Efficient discovery of ASCL1 regulatory sequences through transgene pooling

David M. McGaughey a, Andrew S. McCallion a,b,⁎

a McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Suite 449, Baltimore, MD 21205, USA
b Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA

© 2010 Elsevier Inc. All rights reserved.

Introduction

Cis-regulation of transcription by noncoding DNA sequence plays crucial roles in development [1–5], homeostasis [6,7], inter-species variation [8–12], and disease risk [13–19]. In recent years regulatory sequences such as enhancers have garnered much research interest and commentary [20,21] and the repertoire of published enhancers has been expanded by an increasing number of mid and large-scale transgenic analyses performed in vivo [1,22–26]. These studies have recently been complemented by efforts to integrate sequence conservation and expression data with computational motif identification and also by analyses that have implemented emerging technologies like chromatin immunoprecipitation (ChIP) based assays [27,28]. In combination these new technologies have shown significant promise in predicting tissue-dependent enhancer function on a genome-wide scale. Importantly, efforts to identify or validate predictions of regulatory sequences are in large part dependent on transgenic strategies applied in multiple vertebrate organisms and have been significantly facilitated in their application by recent improvements in technology and scale [29,30].

Mouse has for some time been considered the gold standard for transgene studies of putative regulatory sequences. However, the efficacy of mouse transgenesis in high throughput applications is blunted by cost and time constraints that cause many studies to be restricted to transgenic analyses performed in G0 embryos at a single developmental time point. Perhaps for this reason, among others, transgenesis in non-mammalian vertebrates such as zebrafish has become an increasingly popular and powerful tool in these types of studies. These organisms provide significant cost benefits and facilitate analyses by live imaging at multiple time points during development due to their external fertilization and transparent embryos. As with mice, transgenic studies in zebrafish frequently rely on analyses performed in G0 embryos, which in the case of zebrafish can be highly mosaic. While this is a rapid and powerful approach, the mosaic nature of transgene expression makes it difficult to thoroughly characterize the regulatory control of a particular sequence. Interpretation of these mosaic expression patterns relies upon the documentation and integration of overlapping data from significant numbers of independent G0 embryos for any single construct (Table S1). This yields a composite imputation of expression that is inherently incomplete and makes scaling up to greater numbers of elements all the more challenging [31].

By contrast, stable transgene transmission through the germ-line allows a complete view of the tissue and temporal specific expression pattern directed by each regulatory sequence. Its application in large-scale studies however, has been limited, likely due to the added time required to raise and screen offspring from identified transgene “founders” and the inherent increased cost and space. Taken in

⁎ Corresponding author. McKusick - Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, BRB Suite 449, Baltimore, MD 21205, USA.
E-mail addresses: davidm@jhmi.edu (D.M. McGaughey), andy@jhmi.edu (A.S. McCallion).

doi:10.1016/j.ygeno.2010.02.011
combination these issues compromise the rate at which one may comprehensively assay sequences on the increasing scale required by contemporary genomic analyses.

We wanted to assess whether a collection of putative regulatory sequences could be reliably assayed in a single experiment, in contrast to standard methods that introduce only one transgene per injection. In an effort to address these issues we set out to develop an efficient strategy that focuses on analysis post germ line transmission and pools constructs for injection. We have focused our efforts on the human ASCL1 gene, encoding the Achaete-schute homolog 1. ASCL1 is a member of the basic-helix-loop-helix (bHLH) family of transcription factors that is required for development of many neural precursors, including components of noradrenergic, serotonergic, sympathetic, parasympathetic, and enteric neuronal populations [32–37]. Mutations in ASCL1 have been associated with neuroendocrine tumors, Central Congenital Hypoventilation Syndrome (CCHS), and Parkinson’s disease [38–40]. This locus provides an ideal model for this effort for a number of reasons. One enhancer has already been identified at the mouse Ascl1 locus, and an interval encompassing the entire Ascl1 mouse locus was also shown to recapitulate much of the endogenous expression [41,42]. These previous studies define an interval in which we search for ASCL1 enhancers. Additionally, the relatively small number of highly conserved sequences flanking the ASCL1, its tightly controlled expression during early development and the well-documented expression of the ASCL1 orthologs in zebrafish and mice make it a good test case for this novel strategy [32,35].

We report the application of a novel transgenic pooling strategy in the analysis of the human ASCL1 locus. We demonstrate that this method allows for rapid validation of ASCL1 enhancers in stable transgenic zebrafish lines. The resulting transgenic composition of identified zebrafish is readily established by a PCR-based assay, simplifying the necessary analyses and interpretation. We identify five enhancers directing expression that overlaps ASCL1 and incompletely overlap one another, postulating that they may act cooperatively to yield the spectrum of regulatory control displayed by the endogenous ASCL1. In light of these data we conclude that this method can be used to efficiently analyze the regulatory potential of numerous sequences in the offspring of germ-line transmitting zebrafish and eliminates many issues related to mosaic analyses.

We, however, observe several complicating factors in these analyses and propose several additional modifications that would facilitate scaling to systematically address larger sets of sequences.

Results

Development of a pooling transgenesis strategy

Zebrafish transgenesis is an established and powerful strategy to analyze transcriptional regulatory control however, most common implementations share several limitations and bottlenecks. We, and others, most frequently inject a single amplicon into 50–200 embryos, creating mosaic transgenics. Currently, studies use either the transgene expression profile solely in the mosaic embryos or raise selected transgene-positive embryos to sexual maturity for more comprehensive reporter analysis. Although mosaic embryos can be rapidly processed, their analysis is dependent on the determination of composite signal across many embryos, leaving the interpretation of their output somewhat subjective and incomplete. When analysis of germ-line transmitted offspring is required, embryos injected with individual constructs are raised discretely from other constructs, which, in large numbers, can represent a strain on zebrafish system capacity. To increase the efficiency with which potential regulatory noncoding sequences can be evaluated we set out to determine the efficacy of assaying pools of cloned sequences, injecting multiple constructs simultaneously into zebrafish embryos.

In this pilot pooling study, illustrated in Fig. 1A, we used as our test case the human ASCL1 locus. We selected and pooled together ten amplicons, nine selected sequences proximal to the ASCL1 locus and a positive control sequence (zebrafish phox2b -11.2; [26]) previously demonstrated to direct robust expression discretely in the ventral anterior spinal cord by 48 hours post fertilization (hpf). The nine test sequences comprised the most highly conserved noncoding sequences within a 64 kb interval encompassing ASCL1, scored by 28-species Multiz alignment with PhastCons [43]. Sequences ranged in size from 2.3 kilobases (kb) (ASCL1+54.4; the names are the sequence’s distance in kb from the transcriptional start site of ASCL1) to 0.3 kb (ASCL1-1.4; Fig. 1B and Supplemental Table 2).

![Fig. 1. Schematic of pooling strategy and selected amplicons of ASCL1 locus. A, Overview of pooling strategy, B, The UCSC Genome Browser (genome.ucsc.edu) custom track (hg18) of the nine selected highly conserved amplicons are shown in green while two of the Verma-Kurvari et al. [42] orthologues are displayed in red overlayed onto the ASCL1 locus.](image-url)
Previous analysis at the mouse Ascl1 locus established several transgenic LacZ reporter mouse lines containing up to 36 kb encompassing this gene [41]. The largest transgene, J1A, directed near complete Ascl1-like expression; the J1A interval is aligned to the human ASCL1 locus (Fig. 1B) using the UCSC BLAT tool [44]. Additionally, smaller portions of the J1A transgene were subsequently assessed, demonstrating that a 1.2 kb fragment (Transgene 14) also directed tissue specific expression [42]. We generated an amplicon encompassing sequence orthologous to Transgene 14 (ASCL1-6.1) among our nine selected amplicons. All nine sequences were subcloned into the pGWCfosGFP reporter construct [45].

We injected this pooled group of DNA into greater than 1000 zebrafish embryos, screening all viable injected embryos at 24, 48, and 72 hpf. During screening, we selected ∼250 embryos displaying any mosaic GFP reporter signal to raise to sexual maturity. These zebrafish were then out-crossed to AB stocks and their offspring were screened for tissue specific expression of the GFP reporter. The patterns of reporter expression displayed by the offspring from all identified transgene-positive founder zebrafish were documented (Fig. 2 and Supplemental Fig. 1) and compared to endogenous ascl1 expression.

Expression pattern of zebrafish ascl1a and ascl1b

Zebrafish possess two orthologs of ASCL1, termed ascl1a and ascl1b. The expression patterns of ascl1a and ascl1b have already been extensively characterized [32]: ascl1a is expressed prominently in the telencephalon, diencephalon, midbrain, and hindbrain at 24 and 48 hpf, accompanied by weaker expression in the spinal cord. Additional expression can be found in the epiphysis, retina, and sympathetic chain. The expression pattern of ascl1b is similar, but expression in the spinal cord is more prominent than for ascl1a. To aid our analyses we conducted in-situ hybridization of ascl1a (because of its higher sequence identity to human ASCL1) on 24 and 48 hpf zebrafish embryos (Fig. 3).

Pooling transgenesis identifies five putative enhancers directing ASCL1 consistent central neuronal expression patterns

Of the ∼250 zebrafish we identified in our G0 screen, we out-crossed 82 of the surviving mature male G0 zebrafish with AB females; their offspring were analyzed at 24, 48, and 72 hpf for tissue specific expression of GFP. 36/82 (44%) of established crosses resulted in the identification of embryos that displayed tissue specific expression. To determine which of the putative ASCL1 enhancers could contribute to reporter expression in each transgenic line, DNA was extracted from GFP-positive G1 embryos and amplified independently using primers specific to each amplicon. These genotyping results, along with the tissues with GFP expression, are reported in Table 1. Seven of the nine human ASCL1 amplicons (-7.3, -6.1, -1.4, +3.3, +7.0, +13.2, +54.4, Table 1) and the positive control sequence (phox2b-11.2) were present in the identified G1 founders. Four of the 36 identified founders contained only the zebrafish phox2b -11.2 sequence and displayed reporter expression as previously reported [26]; thus 32 fish remained to be analyzed for ASCL1-consistent enhancer activity. All seven ASCL1 amplicons were identified in transgene-positive G1 embryos displaying reporter expression in ascl1a/b appropriate tissues, including the telencephalon, diencephalon, midbrain, and hindbrain. The majority of transgene transmitting embryos displayed reporter expression in hindbrain neuronal populations (27/32). Similarly the midbrain was marked in 26/32 and the spinal cord in 17/32, consistent with ascl1a/b and ascl1b respectively and with mammalian ASCL1 orthologs [34]. ASCL1 +3.3 was also identified in offspring from two “founder” G0 zebrafish displaying expression in the pronephric duct (Supplemental Table 2 and Supplemental Fig. 1). Although not a domain of endogenous Ascl1 expression, this may reflect a dual role for this element in the regulation of neighboring genes in addition to potentially regulating Ascl1. Indeed, the PAH gene encoding phenylalanine hydroxylase, which lies 40 kb upstream of the human ASCL1 is expressed in the pronephric duct of embryonic zebrafish [46]. Alternatively this observation may simply reflect the analysis of a sequence out of its genomic context, consistent with observations in similar transgenic enhancer studies [23,26,47–49].

Tol2 transposon mediated transgenesis yields single and multiple independent integrations within the genome of injected embryos with varying frequency [29]. G1 embryos thus harbor one or more transgenes that may contribute to the observed reporter expression and may segregate independently in subsequent generations. Of the 36 identified G0 “founders”, 16 generated embryos harboring only one transgene, 12 generated embryos harboring two transgenes, and offspring from the remaining 8 “founders” had three or more transgenes each (Supplemental Table 2). Because of the large number of transgenic zebrafish created we are able to illuminate the regulatory potential of five of the nine regulatory amplicons. The

 Fig. 2. Five ASCL1 amplicons direct tissue specific expression in embryonic zebrafish. Lateral and dorsal (inset) fluorescent images of GFP expression in 48 hpf zebrafish. All images oriented with the anterior to the left and posterior to the right. A, The -7.3 amplicon in zebrafish line 46 directs expression in the diencephalon, midbrain, and hindbrain. B, The -6.1 amplicon in zebrafish line 50 directs expression in the midbrain. C, The -1.4 amplicon in zebrafish line 39 directs expression in the diencephalon, midbrain, and spinal cord. D, The +3.3 amplicon in zebrafish line 10 directs expression in the diencephalon, midbrain, hindbrain, and spinal cord. E, The +13.2 amplicon in zebrafish line 19 directs expression in the epiphysis, midbrain, hindbrain, and spinal cord. Te, telencephalon; E, epiphysis; Di, diencephalon; Hb, hindbrain; arrowheads, rhombomeres of hindbrain; SC, spinal cord; | marking SC expression region.
proportion of embryos expressing GFP and their corresponding spatial reporter patterns for each construct (independently or in combination with others) are reported in Table 1 (ASCL1 -7.3, -6.1, -1.4, +3.3, +13.2; Fig. 3). Images of the 28 transgenic embryos not displayed in the main text are provided in Supplemental Fig. 1.

Two of the nine ASCL1-specific amplicons were not detected among transgene positive G1 embryos. This may reflect their inability or failure to direct tissue specific expression at the times evaluated and thus were not among those raised or that they do contain enhancer activity and that an insufficient number of founders were screened. To eliminate the second possibility, the two amplicons -0.4, and +19.9 were each re-injected into N200 embryos and screened independently for mosaic transgene expression at 24, 48, and 72 hpf. No tissue-specific expression was detected, suggesting that these regions do not function as enhancers in the assay. We also note that the +7.0 and +54.4 amplicons were not present alone in any GFP positive embryos; to confirm whether or not these amplicons could direct tissue specific expression these two were injected independently into N200 embryos. None of the embryos assayed between 24 and 72 hpf displayed tissue specific GFP expression, suggesting that these two do not contribute to ascl1 transcription as enhancers during early development.

Of the remaining five enhancers (ASCL1 -7.3, -6.1, -1.4, +3.3, and +13.2) all direct ASCL1 consistent expression patterns in embryonic zebrafish (Table 1). Representative images for five of the enhancers (-7.3, -6.1, -1.4, +3.3, and +13.2) are displayed in Fig. 3. One founder was identified for the -7.3 amplicon, which has expression in the diencephalon, midbrain, and hindbrain (Table 1, Supplemental Fig. 1).

Four independent founders were identified that integrated the element -6.1. In total, the four sequences directed expression across the telencephalon, diencephalon, midbrain, hindbrain, and

Table 1 Overview of expression patterns for identified founders. The ratios of founders containing a single amplicon displaying GFP expression in specific tissues over the total number of founders containing a single amplicon are reported. In parentheses are the numbers of founders containing multiple amplicons (which also include the given amplicon) showing GFP expression specific tissues over the total number of founders containing multiple amplicons.

<table>
<thead>
<tr>
<th>Amplicon</th>
<th>Telencephalon</th>
<th>Diencephalon</th>
<th>Midbrain</th>
<th>Hindbrain</th>
<th>Spinal Cord</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.3</td>
<td>0/1 (3/8)</td>
<td>1/1 (2/8)</td>
<td>1/1 (7/8)</td>
<td>1/1 (7/8)</td>
<td>0/1 (6/9)</td>
</tr>
<tr>
<td>-6.1</td>
<td>1/4 (4/7)</td>
<td>1/4 (2/7)</td>
<td>3/4 (6/7)</td>
<td>2/4 (5/7)</td>
<td>2/4 (3/7)</td>
</tr>
<tr>
<td>-1.4</td>
<td>0/2 (3/6)</td>
<td>1/2 (1/6)</td>
<td>1/2 (4/6)</td>
<td>1/2 (5/6)</td>
<td>2/2 (5/6)</td>
</tr>
<tr>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+7.0</td>
<td>(4/4)</td>
<td>(1/4)</td>
<td>(4/4)</td>
<td>(3/4)</td>
<td>(4/4)</td>
</tr>
<tr>
<td>+13.2</td>
<td>0/1 (6/9)</td>
<td>0/1 (2/9)</td>
<td>1/1 (9/9)</td>
<td>1/1 (7/9)</td>
<td>1/1 (5/9)</td>
</tr>
<tr>
<td>+19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+54.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum*</td>
<td>12/32</td>
<td>10/32</td>
<td>26/32</td>
<td>27/32</td>
<td>17/32</td>
</tr>
</tbody>
</table>

*Includes all founders except those carrying only the -11.2 amplicon (Fish 26, 56, 62, 79).
spinal cord. However, while only one of the four founders displayed expression in the telencephalon and diencephalon, two or more showed expression in the midbrain, hindbrain, and spinal cord, indicating that this sequence has stronger specificity for the latter tissues. -6.1 was designed to encompass the human ortholog of mouse Ascl1 Tg14 [42]. This transgene directed expression restricted to the diencephalon, midbrain, and spinal cord. Variants of Tg14 that mutated a putative repressor E-box (CAGTG) directed expression in a less restricted manner throughout the entire CNS [42]. Our -6.1 amplicon similarly contains this E-box repressor and is also tightly restricted to ASCL1 tissues (midbrain, hindbrain, spinal cord).

Two founders were identified containing only the ASCL1-1.4 sequence. These founders showed expression in the diencephalon, midbrain, hindbrain, and spinal cord with differing frequencies. When analyzing all founders containing -1.4, most directed expression in the midbrain, hindbrain, and spinal cord (Fig. 2). However, only 1/6 showed diencephalon-specific expression, suggesting this expression domain may not reflect endogenous control by this enhancer. By contrast founders carrying only the +3.3 element show a strong tendency to direct expression in the midbrain, hindbrain, and spinal cord, with 4/4 founders showing expression in these tissues. Only one founder showed expression in the diencephalon.

Finally, the element +13.2 has a single unique founder that directs expression in the midbrain, hindbrain, and spinal cord. It also has several founders that contain only +13.2 and phox2b-11.2, the latter is expressed generally in the ventral anterior spinal cord (Supplemental Table 2). This allows for better confidence in seeing whether +13.2 can direct expression in other tissues. The majority of embryos with multiple insertions that also contain +13.2 (8/9) display direct expression in the telencephalon, suggesting that this sequence also contains enhancers which are active in this tissue as well as confirm expression in the midbrain (9/9), hindbrain (7/9), and spinal cord (5/9).

In summary, all CNS sites of expression discovered in our 32 transgene founders overlap ASCL1 expression, suggesting they represent true endogenous ASCL1 enhancers.

In-situ hybridization reveals temporal specific expression patterns

ASCL1 expression is temporally dynamic and tightly spatially controlled within the developing nervous system. We have previously seen how enhancers at a single locus can display overlapping spatial control but discrete temporal control; thus to better determine whether these enhancers also display temporal-specific expression in developing zebrafish we completed GFP in-situ hybridization on four lines (-6.1, -1.4, +3.3, +13.2, Fig. 3). In situ hybridization of zebrafish ascl1a, tyrosine hydroxylase (th), and dopamine beta hydroxylase (dbh), were also performed to provide landmarks that overlap some sites of ASCL1 expression and would aid in annotating the sites GFP expression (Supplemental Fig. 2). th is expressed at both 24 hpf and 48 hpf in the diencephalon and locus coeruleus. dbh is expressed at 24 hpf and 48 hpf in the locus coeruleus.

We found that while -6.1 remains inactive at 24 hpf (data not shown), it directs expression specific to the midbrain and sympathetic chain at 48 hpf (Fig. 3A). Similarly, +3.3 also shows no GFP expression at 24 hpf (data not shown) but directs expression across multiple ASCL1-specific tissues at 48 hpf, including the diencephalon and hindbrain (Fig. 3C). In contrast, the elements -1.4 and +13.3 direct very strong and broad CNS expression at 24 hpf becoming more restricted at 48 hpf (Fig. 3B, D). Amplicon -1.4 directs expression in a large number of ASCL1-specific tissues, including very strong expression in the telencephalon, diencephalon, midbrain, hindbrain, and spinal cord (Fig. 3B). However, at 48 hpf, the expression is tightly restricted to the telencephalon and locus coeruleus. The element +13.3 also shows very strong expression at 24 hpf in many tissues including the telencephalon, diencephalon, midbrain, and hindbrain.

At 48 hpf the expression tapers significantly to only the epiphysis and hindbrain (Fig. 3D). Collectively these data suggest that the identified enhancers comprise ASCL1 regulatory elements with incompletely overlapping temporal and spatial control perhaps reflecting differing requirements during development.

Discussion

Transgenesis in vertebrate organisms provides a robust system in which to evaluate putative noncoding cis-regulatory sequences. However, the pace at which these animals can be created and analyzed is readily outpaced by the in silico prediction of potential regulatory elements. We set out to test a new approach that we hoped would allow more rapid and comprehensive analysis of a single locus or many loci. We report a method for pooling constructs for injection and analysis in germline transmitted zebrafish embryos. Having previously demonstrated that mammalian regulatory sequences can be reliably assayed in zebrafish [1,23,25], we chose to apply this method on the human ASCL1 locus.

We screened 82 potential transgenic founder zebrafish, identifying 32 that transmitted ASCL1-derived constructs and reporting GFP in their central nervous system in a manner consistent with the endogenous ascl1a/b orthologs. These enhancer sequences, in sum, recapitulate almost the entire ASCL1 endogenous expression pattern in the telencephalon, diencephalon, midbrain, hindbrain, sympathetic chain, and spinal cord. Control of expression in the midbrain and hindbrain predominated, suggesting that development of these neuronal populations may require especially precise control of ASCL1 expression consistent with the requirement for ascl1 in these regions, particularly in noradrenergic neurons. We also found reporter expression in non-ASCL1 specific tissues, including the heart, and the pronephric duct in a small number (5/36) of transgenic lines (Supplemental Table 2). Some of these expression domains however may reflect additional roles in the regulation of neighboring genes like PAX, which lies 40 kb upstream of ASCL1 is expressed in the pronephric duct of embryonic zebrafish or position effect of insertion [46].

In undertaking this study we tried to improve both the yield and rate of transgenic analysis in zebrafish. We compare the approaches and the time required at each step in Supplemental Table 1. The established mosaic strategies offer a rapid initial screen of regulatory control, available within days. The resulting data, however, is not comprehensive and requires the analysis of many representative embryos, thus significantly increasing documentation time in assembling a composite description of regulatory control (Supplemental Table 1). For a more comprehensive description of developmental regulatory control one must consider germline transmission-based analyses. By contrast, although not as immediate as the data generated in mosaic analyses of individual constructs (Supplemental Table 1), our approach does have several advantages, including: increased scaling potential, the ease of raising complex pools of embryos in common tanks for subsequent identification, and the non-mosaic nature of the resulting analyses. The improvement in efficiencies of scale are clear when one considers larger data sets; one may inject many more constructs and, somewhat like a finfisher, release the resulting offspring to the wild. Finally, once a line is confirmed, the non-mosaic nature of the resulting analyses, the screening time per line is much reduced.

The timing and location of the transgenic assay is critical to both the success of the experiment and the interpretation of results. Our approach has significant potential advantages over the use of mosaic analyses, which usually take more than two weeks to complete. Mosaic analyses require additional line crossings for the production of mosaic founders, and the interpretation of mosaic assays when the P element is expressed naturally. We believe that our approach can substantially improve the transgenic analysis pipeline by a factor of 4-5, and provide a rapid, high-throughput method for the characterization of regulatory sequences.
Table 1. Real comparisons between these approaches are difficult; one is trading near immediate data for a pipeline that produces more comprehensive data on a larger scale.

However, this study has also revealed an additional layer of complexity: significant numbers of zebrafish harbor two or more transgenes, occasionally complicating analysis. We believe that the robust nature of this study largely overcomes this issue though the generation of large numbers of transgene-positive founder zebrafish. We do, however, feel that in the light of the comparison of these strategies further improvement is readily attainable. One might imagine the following: First, the injection of single transgenes into 150-200 zebrafish embryos along with co-population of embryos from five or more other transgene injections for raising in single 5 liter tank would eliminate the issue of zebrafish containing multiple transgenes and reduce pressure on facility occupancy. Second, the co-population of tanks combined with the straightforward PCR/sequence-based identification of transgenes should facilitate efficient screens of selected loci to identify specific regulatory phenotypes of interest. Based on our estimates of a study of 50 constructs, the time taken in such an approach is the same as that for a similar sized pooling effort; it retains the analytical advantages of germline transmission and yet is complimented by the reduced complexity of single injection-based traditional approaches (Supplemental Table 1). One may then in theory simply screen through offspring for expression patterns of interest and sequence the contributing enhancers post-hoc. We believe that such an approach may prove to be particularly useful in the validation of large numbers of sequences identified through ChIP-Seq assays or the identification of biologically relevant regulatory sequences within intervals implicated in disease through human association studies. These and other advances will continue to expand the platform on which functional analyses of genomic datasets are predicated.

Methods

Selection and amplification of human noncoding sequence

The sequences studied were in the regions corresponding to chr12:101,869,373–101,932,015 in the human March 2006 (hg18) build. Using standard PCR conditions, the nine most highly constrained sequences as defined by PhastCons (Supplementary Table S1) were amplified off of human genomic DNA and separately subcloned into the pT2GWcfosEGFP, a Tol2-based transgenic reporter construct [23,26,45]. We, and others, have previously shown this to be a reliable screen for enhancer activity [23,45,49].

Fish Care

All zebrafish were raised, bred, and staged according to standard protocols at 28 °C [50,51].

Embryo injections and analysis

Putative regulatory elements subcloned into the pT2GWcfosEGFP reporter construct were injected into wild-type G0 AB zebrafish embryos [23,45]. Reporter expression directed by each construct was then evaluated in > 1000 live G0 mosaic embryos at 24, 48, and 72 hpf. Approximately 250 zebrafish were selected to be raised to sexual maturity. 65 males were outcrossed to AB females and the offspring were screened at 24, 48, and 72 hpf for reporter expression. Analysis of embryos was conducted using a Carl Zeiss Lunar V12 Stereo microscope with AxioVision version 4.6 software. Images captured were further cropped and levels adjusted in Adobe Photoshop CS4.

In-situ Hybridization

For the ascl1a, th, and dbh ISH, embryos were collected from matings of AB zebrafish at 24 and 48 hpf and fixed for ISH using standard protocols. For the GFP ISH, GFP positive embryos were collected from the matings of G0 males and AB females. The ascl1a riboprobe was generated by topos cloning sequence amplified with the forward primer ACAGCTTGGTTGTCATCGC and the reverse primer GGATCCATTACCCCTCACTAAGGGATGACTGCAAACGCCAGCC off zebrafish genomic into the vector pcRII-TOPO. The plasmids used to create the th and dbh riboprobes were created were acquired from, respectively, Zygogen and Steve Wilson.

Genotyping

DNA was extracted from G1 embryos using standard protocols. PCRs were done off the genomic DNA using a forward primer designed off the pT2GWcfosEGFP backbone (CAATCCTGCAGTGCTGAAAA) while the 10 reverse primers are designed off the 10 unique sequences being analyzed (Supplemental Table 3). The primers were tested by their ability to amplify off a mixture of zebrafish genomic DNA and the appropriate transgene vectors diluted down to a concentration appropriate for a single insertion.

Authors’ contributions

ASM conceived this study. DMM performed amplification and cloning of sequences, injections of zebrafish. DMM and ASM performed analysis and imaging of zebrafish embryos. DMM and ASM wrote the manuscript.

Acknowledgments

We thank Samantha Maragh for in-situ hybridization imaging assistance, Takeshi Matsui for assistance with the outcrossings, and the Johns Hopkins Zebrafish Core FInZ for fish care. This study was supported by funds from the NIH (NIGMS: R01GM071648 and NINDS: R01NS062972) to A.S.M. D.M.M. was also supported by NIH pre-doctoral training grant 5T32GM07814.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ygeno.2010.02.010.

References

