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The ability of human neutrophil elastase and cathepsin G to activate matrix metalloproteinase 3 (MMP-3 = stromelysin)

and MMP-2 (‘gelatinase’) purified from human rheumatoid synovial fibroblasts in culture was examined. The zymogen

of MMP-3 (proMMP-3) was activated to full activity with elastase and cathepsin G by limited proteolysis of the molecule

into two active forms of M, ~ 45000 and M,~ 25000. In contrast, proMMP-2 was not activated at all by these neutrophil

serine proteinases, although it was degraded into small fragments. These data suggest that neutrophil elastase and cath-

epsin G may play an important role in the activation of proMMP-3 in vivo in various inflammatory conditions, but
proMMP-2 may be activated in different ways.
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1. INTRODUCTION

Rheumatoid synovial fibroblasts in culture
secrete three distinct matrix metalloproteinases
(MMPs): MMP-1 corresponds to collagenase (EC
3.4.24.7) [1], MMP-2 to ‘gelatinase’ and type IV
collagenase [2—5] and MMP-3 to stromelysin
[6—8]. Collagenase digests type I, II, I1I and X [9]
collagens. MMP-2 is thought to be involved in the
degradation of collagen by digesting gelatin deriv-
ed from collagen molecules cleaved by the action
of collagenase [2], although the ability of the en-
zyme to digest type IV and type V collagens has
been pointed out [4,5]. MMP-3 has a broad range
of activities to extracellular macromolecules; it
degrades proteoglycans, type 1V collagen, laminin,
fibronectin and gelatin, and removes N-terminal
propeptides of type I procollagen [6—8]. We have
recently demonstrated that MMP-3 also digests
type 1X collagen which has an important role in
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maintaining the structural integrity of cartilage
[10]. The synthesis and secretion of the proteinase
by synovial lining cells in rheumatoid synovium
have been shown by immunohistochemical studies
[11].

MMP-3 and MMP-2 as well as collagenase are,
however, secreted in inactive proenzymes
{proMMPs) which are then activated extracellular-
ly [4,5,12—14]. Thus, their activation is a key pro-
cess for them to participate in the degradation of
extracellular matrix components in vivo. We
report here that proMMP-3 is activated by human
neutrophil elastase and cathepsin G by limited pro-
teolysis, but proMMP-2 is not.

2. MATERIALS AND METHODS

2.1. Materials

ProMMP-3 was purified from the culture medium of
rheumatoid synovial cells treated with rabbit macrophage-
conditioned medium as reported [14]. ProMMP-2 was also
isolated from the above-mentioned culture medium (Qkada, Y.
et al., manuseript in preparation). Both proMMP-3 and
proMMP-2 were homogeneous according to SDS-palyacryl-
amide gel electrophoresis (SDS-PAGE). Human neutrophil
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elastase [15] and cathepsin G [16] were generous gifts from Dr
1. Travis, Department of Biochemistry, University of Georgia,
Athens, GA, USA. Diisopropyl flucrophosphate and
4-aminophenylmercuric acetate (NH;PhHgAc) were obtained
from Sigma.

2.2. Activation of proMMP-3 and proMMP-2 by human
neutrophil elastase and cathepsin G

The activation of proMMP-3 and proMMP-2 by neutrophil
serine proteinases was investigated as fotlows: proMMP-3
(180 ng) and proMMP-2 (50 ng) in 10 . of 50 mM Tris-HCI,
pH 7.5, 0.15 M NaCl, 10 mM Ca®*, 0.02% NaN3;, 0.05% Brij
35 were reacted with an equal volume of human neutrophil
elastase (0.1, 1, 18 4g/ml) or cathepsin G (0.1, 1, 10 gzg/ml) at
37°C for 5 min—24 h. After blocking the activity of the serine
proteinases with 3.0 mM diisopropyl fluorophosphate (for
30 min at 23°C), the activities of MMP-3 and MMP-2 were
assayed by incubation for 1.5 h at 37°C using [*H}carbox-
ymethylated transferrin and ["*C]gelatin as substrates for
MMP-3 and MMP-2, respectively [8]. The activation rate of
proMMP-3 and proMMP-2 was determined in comparison with
the full activities obtained from the samples incubated before
assays with 1.5 mM NH;PhHgAc for 24 h at 37°C for
proMMP-3 and with 1.0 mM NH;PhHgAc for 10 min at 37°C
for proMMP-2.

2.3. Electrophoretic analyses of M, changes of proMMP-3 and
proMMP-2

ProMMP-3 (2.7 4g) and proMMP-2 (3.6up) were
radioiodinated according to Fraker and Speck [17]. Mixtures
containing unlabeled proMMP-3 (162 ng) and '*l-labeled
proMMP-3 (10 ng), and unlabeled proMMP-2 (50 ng) and '*1-
labeled proMMP-2 (11 ng)} were treated with human neutrophil
elastase (10 xzg/ml) or cathepsin G (10 xg/ml) for 10 min—-22 h
at 37°C. After the incubation, the proteinase activities were in-
activated using 4.5 mM diisopropyl fluorophosphate and
49 mM EDTA. Proteins in the samples were resolved by SDS-
PAGE using 10% polyacrylamide gels with reduction with
2-mercaptoethanol. Gels were dried and autoradiographed.

3. RESULTS AND DISCUSSION

Incubation of proMMP-3 with human neutro-
phil elastase at a concentration of 10 xg/ml
resulted in almost full activation in 2 h at 37°C and
the MMP-3 activity remained stable after a 24 h in-
cubation (fig.1a). At a lower concentration of
elastase (1 ug/ml), proMMP-3 was gradually ac-
tivated up to 75% of the full activity, but the en-
zyme at the concentration of 0.1 xg/ml did not
significantly activate proMMP-3 compared with a
buffer control which showed minimal spontaneous
activation (15% of full activity) after 24 h at 37°C
(fig.1a). Analyses of %°I-labeled proMMP-3 after
the reaction with neutrophil elastase (10 xg/ml)
showed that proMMP-3 of M: 57000 was pro-
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Fig.1. Activation of proMMP-3 by human neutrophil elastase.
(a) ProMMP-3 was incubated with elastase at various
concentrations (Ao, 0; a, 0.1; O, I; e, 10 zg/ml). After
inactivating the serine proteinase, the activity of MMP-3 was
assayed. The activity of MMP-3 obtained from samples
incubated with 1.5 mM NHoPhHgAc for 24 h at 37°C was
taken as 100% activity. (b) A mixture of unlabeled and '*°I-
labeled proMMP-3 was incubated with neutrophil elastase
(10 gg/ml). Samples were subjected on SDS-PAGE (10% total
acrylamide) under the reduction and the gels autoradiographed.
Lanes: 1,7, proMMP-3 incubated without enzyme for 0 and
22 h; 26, proMMP-3 treated with the enzyme for 10 min, 1,
4, 8 and 22 h, respectively. M; values (X 107%) given to the left
of the gel.

cessed to a polypeptide of M, 45000 with an in-
termediate form of M; 49000 and into a doublet of
M 25000 and 23000 (fig.1b). The lower intensity
of radioactivity of activated fragments is probably
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due to the smaller amount of '**I-labeling in these
regions.

Neutrophil cathepsin G (10 zg/ml) also ac-
tivated proMMP-3 to full activity of the enzyme,
although the time course of the activation was
rather gradual. It required a 22 h incubation at
37°C for full activity (fig.2a). At a concentration
of 1 xg/ml, only partial activation of proMMP-3
(up to 35%) was observed but no significant ac-
tivation was observed at a concentration of
0.1 #g/ml even after a 22 h incubation at 37°C
(fig.2a). SDS-polyacrylamide gel electrophoresis
showed that neutrophil cathepsin G (10 xzg/ml)
converted proMMP-3 into a polypeptide of M,
46000 and then into a major fragment of M, 26000
(fig.2b).

In contrast to the effective activation of
proMMP-3 by neutrophil elastase and cathepsin
G, proMMP-2 was not activated at all by these
neutrophil serine proteinases at any concentrations
0.1, 1 and 10xg/ml). When '**I-labeled
proMMP-2 was incubated with elastase (10 xzg/ml)
at 37°C, the zymogen of M. 74000 was degraded
into major fragments of AM; 45000, 40000 and
18000. Similar findings were made with neutrophil
cathepsin G (10 gg/ml) except that the smaller
fragments generated were of M; 43000, 24000,
19000 and 17000. .

It has been reported that the zymogens of col-
lagenase and MMP-3 are activated either by direct
limited proteolysis by endopeptidases including
trypsin, a-chymotrypsin, plasma kallikrein, plas-
min, thermolysin and cathepsin B [12—-14,18,19],
or, alternatively, by mercurial compounds such as
NH;PhHgAc that may cause certain conforma-
tional changes in the molecule [12—14]. The present
study has shown for the first time that
proMMP-3 can be activated with elastase and
cathepsin G from human neutrophils. It is clear
from our study that these serine proteinases ac-
tivate proMMP-3 by achieving its limited pro-
teolysis. The comparison of the enzymic activity
and the fragments produced by these serine pro-
teinases leads us to the conclusion that the poly-
peptides of M, ~45000 and ~25000 are responsible
for the activity. A similar finding has been ob-
tained in the case of proMMP-3 activation by
plasmin [14]. These serine proteinases activate
proMMP-3 to active forms with lower M, values by
the removal of N-terminal and C-terminal frag-
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Fig.2. Activation of proMMP-3 by human neutrophil cathepsin
G. (a) ProMMP-3 was incubated with cathepsin G at different
concentrations (A, 0; A, 0.1; 0, 1; e, 10 zg/mi). Activation
rate of proMMP-3 was measured as described in the legend to
fig.1a. (b) A mixture of unlabeled and ***I-labeled proMMP-3
was treated with neutrophil cathepsin G (10 «g/ml) and
analyzed by SDS-PAGE as described in the legend to fig.1b.
Lanes: 1, proMMP-3 incubated without enzyme for 0 h; 26,
proMMP-3 treated with the enzyme for 10 min, 1, 4, 8 and
24 h, respectively. M, values (x 107%) given to the left.

ments from the precursor, since the amino acid se-
quence thought to be involved in binding a zinc
atom is located approximately in the middle of
proMMP-3 [20].

Plasmin has been considered to be a good can-
didate as an activator of proMMP-3 or pro-
collagenase in vivo [14,18,19]. The present study,
however, indicates that neutrophil clastase and
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cathepsin G are also good activators of
proMMP-3, Tissue inhibitor of metalloproteinases
(TIMP), a specific inhibitor of MMPs, is destroyed
completely by neutrophil elastase and partially by
cathepsin G, but not by plasmin (21]. Taken
together, both elastase and cathepsin G which can
be supplied from neutrophils infiltrated in
rheumatoid joint cavity [22] may play important
roles in regulation of MMP-3 activity by both ac-
tivation of the zymogen and inactivation of TIMP.

It is of interest that proMMP-2 is not activated
with neutrophil elastase or cathepsin G. The en-
zyme is readily activated with NH,PhHgAc [4,5]
probably by changes in the molecular conforma-
tion as reported in the activation of procollagenase
and proMMP-3 [12-14]. However, the data that
serine proteinases such as trypsin [4,5] as well as
neutrophil elastase and cathepsin G reported here
cannot activate proMMP-2 suggest that different
mechanisms are involved in the activation of this
metalloproteinase. Further work is necessary to
elucidate the activation mechanisms of proMMP-2
in vivo.
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