \text { and } \quad k=\binom{d-1}{2}-1<n-3 .
$$

Then one of the following holds:
(i) $\rho\left(H_{n, k}\right)<\rho\left(G_{n, k}\right)<d+\frac{4}{d-4}$;
(ii) $\rho\left(H_{n, k}\right)=\rho\left(G_{n, k}\right)=d+\frac{4}{d-4}$;
(iii) $\rho\left(H_{n, k}\right)>\rho\left(G_{n, k}\right)>d+\frac{4}{d-4}$.

Proof. Write $\gamma=\rho\left(G_{n, k}\right), \chi=\rho\left(H_{n, k}\right)$. We follow Rowlinson [9] in considering $\mathbf{y}^{T}(B-C) \mathbf{z}=(\gamma-\chi) \mathbf{y}^{T} \mathbf{z}$. The matrix $B-C$ has $2 r$ nonzero entries above the principal diagonal, where

$$
r=\binom{d-2}{2}
$$

and $\mathbf{y}^{T}(B-C)_{\mathbf{z}}=\alpha-\beta$, say, where α is the sum of r terms of the form $y_{i} z_{j}+y_{j} z_{i}$ with $3 \leqslant i<j \leqslant d$, and $\beta=y_{2}\left(z_{d+1}+\cdots+z_{k+3}\right)+z_{2}\left(y_{d+1}\right.$ $\left.+\cdots+y_{k+3}\right)$. Thus $\alpha=2 r y_{2} z_{3}$ and $\beta=r\left(y_{2} z_{3}+y_{n} z_{2}\right)$, so that $(\gamma-\chi) y^{T} \mathbf{z}$ $=r\left(y_{2} z_{3}-y_{n} z_{2}\right)$. Suppose that $\chi<\gamma$. Then, since $\mathbf{y}^{T} \mathbf{z}>0$, we have y_{2} / y_{n} $>z_{2} / z_{3}$. It follows from (1) that

$$
\begin{equation*}
\frac{y_{2}}{y_{n}}=\frac{\gamma}{\gamma-(d-2)}, \tag{3}
\end{equation*}
$$

and from (2) that

$$
\begin{equation*}
\frac{z_{2}}{z_{3}}=\frac{\chi+\binom{d-1}{2}}{x+1} \tag{4}
\end{equation*}
$$

Therefore

$$
\frac{d-2}{\gamma-(d-2)}>\frac{\binom{d-1}{2}-1}{\chi+1}>\frac{\binom{d-1}{2}-1}{\gamma+1}
$$

which leads to

$$
\gamma<d+\frac{4}{d-4}
$$

so that (i) holds. The assumptions $\chi=\gamma, \chi>\gamma$ similarly yield (ii), (iii) respectively.

We can determine which of these three possibilities holds, for given n and d, by comparing $\rho\left(G_{n, k}\right)$ with $d+4 /(d-4)$. This is done in Lemma 2 , which involves the function g defined by

$$
\begin{equation*}
g(d)=\frac{1}{2} d(d+5)+7+\frac{32}{d-4}+\frac{16}{(d-4)^{2}} \quad(d>4) . \tag{5}
\end{equation*}
$$

Lemma 2. Let

$$
4<d<n \quad \text { and } \quad k=\binom{d-1}{2}-1 .
$$

Then

$$
\rho\left(G_{n, k}\right) \lesseqgtr d+\frac{4}{d-4} \quad \text { according as } \quad n \lesseqgtr g(d) .
$$

Proof. From (1), $\gamma=\rho\left(C_{n, k}\right)$ is the largest eigenvalue of the matrix

$$
\left[\begin{array}{ccc}
0 & d-1 & n-d \\
1 & d-2 & 0 \\
1 & 0 & 0
\end{array}\right],
$$

and is therefore the largest zero of

$$
f(t)=t^{3}-(d-2) t^{2}-(n-1) t+(d-2)(n-d) .
$$

It may be verified that

$$
f\left(d+\frac{4}{d-4}\right)=\frac{2(d-2)}{d-4}[g(d)-n],
$$

so that

$$
\gamma>d+\frac{4}{d-4} \quad \text { if } \quad n>g(d)
$$

The results for $n \leqslant g(d)$ also follow if we verify that we then have $f(t) \geqslant 0$ whenever $t \geqslant d+4 /(d-4)$. For this it is enough to note that

$$
f^{\prime}\left(d+\frac{4}{d-4}\right)=d^{2}+4 d+17+\frac{80}{d-4}+\frac{48}{(d-4)^{2}}-n>0
$$

while $f^{\prime \prime}(t)=6 t-2(d-2)>0$ for all $t \geqslant d+4 /(d-4)$.

3. THE MAIN RESULT

Theorem. Let

$$
4<d<n \quad \text { and } \quad k=\binom{d-1}{2}-1
$$

and let G be a graph of maximal index in $\mathscr{\mathscr { H }}(n, n+k)$. Then
(i) $G=G_{n, k}$ if $n<g(d)$,
(ii) $G=G_{n, k}$ or $H_{n, k}$, and $\rho\left(G_{n, k}\right)=\rho\left(H_{n, k}\right)$, if $n=g(d)$,
(iii) $G=H_{n, k}$ if $n>g(d)$,
where $g(d)$ is defined by (5).

Proof. Note first that if $n \geqslant g(d)$ then certainly $k<n-3$, so $H_{n, k}$ is defined and Lemma 1 may be applied. By virtue of the result of Brualdi and Solheid mentioned earlier, we know that G has a stepwise adjacency matrix A. Write $\rho=\rho(G)$, and let $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ be the principal eigenvector of A. Recall that $x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{n}>0$. As in Section 2, let $G_{n, k}$ and $H_{n, k}$ have stepwise adjacency matrices B, C respectively, with corresponding principal eigenvectors \mathbf{y}, \mathbf{z}, and write $\gamma=\rho\left(G_{n, k}\right), \chi=\rho\left(H_{n, k}\right)$.
(i): Let $n<g(d)$ and suppose that $G \neq G_{n, k}$: we shall prove that $\rho(G)<$ $\rho\left(G_{n, k}\right)$. Suppose that the matrix $B-A$ has $2 r$ nonzero entries above the principal diagonal. Then $(\gamma-\rho) \mathbf{x}^{T} \mathbf{y}=\mathbf{x}^{T}(B-A) \mathbf{y}=\alpha-\beta$, where α is the sum of r terms $x_{i} y_{j}+x_{j} y_{i}$ for which $3 \leqslant i<j \leqslant d$, and β is the sum of r such terms for which $2 \leqslant i<j$ and $j \geqslant d+1$. Thus $\alpha \geqslant r\left(x_{d-1} y_{2}+x_{d} y_{2}\right) \geqslant$ $2 r x_{d} y_{2}$, and $\beta \leqslant r\left(x_{2} y_{n}+x_{d+1} y_{2}\right) \leqslant r\left(x_{2} y_{n}+x_{d} y_{2}\right)$, so that $(\gamma-\rho) \mathbf{x}^{T} \mathbf{y} \geqslant$ $r\left(x_{d} y_{2}-x_{2} y_{n}\right)$.

Suppose, by way of contradiction, that $\gamma \leqslant \rho$: then

$$
\begin{equation*}
\frac{x_{2}}{x_{d}} \geqslant \frac{y_{2}}{y_{n}} \tag{6}
\end{equation*}
$$

Let h be maximal such that $a_{h d}=1$, and let m be maximal such that $a_{2 m}=1$. (See Figure 1.) Since $A \neq B$, we have $2 \leqslant h \leqslant d-2$ and $d+1 \leqslant m$ $\leqslant n$. Let $2 u$ be the number of entries $a_{i j}$ with $h+1 \leqslant i \leqslant d, h+1 \leqslant j \leqslant d$ which are equal to 1 . Then

$$
\begin{align*}
(\rho+1) x_{2} & =\sum_{i=1}^{h} x_{i}+\sum_{i-h+1}^{m} x_{i}=\rho x_{d}+\frac{1}{\rho} \sum_{i-h+1}^{m} \rho x_{i} \\
& \leqslant \rho x_{d}+\frac{1}{\rho}\left\{(m-h) \sum_{i=1}^{h} x_{i}+2 u x_{h+1}\right\} \\
& \leqslant(\rho+m-h) x_{d}+\frac{2 u}{\rho} x_{h} \tag{7}\\
& \leqslant(\rho+m-h) x_{d}+\frac{2 u}{\rho} \cdot \frac{1}{h} \sum_{i=1}^{h} x_{i} \\
& =\left(\rho+m-h+\frac{2 u}{h}\right) x_{d} \\
& \leqslant[\rho+m-h+(h-2)(d-h)+u] x_{d} \tag{8}
\end{align*}
$$

Now

$$
m-h+(h-2)(d-h)+u \leqslant\binom{ d-1}{2}
$$

because the expression on the left is less than or equal to the number of entries $a_{i j}$ with $2=i<j$ or $3 \leqslant i<j \leqslant d$ which are equal to 1 . Thus

$$
(\rho+1) x_{2} \leqslant\left[\rho+\binom{d-1}{2}\right] x_{d}
$$

Fic. 1. Part of the matrix A.
and it follows from (3) and (6) that

$$
\frac{\gamma}{\gamma-(d-2)} \leqslant \frac{\rho+\binom{d-1}{2}}{\rho+1}
$$

This leads to $\gamma \geqslant d+4 /(d-4)$, but Lemma 2 then gives the contradiction $n \geqslant g(d)$. Thus $\rho<\gamma$, as asserted.
(ii): Let $n=g(d)$; then

$$
\gamma=\chi=d+\frac{4}{d-4}
$$

by Lemma 1. Suppose that G is not equal to either $G_{n, k}$ or $H_{n, k}$. If we assume that $\gamma \leqslant \rho$, then the argument of (i) leads to the conclusion that $\gamma>d+4 /(d-4)$, unless equality holds throughout. But we need $u=0$ for equality in (7), because $(\rho+1) x_{h} \geqslant(\rho+1) x_{h+1}+x_{d}$, so that $x_{h+1}<x_{h}$; and for equality in (8) we must have $h=2$. However, if $u=0$ and $h=2$ then $A=C$, a further contradiction. Thus $\rho<\gamma$.
(iii): Let $n>g(d)$, and suppose that $G \neq H_{n, k}$. Define h and m as in the proof of (i): this time we have $2 \leqslant h \leqslant d-1$ and $d \leqslant m<k+3<n$. Let c be maximal such that $a_{c, c+1}=1$. (See Figure 1.) Since $A \neq C$, we have
$3 \leqslant c \leqslant d-1$. For $3 \leqslant i \leqslant c$, let $m(i)$ be maximal such that $a_{i, m(i)}=1$. Then $\sum_{i-3}^{c}[m(i)-i]=r$, where r is the number of entries $a_{i j}$ with $3 \leqslant i<j$ which are equal to l. (We also have $r=k+3-m$.) Let v be the number of entries $a_{i j}$ with $h+1 \leqslant i<j \leqslant d$ which are equal to 0 ; then v is also the number of entries $a_{i j}$ with $2 \leqslant i \leqslant h, d+1 \leqslant j \leqslant m$ which are equal to 1 . Consider $\quad(\chi-\rho) \mathbf{x}^{T} \mathbf{z}=\mathbf{x}^{T}(C-A) \mathbf{z}=\alpha-\beta$, where $\quad \alpha=x_{2}\left(z_{m+1}\right.$ $\left.+\cdots+z_{k+3}\right)+z_{2}\left(x_{m+1}+\cdots+x_{k+3}\right)$, and β is the sum of r terms $x_{i} z_{j}+$ $x_{j} z_{i}$ for which $3 \leqslant i \leqslant c, i+1 \leqslant j \leqslant m(i)$. Since $x_{m+1}=\cdots=x_{n}$ we have $\alpha=r\left(x_{2} z_{3}+z_{2} x_{n}\right)$. Also, $\beta \leqslant r x_{2} z_{3}+z_{3} \sum_{i=3}^{c} \sum_{\substack{m=i+1 \\ m(i)}} x_{j}=r\left(x_{2}+q\right) z_{3}$, where $q=(1 / r) \sum_{i=3}^{c} \sum_{j=i+1}^{m(i)} x_{j}$. Therefore $(\chi-\rho) \mathbf{x}^{T} \mathbf{z}>r\left(x_{n} z_{2}-q z_{3}\right)$. Suppose, by way of contradiction, that $\rho \geqslant \chi$: then

$$
\begin{equation*}
\frac{q}{x_{n}} \geqslant \frac{z_{2}}{z_{3}} \tag{9}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
\frac{q}{x_{n}} \leqslant \frac{\rho}{\rho-(d-2)} \tag{10}
\end{equation*}
$$

To this end, write $q=q_{1}+q_{2}$, where

$$
q_{1}=\frac{1}{r} \sum_{i=3}^{h} \sum_{j=i+1}^{m(i)} x_{j}, \quad q_{2}=\frac{1}{r} \sum_{i=h+1}^{c} \sum_{j=i+1}^{m(i)} x_{j}
$$

(Put $q_{1}=0$ if $h=2$, and $q_{2}=0$ if $h=c$.)
For each $i \in\{3, \ldots, h\}$ we have $m(i) \geqslant d$, and therefore, since $x_{2} \geqslant \cdots$ $\geqslant x_{m}$,

$$
\frac{\sum_{j=i+1}^{m(i)} x_{j}}{m(i)-i} \leqslant \frac{\sum_{j=2}^{d} x_{j}}{d-1}=a_{1}, \quad \text { say }
$$

Thus

$$
q_{1} \leqslant \frac{a_{1}}{r} \sum_{i=3}^{h}[m(i)-i] .
$$

Now

$$
\begin{aligned}
(\rho+1) a_{1} & =\frac{1}{d-1} \sum_{j=2}^{d}(\rho+1) x_{j} \\
& =\frac{1}{d-1}\left\{(d-1) \sum_{i=1}^{d} x_{i}+\left(v \text { terms } x_{s}\right)-\left(2 v \text { terms } x_{t}\right)\right\}
\end{aligned}
$$

where each $s \geqslant d+1$ and each $t \leqslant d$. Hence

$$
\begin{aligned}
(\rho+1) a_{1} & \leqslant \frac{1}{d-1}\left\{(d-1)\left[x_{1}+(d-1) a_{1}\right]-v x_{d}\right\} \\
& \leqslant x_{1}+(d-1) a_{1} .
\end{aligned}
$$

Thus $[\rho-(d-2)] a_{1} \leqslant x_{1}$, so that

$$
\begin{equation*}
[\rho-(d-2)] q_{1} \leqslant \frac{x_{1}}{r} \sum_{i=3}^{h}[m(i)-i] \tag{11}
\end{equation*}
$$

Turning now to q_{2}, we note that

$$
x_{h+1}<\frac{\sum_{i=1}^{d} x_{i}}{\rho+1}=a_{2}, \quad \text { say }
$$

It follows that if $i \geqslant h+1$, then for each $j \in\{i+1, \ldots, m(i)\}$ we have $x_{j}<a_{2}$, so that

$$
q_{2} \leqslant \frac{a_{2}}{r} \sum_{i=h+1}^{c}[m(i)-i]
$$

From the above, we have $(\rho+1) \sum_{i=2}^{d} x_{i} \leqslant(d-1) \sum_{i=1}^{d} x_{i}$, and it follows that

$$
(\rho+1) a_{2} \leqslant x_{1}+(d-1) a_{2}
$$

Thus $[\rho-(d-2)] a_{2} \leqslant x_{1}$, so that

$$
\begin{equation*}
[\rho-(d-2)] q_{2} \leqslant \frac{x_{1}}{r} \sum_{i=h+1}^{c}[m(i)-i] \tag{12}
\end{equation*}
$$

From (11) and (12), $[\rho-(d-2)] q \leqslant x_{1}=\rho x_{n}$, and (10) is established. From (4), (9), and (10) we obtain

$$
\frac{\chi+\binom{d-1}{2}}{\chi+1} \leqslant \frac{\rho}{\rho-(d-2)}
$$

and this leads to $\chi \leqslant d+4 /(d-4)$. Lemmas 1 and 2 then give the contradiction $n \leqslant g(d)$. Thus $\rho<\chi$.

Corollary 1. When e is of the form

$$
e=n-1+\binom{d-1}{2} \quad \text { for some } \quad d \in\{2, \ldots, n\}
$$

$\mathscr{H}(n, e)$ has a unique graph of maximal index, except in the three cases $n=60, e=69 ; n=68, e=88 ; n=80, e=85$.

Proof. When $d=2,3$, or 4 the result is known from [2], and when $d=n$ it is trivial. When $d \in\{5, \ldots, n-1\}$, it follows from the theorem that there is a unique graph of maximal index unless $n=g(d)$, and for $g(d)$ to be an integer we need $d=5,6$, or 8 .

Corollary 2. Let $e=n+k$, where

$$
k=\binom{d-1}{2}-1 \quad \text { for some } \quad d \in\{2, \ldots, n\}
$$

If (i) $n<60$ or (ii) $e \geqslant 2 n-47$, then $G_{n, k}$ is the unique graph in $\mathscr{H}(n, e)$ of maximal index.

Proof. When $d=2,3$, or 4, the result is known from [2], without the need for either of the conditions (i) and (ii); and when $d=n$ it is trivial. When $d \in\{5, \ldots, n-1\}$ we have to show that if (i) or (ii) applies then
$n>g(d)$. It is easily checked that the minimum value of $g(d)$ for integers $d \geqslant 5$ is $g(6)=60$, so that (i) is immediate. For (ii), note that if $e \geqslant 2 n-47$ then $n \leqslant \frac{1}{2} d(d-3)+47$, so

$$
g(d)-n \geqslant 4(d-10)+\frac{32}{d-4}+\frac{16}{(d-4)^{2}}>0 \quad \text { for all } \quad d \geqslant 5
$$

Remark. The constant 47 in Corollary 2(ii) cannot be improved, because when $n=62$ and $e=76$ we have $e=2 n-48$ and $H_{62,14}$ has maximal index. The coefficient 2 is also best possible, in the sense that if $\lambda<2$ then there exist values of n and e of the required form, with $e>\lambda n$ and such that $H_{n, k}$ has maximal index in $\mathscr{H}(n, e)$. This is because if $n=g(d)$ then

$$
\frac{e}{n}=1+\frac{\frac{1}{2} d(d-3)}{g(d)} \rightarrow 2 \quad \text { as } \quad d \rightarrow \infty
$$

We can obtain a more precise expression of the relation between e and n at the "transition state" by inverting the condition $n=g(d)$. We obtain

$$
d=\sqrt{2 n}-\frac{5}{2}-\frac{31}{8 \sqrt{2 n}}+O\left(\frac{1}{n}\right)
$$

so that

$$
e=2 n-4 \sqrt{2 n}+3+O\left(\frac{1}{\sqrt{n}}\right)
$$

as $n \rightarrow \infty$ with $n=g(d)$.

4. SOME BOUNDS FOR THE INDEX

Proposition 1. Let $e=n+k$, where

$$
k=\binom{d-1}{2}-1 \quad \text { for some } \quad d \in\{5, \ldots, n-1\}
$$

and write

$$
b_{1}(n, d)=\sqrt{n+\frac{1}{2} d^{2}-\frac{5}{2} d+1}, \quad b_{2}(n, d)=\sqrt{n+d^{2}-3 d+1}
$$

Then
(i) $\max \left(d-1, b_{1}(n, d)\right) \leqslant \rho\left(G_{n, k}\right) \leqslant \min \left(d+\frac{4}{d-4}, b_{2}(n, d)\right)$ if $n \leqslant$ $g(d)$,
(ii) $\left.\max \left(d+\frac{4}{d-4}\right), \sqrt{n-1}\right) \leqslant \rho\left(G_{n, k}\right) \leqslant \rho\left(H_{n, k}\right) \leqslant b_{1}(n, d)$ if $n \geqslant g(d)$.

Proof. For simplicity we write $b_{1}=b_{1}(n, d), b_{2}=b_{2}(n, d)$, and we denote $\rho\left(G_{n \cdot k}\right), \rho\left(H_{n, k}\right)$ by γ, χ as before. The only inequalities requiring comment are
(i) $b_{1} \leqslant \gamma \leqslant b_{2}$ when $n \leqslant g(d)$,
(ii) $\chi \leqslant b_{1}$ when $n \geqslant g(d)$.

For (i), recall that γ is the largest zero of

$$
\begin{equation*}
f(t)=t^{3}-(d-2) t^{2}-(n-1) t+(d-2)(n-d) \tag{13}
\end{equation*}
$$

Suppose that $n \leqslant g(d)$. This implies that $b_{1} \leqslant d+4 /(d-4)$, and it is easily verified that

$$
f\left(b_{1}\right)=\frac{1}{2}(d-1)(d-4)\left[b_{1}-\left(d+\frac{4}{d-4}\right)\right] \leqslant 0
$$

Thus $\gamma \geqslant b_{1}$ [with equality when $n=g(d)$]. To see that $\gamma \leqslant b_{2}$, note that

$$
b_{2}=\sqrt{(d-1)^{2}+(n-d)} \geqslant d-1
$$

so $f\left(b_{2}\right)=(d-1)(d-2)\left[b_{2}-(d-1)\right] \geqslant 0$. It may be checked that $f^{\prime}\left(b_{2}\right)>0$ and $f^{\prime \prime}(t) \geqslant 0$ for all $t \geqslant b_{2}$, so that $f(t) \geqslant 0$ for all $t \geqslant b_{2}$. It follows that $\gamma \leqslant b_{2}$.

For (ii), note that χ is the largest eigenvalue of the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & k+1 & n-k-3 \\
1 & 0 & k+1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] .
$$

Thus χ is the largest zero of $h(t)$, where

$$
\begin{equation*}
h(t)=t^{4}-(n+k) t^{2}-2(k+1) t+(k+1)(n-k-3) . \tag{14}
\end{equation*}
$$

Suppose that $n \geqslant g(d)$: this gives $b_{1} \geqslant d+4 /(d-4)$. Routine calculations show that

$$
h\left(b_{1}\right)=\frac{1}{2}(d-1)(d-4)\left[b_{1}-\left(d+\frac{4}{d-4}\right)\right]\left(b_{1}+d-2\right) \geqslant 0
$$

and that $h^{\prime}\left(b_{1}\right)>0, h^{\prime \prime}(t)>0$ for all $t \geqslant b_{1}$. Thus $\chi \leqslant b_{1}$ [with equality when $n=g(d)]$.

Note that if

$$
\binom{d-1}{2}+3 \leqslant n \leqslant g(d)
$$

then $H_{n, k}$ is defined, and we may replace (i) by
($\left.\mathrm{i}^{\prime}\right) \quad \max \left(d-1, b_{1}(n, d)\right) \leqslant \rho\left(H_{n, k}\right) \leqslant \rho\left(G_{n, k}\right)$

$$
\leqslant \min \left(d+\frac{4}{d-4}, b_{2}(n, d)\right)
$$

because we then have $h\left(b_{1}\right) \leqslant 0$, and therefore $\chi \geqslant b_{1}$.
From Proposition 1 and the theorem we obtain

Proposition 2. Let $e=n+k$, where

$$
k=\binom{d-1}{2}-1 \quad \text { for some } \quad d \in\{5, \ldots, n-1\}
$$

and let G be any graph in $\mathscr{H}(n, e)$. Then

$$
\rho(G) \leqslant \begin{cases}\min \left(d+\frac{4}{d-4}, b_{2}(n, d)\right) & \text { if } n \leqslant g(d) \\ b_{1}(n, d) & \text { if } n>g(d)\end{cases}
$$

Concluding remarks.

1. Since $b_{1}(n, d)<b_{2}(n, d)=\sqrt{2 e-n+1}$, we deduce that $\rho(G) \leqslant$ $\sqrt{2 e-n+1}$ for all graphs in $\mathscr{H}(n, e)$, if e is of the given form. This bound has been shown to be valid for arbitrary e and n by Yuan [10], using a quite different method. The bound in Proposition 2 represents an improvement on $\sqrt{2 e-n+1}$ whenever

$$
n>3 d+7+\frac{32}{d-4}+\frac{16}{(d-4)^{2}}
$$

because $d+4 /(d-4)<b_{2}(n, d)$ for such n.
2. When $d(>4)$ is fixed and

$$
k=\binom{d-1}{2}-1
$$

the difference between the indices of $G_{n, k}$ and $H_{n, k}$ is surprisingly small for large values of n. Routine calculations using (13) and (14) lead to

$$
\begin{aligned}
\rho\left(G_{n, k}\right)= & \sqrt{n}-\frac{1}{2 \sqrt{n}}+\binom{d-1}{2} \cdot \frac{1}{n} \\
& +\frac{1}{8}\left(4 d^{3}-20 d^{2}+32 d-17\right) \cdot \frac{1}{n^{3 / 2}}+O\left(\frac{1}{n^{2}}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\rho\left(H_{n, k}\right)= & \sqrt{n}-\frac{1}{2 \sqrt{n}}+\binom{d-1}{2} \cdot \frac{1}{n} \\
& +\frac{1}{8}\left(d^{4}-6 d^{3}+15 d^{2}-18 d+7\right) \cdot \frac{1}{n^{3 / 2}}+O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

Thus, for fixed $d>4$,
$\rho\left(H_{n, k}\right)-\rho\left(G_{n, k}\right) \sim \frac{1}{8}(d-1)(d-2)(d-3)(d-4) \cdot \frac{1}{n^{3 / 2}} \quad$ as $\quad n \rightarrow \infty$.
3. When

$$
k=\binom{d-1}{2}-1
$$

for a fixed $d>4$, and n is sufficiently large, we have $\rho(G) \leqslant \sqrt{n}$ for all G in $\mathscr{H}(n, n+k)$. How large must n be? It is straightforward to deduce from (14) that $\rho\left(H_{n, k}\right) \leqslant \sqrt{n}$ if and only if $n \geqslant N(d)$, where

$$
N(d)=\left[\frac{1}{2}(d-1)(d-2)+\sqrt{\frac{1}{2}(d-1)(d-2)\left(d^{2}-3 d+4\right)}\right]^{2}
$$

Thus $\rho(G) \leqslant \sqrt{n}$ whenever $n \geqslant N(d)$, and therefore whenever $n \geqslant c d^{4}$, where $c=(3+2 \sqrt{2}) / 4 \approx 1.457$.

REFERENCES

1 R. A. Brualdi and A. J. Hoffman, On the spectral radius of $(0,1)$ matrices, Linear Algebra Appl. 65:133-146 (1985).
2 R. A. Brualdi and E. S. Solheid, On the spectral radius of connected graphs, Publ. Inst. Math. (Beograd) 39(53):45-54 (1986).
3 L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21:63-77 (1957).
4 D. Cvetković and P. Rowlinson, On connected graphs with maximal index, Publ. Inst. Math. (Beograd) 44(58):29-34 (1988).
5 S. Friedland, The maximal eigenvalue of 0-1 matrices with prescribed number of ones, Linear Algebra Appl. 69:33-69 (1985).
6 S. Friedland, Bounds on the spectral radius of graphs with e edges, Linear Algebra Appl. 101:81-86 (1988).
7 F. K. Gantmacher, The Theory of Matrices, Vol. II, Chelsea, New York, 1959.
8 L. Lovász and J. Pelikán, On the eigenvalues of trees, Period. Math. Hungar. 3:175-182 (1973).
9 P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl. 110:43-53 (1988).
10 H . Yuan, A bound on the spectral radius of graphs, Linear Algebra Appl. 108:135-139 (1988).

