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ABSTRACT 

Let 2f(n, e) denote the set of all connected graphs having n vertices and e 
edges. The graphs in &?(n, n + k) with maximal index are determined for k of form 

- 1 and n arbitrary. 

1. INTRODUCTION 

The graphs we consider are finite, undirected, and without loops or 
multiple edges. The index (or spectral radius) of a graph G is the largest 
eigenvalue of a (0,l) adjacency matrix A of G, and we denote it by p(G). 
Let &(n, e) be the set of all graphs with n vertices and e edges, and let 
2(n, e) be the set of all connected graphs in 9(n, e). The problem of 
finding the graphs in &‘( n, e 1 with maximal index was solved by Brualdi and 
Hoffman [l] in the case when 

e= for some d. 

Further special cases were dealt with by Friedland [5, 61, who also proved an 
asymptotic result, and the problem was solved for all remaining values of e 
by Rowlinson [9]. However, the corresponding problem for Z(n,e) has 
been solved only in certain cases. When e has its minimum value n - 1, the 
set .X(n, e) consists of all n-vertex trees, and it was shown by Lovksz and 
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PelikAn [B] that the star K,,,_ 1 has maximal index. (See also Collatz and 
Sinogowitz [3].) 

In order to discuss the other results known for A?(n, e> we follow [4] in 
writing e = n + k (k > 01 and defining graphs G,,, and H,,,. Both of these 
lie in A?(n, n + k), and both have the star Ki,,_r as a spanning subgraph. 

In G, k the k + 1 edges not forming part of the spanning star are such that 
G n.k has as large a complete subgraph as possible. To be precise, let d be 
the largest integer such that 

=zk+l, 

and denote by F,,d the graph obtained from the complete graph K, on d 
vertices by adding n - d pendant edges at one of its vertices. (Note that 
d<n and F,,, is just K,.) In the case when 

=k+l 

we define G,,, to be the graph F,, d. In all other cases we can write 
(uniquely) 

with 4<d<n-1 and l<t<d-2; 

then G,,, is defined to be the graph obtained from F,, d by joining a vertex 
of degree 1 to t vertices of degree d - 1. The graph Hi,k is defined only for 
k < n -3: it is the graph obtained from the star K,,,_ 1 by joining a vertex of 
degree 1 to k + 1 other vertices of degree 1. Note that G,,, and H,,, 
coincide if and only if k = 0 or 1. 

The graph of maximal index in A?(n, e) is known when 

because the graph of maximal index in &n, e> is then connected (see [9]); it 
is in fact G, e--n. Brualdi and Solheid [2] considered those cases in which 
e = n + k with k =G 5. They showed that, when k = 0, 1, or 2, G, k is the 
unique graph of maximal index in Z(n, n + k); whereas when k = j, 4, or 5, 
while G, k has maximal index for some small values of n, it is H, k which 
has maximal index for all sufficiently large values of n. These results were 
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extended by Cvetkovic’ and Rowlinson in [4]. They proved that, for any fixed 
k 2 6, H, k is the unique graph of maximal index for all sufficiently large n. 

These’ known results prompt two questions. For an arbitrary fixed k > 6, 
does G,,, have maximal index in Z(n, n + k) for “small” values of n? And 
are there values of n and k for which neither of G,,, and H,,, has maximal 
index? In Section 3 of this paper we provide precise answers to these 

questions whenever k + 1 is equal to 
d-l 

( 1 
2 for some d > 4. This case is 

analogous to the basic case e = d 
( 1 

for &(n, e) considered by Brualdi and 

Hoffman, as can be seen by consi?lering the adjacency matrices involved. A 
solution to the maximal index problem in this case is a natural first step 
towards understanding the general situation. We show that there is a 
“transition value” g(d) for n: if n Q g(d) then Gn,k has maximal index, 
while if n > g(d) then H,,, has maximal index. No graph other than G,,, or 
H has maximal index for any value of n. In Section 4 we derive some 
b&ds for the index of a graph in X(n, n + k). 

2. SOME PRELIMINARY RESULTS 

As in [l], let 9(n, e> denote the set of all adjacency matrices of graphs 
with TV vertices and e edges, and let 9*(n, e> be the subset of 9(n, e) 
consisting of those matrices A = (aij> satisfying the condition 

if i<j and aij=l then ~,,~=l whenever h<k<jandh,<i. 

Following [9], we refer to a matrix in .-f*(n, e) as a stepwise matrix. Brualdi 
and Solheid [2] show that a graph in X(n, e> with maximal index has an 
adjacency matrix A = (aij) E 9*(n, e); it follows that ula = * * . = a,, = 1. 
From the theory of irreducible nonnegative matrices [7] we know that there 
exists a unique positive unit vector x such that Ax = px, where p is the 
spectral radius of A. We shall refer to this vector x as the principal 

eigenuector of A. It is easily seen that if x =(x1, . . . , x,jT then xi > x2 > . . . 
> X~ [9, Lemma 11. 

Our standing assumption will be that e = n + k where 

for some d Q n. We may assume in fact that 4 < d < n, because the cases 
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d = 2, 3, and 4 have been dealt with in [2], and the case d = n is trivial. 

is to be interpreted as zero, so that e = n - 1.) Under 

graph G, k discussed in the introduction has a 
stepwise adjacency matrix B = (bij) ‘given by 

brj=l (2<j<n), bij=l (zgi<j<d), bij=O (i.2, j>d). 

Write y = p(G,,,), and let y = (yl,. . . , yJT be the principal eigenvector of 
B. Note that ys = . . - = yd and yd+r = . . * = y,. The following equations 

hold: 

(r+l)y,=y,+(d-l)y,+(n-d)y,, 

(y+l)yz=yl+W-Oyz~ (1) 

YY, = Yl. 

If k < n - 3, the graph H,,, has a stepwise adjacency matrix C = (cij) 

satisfying 

crj=l (2gj<n), csj=l (3<j,<k+3), 

c,~=o (j>k+3), cij=o (3<i<j). 

Write x=&f,,,), and let z=(z, ,..., a,)r be the principal eigenvector 
of C. Then zs = . * * = z~+~ and z~+~ = . . . = z,, and we have 

(X+l)z,=z,+z,+(k+1)z3+(n-k-3)2,, 

(X+l)z,=z,+z,+(k+l)z,, 

X.2, = Zr + zz, 

x.2, = 21. 

LEMMA 1. Let 

(2) 

d>4 and k= -l<n-3. 
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Then one of the following holds: 

4 
(i) p(H& < p(G& < d + -. 

d-f 

(ii) p(H,,)=p(G,,)=d+-. 
d-4’ 

4 
(iii) p(H,,)>p(G,,)>d+- 

d-4’ 

Proof. Write y = p(G,,,), x = P(H,,~). We follow Rowlinson [9] in 
considering yT(B - C)z = (y - x)y’ z. The matrix B - C has 2r nonzero 
entries above the principal diagonal, where 

r= d-2 ( 1 2 ’ 

and yr(R - C)Z = (Y - p, say, where (Y is the sum of r terms of the form 
yizj + yjzi with 3 Q i < j < d, and p = ya(zd+i + *. . + IZ~+~)+ z~(Y~+~ 
+ . - * + yk+J. Thus (Y = 2rya.2, and p = r(yazs + y,z2X so that (y - x)yTz 
= r(yaza - y,z,). Suppose that x < y. Then, since yTz > 0, we have yz /y, 
> z2 /z3. It follows from (11 that 

Y2 Y 
-= 
Y, y-(d-2) ’ 

and from (2) that 

22 
x+ d-1 

( ) 2 -= 
z3 x+1 

Therefore 

d-2 

y-(d-2) > 

(d;l)-l > (d;l)-l 
x+1 r+l ’ 

(3) 

(4) 

which leads to 

4 
y<d+- 

d-4’ 
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so that (i) holds. The assumptions x = y, x > y similarly yield (ii), (iii) 
respectively. n 

We can determine which of these three possibilities holds, for given n 
and d, by comparing p(G,,,) with d +4/(d -4). This is done in Lemma 2, 
which involves the function g defined by 

32 
g(d)=+d(d+5)+7+- 

16 

d-4 + (d-4)’ 
(d>4). (5) 

LEMMA 2. Let 

Then 

. 

proof. From (l), y = P(G,,~) is the largest eigenvahre of the matrix 

[ 

0 d-l n-d 
ld-2 0, 
1 0 0 1 

and is therefore the largest zero of 

f(t)=t3-(d-2)t2-(n-l)t+(d-2)(n-d). 

It may be verified that 

so that 

W+-j-$ if n>g(d). 
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The results for n < g(d) also follow if we verify that we then have f(t) > 0 
whenever t > d + J/Cd - 4). For this it is enough to note that 

f’(d+-&)=d’+4d+li+&+ cd4_R4)” -n>o, 

while f”(t) = 6t - 2( d - 2) > 0 for all t > d + 4/(d - 4). 

3. THE MAIN RESULT 

THEOREM. L.et 

4<d<n and k= dil -1, 
( 1 

and let G be a graph of maximal index in S#?(n, n + k). Then 

(iI G = G,,, ifn < g(d), 
(ii) G = G, k M H,,,, and p(G,,,) = P(H,,~), if n = g(d), 
(iii) G = Hi,k if n > g(d), 

where g(d) is defined by (5). 

Proof. Note first that if n > g(d) then certainly k < n -3, so H,,, is 
defined and Lemma 1 may be applied. By virtue of the result of Brualdi and 
Solheid mentioned earlier, we know that G has a stepwise adjacency matrix 
A. Write p = p(G), and let x = (xi,. . . , xJT be the principal eigenvector of 
A. Recall that x1 > x2 > * * * > x,, > 0. As in Section 2, let G, k and H, k 
have stepwise adjacency matrices B, C respectively, with corresponding 
principal eigenvectors y, z, and write y = p(G,,,), x = P(H,,~). 

6): Let n < g(d) and suppose that G it Gn,k: we shall prove that p(G) < 
p(G, k). Suppose that the matrix B - A has 2r nonzero entries above the 
prindipal diagonal. Then (y - p)xry = xT(B - A)y = a! - p, where (Y is the 
sum of r terms xi yj + rj yi for which 3 Q i < j Q d, and p is the sum of r 
such terms for which 2 Q i < j and j > d + 1. Thus cy B r(xd_Iy2 + xdy2) 2 

2md!/‘2> and P Q r&Y,, + xd+ly2 1 Q r(x2yn + xdy2), so that (y - pvy > 

r(xdY2 - x2Y,). 
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Suppose, by way of contradiction, that y < p: then 

x2 Y2 
---a--. 

Xd Y” 

Let h be maximal such that uhd = 1, and let m be maximal such that 
a2,,, = 1. (See Figure 1.) Since A # B, we have 2 < h < d -2 and d + 1~ m 
<n. Let2u be the number ofentries aij with h+l<i<d, h+l<j<d 
which are equal to 1. Then 

h m 1 In 
(p‘t_l)X2= CXi+ C xi=pxd+- C P'i 

i=l i=h+l P i=h+l 

(m-h) &+2UThfl 
i=l 

2u 
< (p + 77l - h)X, + -x,, 

P 
(7) 

h 

<(p+m-h)xd+fi*I xxi 
P hi=1 

<[p+m-h+(h-2)(d-h)+u]xd. (8) 

Now 

m-h+(h-2)(d-h)+u< dil I 
( 1 

because the expression on the left is less than or equal to the number of 
entries aij with 2 = i < j or 3 < i < j < d which are equal to 1. Thus 

(P+l)x,~ P+ 
[ (dil)]QT 
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(h) Cc) Cd) 
Oil... 1 ll.,. 11 .” 1 

0 1’ 1 11 “. 1 1 ‘.’ 1 
. . 

. . . . . 
. . . . 

. . . 

(h) 0 Il... 11 “’ 1 
01 “’ 11 0 
lo... 11 0 

*. 

Cc) il ..: 0 i 0 
11 ‘.’ 1 oo... 0 

oo... 0 
* 

Cd) 00 . . . 0 00 ..: 0 
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(ml (n) 
1 ,.. 1 1 ‘.. 1 
1 . . . 1 0 .‘. 0 

* 

Frc. 1. Part of the matrix A. 

and it follows from (3) and (6) that 

Y 
p-t d-1 

y-(d-2) Q 
( ) 2 

p-t1 . 

This leads to y > d + 4/(d - 4), but Lemma 2 then gives the contradic- 
tion n > g(d). Thus p < y, as asserted. 

(ii): Let 72 = g(d); then 

ycx=d+4 
d-4 

by Lemma 1. Suppose that G is not equal to either G,,, or H,,,. If we 
assume that y < p, then the argument of (i) leads to the conclusion that 
y>d+4/(d-41, unless equality holds throughout. But we need u = 0 for 
equality in (71, because (p + 1)x, > (p + 1)x,+, + xd, so that x,,+i < xh; and 
for equality in (8) we must have h = 2. However, if u = 0 and h = 2 then 
A = C, a further contradiction. Thus p < y. 

(iii): Let n > g(d), and suppose that G # H,,,. Define h and m as in the 
proof of (i): this time we have 2 Q h Q d - 1 and d Q m < k + 3 < n. Let c 
be maximal such that a, c+ i = 1. (See Figure 1.) Since A #C, we have 
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3 < c < d - 1. For 3 < i < c, let m(i) be maximal such that u,,,,(~) = 1. Then 
C~=,[m(i)- i] = r, where r is the number of entries aij with 3 <i <j 
which are equal to 1. (We also have r = k + 3 - m.) Let u be the number of 
entries aij with h + 1~ i < j < d which are equal to 0; then v is also the 
number of entries aij with 2 < i < h, d + 1~ j =g m which are equal to 1. 

Consider (x - p)xrz = xr(C - A)z = (Y - /3, where a = x~(z,+~ 
+ . . . + zkt3)+ zJx,+, + . . . + x~+~), and p is the sum of r terms xizj + 

xj.zi for which 3 < i < c, i + 1~ j < m(i). Since x,+r = * . . = x, we have 
(Y = r(xaza + zax,). Also, /3 < r-xx2zs + z3C~J~$)+rxj = &a + q)za, where 
4 = (l/r)C;+Cm(i) J=i+lxj. Therefore (x - p)xTz > r(x,zz - 42,). Suppose, by 
way of contradiction, that p > x: then 

4 22 
-_k--. 
xl2 23 

We will show that 

Q P 
-=s 
X” p-(d-2)’ 

(9) 

(10) 

To this end, write q = q1 + q2, where 

(Put q1 = 0 if h = 2, and q2 = 0 if h = c.) 

For each i E {3,. . . , h) we have m(i) >, d, and therefore, since x2 > . . . 

a x,n, 

Cy2;)+lrj c$z”j 
m(i) - i 

Gd_l=a,, say. 

Thus 

ql<: ,i [m(i)-i]. 
1=3 
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Now 

145 

(P+l)a,= & .$ (P+llxj 
J-2 

=-&((d-1) cxi+(v terms x,)-(20 terms x,) , 
i=l i 

where each s z d + 1 and each t .< d. Hence 

(P+h+ (Cd-l)[x,+(d-lb,] -d 

<r,+(d-l)a,. 

Thus [p-cd -2)lu, Q x1, so that 

[p-(d-2)]ql+ [m(i)-i]. 
t-3 

(11) 

Turning now to ql, we note that 

xh+l < 

Ill:= lx{ 
-=a 

p+l 2’ 
say. 

It follows that if i > h + 1, then for each j E (i + 1,. . . , m(i)) we have X, < ~2, 
so that 

u2 i [m(i)-i]. 92 Q - 
r i=h+l 

From the above, we have b + l)C~~,,xi d Cd - l)Cf’=,xi, and it follows that 
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Thus [p -(d -2>la, < x1, so that 

[p-(d-2)]q2S r i~~+~w~l. (12) 

From (11) and (12), [p -(d -2)]9 < x1 = pr,, and (10) is established. From 
(4), (9), and (10) we obtain 

x+ d-1 ( 1 2 P 

x+1 
< 

p-(d-2) ’ 

and this leads to ,y < d + 4/(d - 4). L emmas 1 and 2 then give the contradic- 

tion n < g(d). Thus p < ,y. W 

COROLLARY 1. When e is of the jbrm 

e=n-l+ forsome d E{2,...,n}, 

Z(n, e) has a unique graph of maximal index, except in the three cases 
n = 60, e = 69; n = 68, e = 88; n = 80, e = 85. 

Proof. When d = 2, 3, or 4 the result is known from [2], and when 
d = n it is trivial. When d E {5,. . . , n -l}, it follows from the theorem that 
there is a unique graph of maximal index unless n = g(d), and for g(d) to be 
an integer we need d = 5, 6, or 8. n 

COROLLARY 2. L_ete=n+k, where 

-1 forsome dE(2,...,n). 

Zf (i) n < 60 or (ii) e > 2n - 47, then G,,, is the unique graph in %(n, e> of 

maximal index. 

Proof. When d = 2, 3, or 4, the result is known from [2], without the 
need for either of the conditions (i) and (ii); and when d = n it is trivial. 
When d E (5,. . . , n - 1) we have to show that if (i) or (ii) applies then 
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n > g(d). It is easily checked that the minimum value of g(d) for integers 
d > 5 is g(6) = 60, so that (i) is immediate. For (ii), note that if e > 2n - 47 
then n < $(d - 3) + 47, so 

32 16 
g(d)-na4(d-10)+- 

d -4 + (d-4)’ 
>o forall d>5. n 

REMARK. The constant 47 in Corollary 2(ii) cannot he improved, be- 
cause when n = 62 and e = 76 we have e = 2 n - 48 and He2, 14 has maximal 
index. The coefficient 2 is also best possible, in the sense that if A < 2 then 
there exist values of n and e of the required form, with e > An and such that 
H n,k has maximal index in 2Y(n, e). This is because if n = g(d) then 

e 
-=1+ 

Md-3) ~2 
as d-w. 

n g(d) 

We can obtain a more precise expression of the relation between e and n 

at the “transition state” by inverting the condition n = g(d). We obtain 

so that 

e=2n-4J2n+3+0 2_ i I 6 

as n -+m with n = g(d). 

4. SOME BOUNDS FOR THE INDEX 

PROPOSITION 1. Let e = n + k. where 

-1 fwsome dE(5 ,...,n-1}, 
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and write 

b,(n,d) = n++d’-;d+l, b,(n,d)= n+d’-3d+l. 

Then 

(i) max(d-l,bi(n,d))<p(G,,k)<min d+&,b,(n,d) $ n< 

g(d), 
i i 

(ii) max(d+A), ml < p(G,,,) < p(H,,,) < b,(n, d) $n > g(d). 

Proof. For simplicity we write b, = b,(n,d), b, = b,(n,d), and we 
denote p(G,.,), p( Hn,k) by y, x as before. The only inequalities requiring 
comment are 

61 b, < y < b, when n < g(d), 
(ii) ,y<b, when nag(d). 
For (i), recall that y is the largest zero of 

f(t)=t3-(d-2)t2-(n-l)t+(d-2)(n-d). (13) 

Suppose that n < g(d). This implies that b, < d + J/Cd - 41, and it is easily 

verified that 

f(b,)=i(d-l)(d-l)[b,(d+&)]<O. 

Thus y > b, [with equality when n = g(d)]. To see that y < b,, note that 

b2=J(d-l)2+(n-d) ad-l, 

sof(b,)=(d-l)(d -2)[b, -(d-l)]>O. It may bechecked that f’(b,)>O 
and f”(t) >, 0 for all t 2 b,, so that f(t) > 0 for all t >/ b,. It follows that 

y <b,. 
For (ii), note that x is the largest eigenvalue of the matrix 

0 1 k+l n-k-3 

1 0 k+l 0 
11 0 0 . 
10 0 0 1 
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Thus x is the largest zero of h(t), where 

149 

h(t)=t4-(n+k)+2(k+l)t+(k+l)(n-k-3). (14) 

Suppose that n > g(d): this g ives b, z d + 4/(d - 4). Routine calculations 
show that 

h(b,)=$(d-l)(d-l)[b,-(d+&)](b,+d-2)>0, 

and that h’(b,) > 0, h”(t) > 0 for all t > b,. Thus x < b, [with equality when 
n = g(d)]. m 

Note that if 

( 1 d;l +s<n<g(d) 

then H, k , is defined, and we may replace (i) by 

(i’) max(d-l,b,(n,d))~p(H”,k)gP(G,~r,) 

d+&,b,(n,d) 

because we then have h(b,) Q 0, and therefore x > b,. 

From Proposition 1 and the theorem we obtain 

PROPOSITION 2. Let e = n + k, where 

-1 for-some de{5 ,...,a-1}, 

and let G be any graph in Z?(n, e). Then 

min d+ 
i 

b,(n,d) 
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CONCLUDING REMARKS. 

1. Since b,(n,d) < b,(n, d) = \lze-n+l, we deduce that p(G) f 
dm for all graphs in Z(n, e), if e is of the given form. This bound 
has been shown to be valid for arbitrary e and n by Yuan [lo], using a quite 
different method. The bound in Proposition 2 represents an improvement on 
d2e - n + 1 whenever 

32 16 
n>3d+7+- 

d-4 + (d-4)2’ 

because d + 4/(d - 4) < b,(n, d) for such n. 
2. When d ( > 4) is fixed and 

the difference between the indices of G, k and H, k is surprisingly small for 
large values of n. Routine calculations using (13) and (14) lead to 

+;(4d3-20d2+32d-Ii).& 

and 

~(H~,~)=&-&+jdpl)$ 

+t(d’-6d”+15d2-1Bd+7)--& 
1 

+o ,2 . 
i 1 

Thus, for fixed d > 4, 

p(H,,k) - t&b) -i(d-l)(d-2)(d-3)(d-4)*--$ as 12 +w. 
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3. When 

k= d-1 -1 ( 1 2 

for a fixed d > 4, and n is sufficiently large, we have p(G) < 6 for all 
A?(n,n + k). How large must n be? It is straightforward to deduce 

(14) that p(H,,k) Q 6 if and only if n > N(d), where 

N(d) = [;(d-1)(&2)+ &(rl-l)(d-2)(d”-3d+4)]P. 

151 

G in 

Thus p(G) Q \r n whenever n > N(d), and therefore whenever n > cd4, 
where c = (3 +2&j/4 = 1.457. 
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