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Five canonical tastes, bitter, sweet, umami (amino acid), salty, and sour (acid), are detected by animals as
diverse as fruit flies and humans, consistent with a near-universal drive to consume fundamental nutrients
and to avoid toxins or other harmful compounds. Surprisingly, despite this strong conservation of basic taste
qualities between vertebrates and invertebrates, the receptors and signaling mechanisms that mediate taste
in each are highly divergent. The identification over the last two decades of receptors and other molecules
that mediate taste has led to stunning advances in our understanding of the basic mechanisms of transduc-
tion and coding of information by the gustatory systems of vertebrates and invertebrates. In this Review, we
discuss recent advances in taste research, mainly from the fly and mammalian systems, and we highlight
principles that are common across species, despite stark differences in receptor types.
Introduction
The sense of taste is essential for life—it tells us which prospec-

tive foods are nutritious, while warning us of those that are toxic.

Five basic tastes are recognized by humans and most other an-

imals—bitter, sweet, sour, salty, and umami (the taste of MSG).

Natural philosophers as early as Aristotle recognized that ‘‘all

organisms are nourished by the sweet,’’ or stated otherwise,

calorie-rich sugars taste good. Aristotle also recognized that

bitter taste elicits rejection, a feature he ascribed to ‘‘its heavi-

ness’’ (De Sensu et Sensibilibus, 4c). Much has been learned

about taste in the intervening time, with spectacular progress

in the last 15 years, during which time receptors for many of

the canonical tastes have been identified in a variety of verte-

brates and invertebrates (Clyne et al., 2000; Dunipace et al.,

2001; Robertson et al., 2003; Scott et al., 2001; Yarmolinsky

et al., 2009). In this Review, we compare the peripheral taste

systems of two vertebrates, mice and humans, with a model

invertebrate, the fruit fly Drosophila melanogaster.

An obvious difference between mice and humans, relative to

flies, is that mammals have a tongue and soft palate that contain

taste receptor cells (TRCs), while fruit flies distribute their taste

receptor cells, referred to as gustatory receptor neurons

(GRNs), on a variety of structures on the head, body, and legs.

Nonetheless, given the observation that these diverse organisms

detect virtually the same classes of chemicals, one might have

predicted that taste detection would bemediated through evolu-

tionarily conserved receptors. But this is not the case. In mice

and humans, bitter, sweet, and umami are detected by dedi-

cated G protein-coupled receptors (GPCRs), which presumably

allows for amplification of small sensory responses. In contrast,

the major class of taste receptors for bitter and sweet in flies

(gustatory receptors [GRs]) are unrelated to classical GPCRs

and may form ligand-activated ion channels (Sato et al., 2011).

In addition to the five canonical taste qualities, there is growing

evidence that many vertebrates and invertebrates use their gus-

tatory systems to detect the presence of other compounds that
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may include Ca2+, CO2, water, and fats (Fischler et al., 2007;

Gaillard et al., 2008; Inoshita and Tanimura, 2006; Masek and

Keene, 2013). Interestingly, because taste is tuned to ecological

niche, there is considerable variability in the repertoire of recep-

tors expressed by different animals, with some animals missing

entire classes of receptors. Adding to this complexity, in many

species, receptors originally identified as taste receptors are

found in nongustatory tissues, where they have diverse func-

tions. For example, fly GRs sense nonvolatile pheromones that

help animals select mates and guide aggression. In both flies

and mammals, taste receptors are found on internal organs

where they can sense ingested compounds and their metabo-

lites and thus guide postingestive behaviors.

Here we will survey the wide breadth of research into taste

receptors and signaling pathways using examples mainly from

the fruit fly, mice, and humans. In addition to focusing primarily

on their classical roles in taste, we describe recent studies

demonstrating roles for taste receptors in cells and tissues

external to the mouthparts.

Mammalian Taste Anatomy
In vertebrates, taste stimuli are detected by TRCs, which are

located in taste buds on the tongue and palate epithelium

(Figures 1A and 1B). At the back and sides of the tongue, taste

buds are found in dense groupings (Figure 1A; circumvallate and

foliate papillae, respectively), whereas unitary taste buds are scat-

tered across the front of the tongue and on the palate (Figure 1A;

fungiform). TRCs are compactmodified epithelial cells that extend

a process to the apical surface of the epithelium, where a taste

pore allows direct contact with chemicals in the environment.

In most species, the taste bud contains at least three morpho-

logically distinct cell types (types I, II, and III) that constitute at

least five functional classes of sensory cells, each specialized

to detect one of the five basic taste qualities (bitter, sweet,

umami, sour, and salty) (Figure 1B). Taste cells are short lived

and are precisely replenished from proliferative basal
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Figure 1. The Taste Organs in Mammals,
Such as Mice and Humans, and in Flies
(A) The rodent tongue contains taste buds that are
located in three distinct regions. Taste buds are
also found on the palate (not shown).
(B) The taste bud is composed of 50–100 modified
epithelial cells that extend a process to the taste
pore, where they come into contact with ingested
chemicals. At least five types of sensory cells
(depicted in different colors) are found in the taste
bud, corresponding to the five canonical tastes.
(C) Green circles indicate locations of external
gustatory organs distributed on an adult
Drosophila female.
(D) The Drosophila proboscis. Shown are the
labellum and three internal taste organs indicated
in blue: the labral sense organs (LSOs), the dorsal
cibarial sense organ (DCSO), and the ventral
cibarial sense organ (VCSO).
(E) Distribution of the L-, I-, and S-type sensilla on a
fly labellum.
(F) An S- or L-type sensillum containing four GRNs.
The accessory cells are not shown.
(G) ADrosophila larva. The external chemosensory
organs are located at the anterior.
(H) Anterior end of a larva. The locations of the
dorsal organ (DO), the terminal organ (TO), and the
ventral organ (VO) are indicated.
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keratinocytes (Kapsimali and Barlow, 2013). Cells conveying one

taste quality can relay information independent of cells relaying

other taste qualities, as shown by genetic inactivation of individ-

ual cell types (Chandrashekar et al., 2006). Taste cells release

numerous neurotransmitters (e.g., serotonin, etc.) and express

neurotransmitter receptors, suggesting that there is communica-

tion among cells in the taste bud thatmay shape the output of the

bud (Chaudhari and Roper, 2010).

Vertebrate taste cells do not possess an axon and instead are

innervated by pseudounipolar neurons whose cell bodies reside

in the petrosal and geniculate ganglia. Two nerves carry most of

the taste information: the chorda tympani nerve, which inner-

vates the anterior tongue, containing the fungiform papillae,

and the glossopharyngeal nerve, which innervates the posterior
Neuron
tongue and most of the palate. Neurons

from taste ganglia project to the nucleus

of the solitary tract and from there infor-

mation is relayed to the gustatory cortex

(Smith and David, 2000).

Drosophila Taste Anatomy
A remarkable feature of the taste system

in flies and many other insects is that

the taste organs are not restricted to the

head but are distributed on multiple

body parts (Figure 1C) (Stocker, 1994;

Vosshall and Stocker, 2007). In adult flies,

the closest equivalent to the mammalian

tongue is a long appendage extending

from the head, the proboscis, which is

comprised of external and internal taste

organs (Figure 1D). The external taste or-

gan consists of two labella (also referred
to as labial palps) that are fused together at the end of the pro-

boscis (Figures 1D and 1E). Internal gustatory structures line

the pharynx (Figure 1D) and serve as the final gatekeeper, allow-

ing the fly to make the final decision as to whether to expel the

food or allow it to proceed to the digestive system.

Taste sensors are also distributed on the legs and anterior

wing margins. While the function of gustatory sensors on the

legs and the labellum in sampling foods before ingestion is clear,

the role of gustatory cells on the wings remains enigmatic.

Another surprising location for taste organs is on the ovipostor,

where they can provide information as to the suitability of the

environment prior to egg laying (Stocker, 1994).

Unlike their vertebrate counterparts, fly GRNs are bona fide

bipolar neurons that extend dendrites into hair-like bristles
81, March 5, 2014 ª2014 Elsevier Inc. 985
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referred to as sensilla (Figure 1F) and project axons to the central

taste center in the subesophageal ganglion (SOG) (Falk et al.,

1976). In each labellum, there are 31 sensilla, which are sub-

grouped based on length into nearly equal numbers of long (L),

intermediate (I), and short (S) types (Figure 1E). The L- and

S-type sensilla each house four GRNs, while the I-type sensilla

contain twoGRNs. There are also�30–40 conically shaped taste

pegs that house one GRN and one mechanosensory neuron.

Each sensillum is bestowed with one mechanosensory cell and

three accessory cells: the trichogen (shaft), the tormogen

(socket), and the thecogen (sheath).

Single GRNs tend to respond to either attractive stimuli, such

as low salt or sugars or aversive compounds, including high-

salt and bitter compounds, but not to stimuli of different valence.

In general, the four different GRNs in L-type sensilla are most

sensitive to attractive stimuli and respond only weakly to aversive

stimuli (Hiroi et al., 2002). Each of the four neurons is tuned to

different stimuli; one is strongly responsive to low salt, another

is strongly responsive to sugars, a third is weakly responsive to

high salt, and the fourth is moderately responsive to water. In

contrast, the four GRNs in S-type sensilla are most sensitive to

bitter compounds and high salt and respond only weakly to low

salt andsugars. The I-typesensilla include twoGRNs,oneexcited

by a narrow group of bitter compounds and high, aversive levels

of salt (Hiroi et al., 2004;Weisset al., 2011) and theother activated

by sugars and low levels of salt that are attractive.

The taste system inDrosophila larvae includes sensilla located

on three organs in the head region (dorsal, terminal, and ventral

organs) (Figures 1G and 1H), as well as three organs in the

pharynx (dorsal, ventral, and posterior pharyngeal sense organs)

(Stocker, 1994; Vosshall and Stocker, 2007). The cell bodies

associated with the dendrites in the external organs are present

in three discrete ganglia. The dorsal organ mainly contains olfac-

tory sensilla, and both the internal and external organs may also

respond to mechanical, thermosensory, and hygrosensory input

(Liu et al., 2003b; Stocker, 2008).

Taste Coding
Theories of coding have generally been described as conforming

either to a labeled line model, in which each cell represents a

distinct taste quality and communicates essentially without inter-

ruption to the CNS, or to a distributive model, in which cells

respond in varying amounts to each taste quality, and the CNS

makes sense of the chorus of activity. This latter model appears

to hold for the olfactory system of vertebrates, where odorants

bind to a large number of olfactory receptors that are, in turn,

sensitive to a range of odorants (Buck, 1996). Odorant identity

is therefore encoded by the relative responses of sensory recep-

tor cells. Chemosensation in the nematode C. elegans is, in

contrast, a classic example of a labeled line model system (Troe-

mel et al., 1997).

Taste in flies and mammals adheres loosely to a labeled line

model of coding. In flies, single neurons can detect multiple taste

qualities, but these taste qualities, in general, have the same

valence (behavioral output). This ‘‘valence labeled line’’ model

is supported by the observation that some GRNs are activated

by sugars and low levels of fatty acids, both of which promote

feeding (Wisotsky et al., 2011), while other GRNs are activated
986 Neuron 81, March 5, 2014 ª2014 Elsevier Inc.
by bitter compounds and high concentrations of salt, which

suppress feeding (Hiroi et al., 2004). In addition, a subset of bitter

GRNs is also activated by low pH carboxylic acids, which are

feeding deterrents (Charlu et al., 2013).

The taste system of mice also uses a variant of the labeled line

model. In mice, taste receptors are, in general, segregated into

distinct populations such that bitter, sweet, sour, and low con-

centrations of salt are detected by nonoverlapping sets of cells

(Voigt et al., 2012; Yarmolinsky et al., 2009). Whether sweet

and umami are detected by dedicated and distinct set of cells

as initially thought (Hoon et al., 1999) is presently unclear (Kusu-

hara et al., 2013). Moreover, reminiscent of the valence label line

model in flies, there is recent evidence that aversively high

concentrations of salt are not detected by a separate subset of

cells but are instead detected by the populations of cells that

detect bitter and sour (Oka et al., 2013). For bitter and sweet,

there is good evidence that the cells, and not the receptors,

are linked to specific behaviors. Thus transgenic mice in which

an artificial receptor (RASSL) is expressed under the promoter

of a bitter receptor avoid the previously tasteless ligand spirado-

line, while expression of RASSL under a sweet receptor pro-

moter produces attractive behavior (Mueller et al., 2005). This

finding drives home the principle that in mammals, as in flies,

taste is relatively hard wired to behavior.

Mammalian Bitter, Sweet, and Amino Acid Taste:
Reception and Signaling
The best understood of the five tastes are bitter, sweet, and

umami—tastes that are generally evoked by organic com-

pounds. All three are mediated by specialized, taste-specific

GPCRs, which are expressed in distinct subsets of taste recep-

tor cells (Chandrashekar et al., 2006) (Figure 2A). The

identification of the taste receptors (TRs) and downstream

signaling components for each of the three tastes has precipi-

tated enormous advances in our understanding of the cell

biology, genetics, and evolution of taste.

Bitter Taste Receptors

Bitter taste has evolved to allow animals to detect toxins in the

environment that are primarily produced by plants. Conse-

quently, a large number of structurally diverse chemicals taste

bitter to humans and mice, including caffeine, cycloheximide

(a protein synthesis inhibitor), denatonium (added to rubbing

alcohol to discourage consumption), and quinine (a component

of tonic water). But not all bitter-tasting compounds are toxic,

as some plants have subverted this relationship to their advan-

tage to produce bitter-tasting compounds that are harmless—

Brussels sprouts and cocoa beans among them. Indeed, it has

been stated that starting from the knowledge that a chemical is

bitter provides no clue as to whether it is nutritious or dangerous

(Glendinning, 1994).

In vertebrates, bitter chemicals are detected by a small family

of receptors (T2Rs) that are structurally related to rhodopsin and

range in number from 3 to 49, depending on the species (Chan-

drashekar et al., 2000; Matsunami et al., 2000; Shi and Zhang,

2006). T2Rs are required for bitter taste, as a knockout of a single

bitter receptor (e.g., mT2R5) eliminates behavioral and nerve re-

sponses to receptor agonists (cycloheximide for mT2R5) at con-

centrations that evoke strong responses in wild-type animals
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Figure 2. Mouse and Fly Taste Receptors
and Transduction in the Mouse
(A) Transmembrane topology of bitter, sweet, and
umami receptors in the mouse. All are G protein-
coupled receptors. Bitter receptors (35 total in
mice) are Class A GPCRs, while sweet and umami
receptors (two each) are Class C receptors, char-
acterized by a large N-terminal domain that forms
a Venus flytrap structure. Sweet and umami re-
ceptors bind both ligands (ovals) and allosteric
modifiers (circles) that can increase potency of the
agonist.
(B) Transduction of bitter, sweet, and umami in
the vertebrate is mediated by a canonical PLC-
signaling cascade, which culminates in the open-
ing of the TRPM5 ion channel. This produces a
depolarization that may allow CALMH1 channels
to open and release ATP, which serves as a
neurotransmitter.
(C) Drosophila taste receptors that function in
bitter, sweet, amino acid (L-canavanine), glycerol,
and water detection. The minimum number of
receptors is indicated.
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(Mueller et al., 2005). In general, each bitter-responsive taste

receptor cell expresses multiple types of bitter receptors (Muel-

ler et al., 2005), such that bitter chemicals cannot be readily

distinguished by taste alone. However, not all bitter receptors

are expressed by every bitter cell (Voigt et al., 2012), leading

formally to the possibility that there are subclasses of bitter cells,

as is the case in flies (Weiss et al., 2011).

Mapping the ‘‘chemical receptive field’’ of the bitter receptors

has shown that they fall into two classes—‘‘specialists’’ that

detect one or a few bitter chemicals and ‘‘generalists’’ that

detect many (Behrens and Meyerhof, 2009). Not surprisingly, re-

ceptors that detect many ligands, such as T2R10, do so at the

expense of sensitivity. Mutations in the receptor that increase

affinity for one agonist, without exception, decrease affinity for

others (Born et al., 2013). Thus, evolution has balanced sensi-

tivity with specificity. Adding to the complexity of signaling is

the recent observation that some compounds, such as naturally

occurring sesquiterpene lactones from plants, can function as

both agonists for one set of bitter receptors and antagonists

for others. These competing actions may produce responses

to complex mixtures of foods that are not the sum of their

respective components (Brockhoff et al., 2011).

Sweet and Amino Acid Taste

In contrast tobitter taste,which is used todetect a large repertoire

of structurally diverse compounds, sweet and umami are evoked
Neuron
by a relatively small number of molecules

that signal either calorie-rich (sweet) or

protein-rich (umami) foods. Accordingly,

sweet and umami are each primarily

sensed by a single type of GPCR, a heter-

odimer of a common subunit (T1R3) and

a unique subunit, T1R2 and T1R1, for

sweet and umami, respectively (Yarmolin-

sky et al., 2009) (Figure 2A).

Sweet Receptors

Sweet taste is elicited by high concentra-

tions of sugars (100–500 mM), by artificial
sweeteners, and by a small number of sweet-tasting proteins.

This response profile is fully recapitulated in heterologous cells

by coexpression of T1R2 and T1R3, providing strong evidence

that the heterodimer constitutes the sweet receptor (Nelson

et al., 2001). Moreover, a single knockout of either T1R2 or

T1R3 eliminates all behavioral preference for artificial sweet-

eners (Damak et al., 2003; Zhao et al., 2003). However, it appears

that T1R2 is not required for the responses to high concentra-

tions of sucrose and glucose, which are retained in the T1R2

knockout. One possibility is that sensitivity to sugars is main-

tained by the T1R3 subunit, which can be activated in heterolo-

gous cells by high concentrations of sweeteners.

T1Rs are class C GPCRs, which include large N termini that

bind ligands and form structures that resemble a ‘‘Venus flytrap’’

(Figure 2A). This domain is connected to the transmembrane

segments by a cysteine-rich domain that couples ligand binding

to receptor activation. Somewhat unexpectedly, different sweet-

eners target distinct domains or different subunits of the T1R2/

T1R3 receptor. Natural sweeteners, as well as some artificial

sweeteners (e.g., aspartame) bind in the Venus flytrap domain

of T1R2. Other artificial sweeteners, such as cyclamate, and

the sweet receptor blocker lactisole target the transmembrane

segments of T1R3, while sweet proteins target the cysteine-

rich domains (Cui et al., 2006; Temussi, 2011) (Figure 2A). These

observations raise the possibility that sensory qualities of
81, March 5, 2014 ª2014 Elsevier Inc. 987
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different sweeteners might be attributed to differences in recep-

tor kinetics or even differences in downstream signaling as a

consequence of binding to different sites. The identification

of structural determinants for receptor activation has also

led to the generation of a new class of sweeteners that

target allosteric regulatory sites on the receptor (Servant et al.,

2010), in much the same way that nucleotides enhance activity

of the umami receptor (see below). These modulators have the

potential to more faithfully mimic the sensory qualities of natural

sweeteners.

The identification of sweet receptors has also provided the

tools to solve one of the mysteries of taste—the ability of miracle

fruit (Synepalum dulcificum) to change sour taste to sweet,

lemon to lemonade. At neutral pH, the active component of the

berry, the protein miraculin, binds the T1R2/T1R3 receptor with

high affinity, but it does not activate the receptor. A switch to

acid pH (4.8–6.5) causes the bound ligand to become a strong

agonist, eliciting a sweet sensation (Koizumi et al., 2011). Inter-

estingly, only humans and old world monkeys taste miraculin,

at any pH, as sweet, due to a structural determinant in the amino

terminal region of T1R2 found only in these species (Koizumi

et al., 2011).

In addition to T1R2/T1R3, it has also been proposed that

animals sense sugars and other energy-rich foods through a

mechanism similar to that used by pancreatic b cells to detect

changes in blood glucose (Yee et al., 2011). According to this

hypothesis, the metabolism of sugars by sweet cells produces

ATP, which closes ATP-sensitive K+ channels leading to

membrane depolarization (Yee et al., 2011). That there is an

element of redundancy in the system for detecting nutrients

should not be entirely surprising, given the essential nature of

sugar metabolism for animal survival.

Amino Acid and Umami Taste Receptors

Umami is the sensation elicited by glutamate, whichmakes foods

taste more ‘‘delicious’’ (for which it is named), without changing

the perceived taste. In humans, umami is only elicited by gluta-

mate, while mice are sensitive to a wider range of L-amino acids

(Yarmolinsky et al., 2009). In either animal, addition of the 50

ribonucleotides IMP or GMP potentiates the response, which

serves as a hallmark of umami taste, distinguishing it from a

more general sensing of glutamate (Yamaguchi, 1970).

T1R1/T1R3 is widely recognized as the umami receptor

because, in addition to responding to glutamate, it recapitulates

all features of the umami response, including sensitivity to 50

ribonucleotides and species differences in tuning (Yarmolinsky

et al., 2009). IMP and GMP are not agonists of the receptor but

rather bind and stabilize the receptor in the glutamate-bound

state (Zhang et al., 2008) (Figure 2A). Disruption of T1R1 elimi-

nates nucleotide enhancement of the nerve response to MSG

(Kusuhara et al., 2013; Zhao et al., 2003). But the T1R1 knockout

does not entirely eliminate taste sensitivity to glutamate, sug-

gesting that there may also be a contribution to amino acid taste

from other glutamate receptors in the tongue (Chaudhari et al.,

2000; Kusuhara et al., 2013).

Evolution of Vertebrate Taste Receptors and Individual

Differences in Taste

Much of the variability in taste across different species and

among individuals within a species can be attributed to differ-
988 Neuron 81, March 5, 2014 ª2014 Elsevier Inc.
ences in taste receptor genes. One striking example is the

well-known indifference of cats to sweet. In modern cats, the

T1R2 (sweet receptor) gene is a pseudogene, having acquired

during evolution multiple inactivating mutations (Rohács et al.,

2005). Another example is the variation within the human popu-

lation in sensitivity to phenylthiocarbamide (PTC), which evokes

either an intense bitter taste or is tasteless. PTC is detected by

the receptor T2R38, for which there are two predominate alleles,

one that generates a PTC-sensitive receptor found in individuals

who can taste PTC and the other that generates a PTC-insensi-

tive receptor found in nontasters (Kim et al., 2003). Why the non-

taster allele has been maintained is a mystery—possibly it is a

functional bitter receptor, detecting a still unknown agonist.

Comparison of receptors for bitter, sweet, and umami over a

wide range of organisms has shown that changes in receptor

function and number are not limited to a few examples but are

quite common (Shi and Zhang, 2006). In general, receptors

tend to be lost when they are not used to make dietary choices,

while an increase in receptor number (for bitter receptors) coin-

cides with an expansion in diet. For example, ‘‘pseudogeniza-

tion’’ of the sugar receptor T1R2 occurred in the evolution of

many carnivores, not just cats, including the spotted hyena

and some otters (Jiang et al., 2012). Conversely, the T1R1 sub-

unit, which is a unique component of the umami receptor, is a

pseudogene in the giant panda, which feeds exclusively on

bamboo (Zhao et al., 2010). In some animals, including the sea

lion and dolphin, all three receptors for sweet and umami taste

are pseudogenized, a consequence presumably of a feeding

pattern in which foods are swallowed whole (Jiang et al.,

2012). This variation in receptor numbers is much more dramatic

in insects, which must adapt to environments with widely diver-

gent plant fauna, and which use pheromones extensively for

modulating social behavior (see below).

Bitter, Sweet, and Umami Transduction

Bitter, sweet, and umami tastes are mediated by a common,

phosphoinositide-based, signaling pathway (Zhang et al.,

2003). In this pathway, receptors activate a taste-cell-specific

G protein that activates PLCb2, generating second messengers

IP3, DAG, and H+. IP3 acts on the IP3 receptor (IP3R3) to release

Ca2+ from intracellular stores, and Ca2+ gates the membrane

channel TRPM5 (Figure 2B). Support for this model comes

from the observations that inactivating mutations of PLCb2,

IP3R3, or TRPM5 severely diminish behavioral responses to

bitter, sweet, and umami (Damak et al., 2006; Tordoff and Ellis,

2013; Zhang et al., 2003).

A central element of the signal transduction cascade is TRPM5

(Pérez et al., 2002; Zhang et al., 2003), a member of the TRP

family ion channels (Venkatachalam and Montell, 2007).

TRPM5 channels in heterologous expression systems (Hofmann

et al., 2003; Liu and Liman, 2003; Prawitt et al., 2003) and in

native taste cells (Zhang et al., 2007) are activated by intracellular

Ca2+ and are permeable to monovalent but not divalent cations.

These biophysical properties allow the channel to transduce the

elevation of intracellular Ca2+ that results from receptor signaling

into a change in membrane potential.

How a change in membrane potential regulates transmitter

release in TRPM5-expressing cells, which lack voltage-gated

Ca2+ channels and machinery for vesicular release, is a problem



Neuron

Review
that has nagged at the taste field. ATP is a likely transmitter,

based on a number of criteria, including the taste-blind pheno-

type of a P2X2/P2X3 double knockout mouse (Finger et al.,

2005). There is pharmacological, but no genetic, evidence that

ATP is released through pannexin hemichannels (Huang et al.,

2007; Murata et al., 2010; Romanov et al., 2007). An alternative

is that ATP is released by CALMH1 (Taruno et al., 2013), an

intriguing new type of ion channel that was originally identified

as a modulator of Ca2+ signaling (Figure 2B) (Dreses-Werringloer

et al., 2008). This channel is highly enriched in TRPM5-express-

ing cells and is sufficient to mediate ATP release in heterologous

cells. Moreover, CALMH1 knockout animals have severely

diminished abilities to taste bitter, sweet, and umami (Taruno

et al., 2013). Whether CALMH1 acts alone or in combination

with pannexin channels remains to be determined.

Drosophila Bitter, Sweet, and Amino Acid Taste
Insects, such as fruit flies and mosquitoes, detect a repertoire

of taste qualities similar to humans. However, the sensation

occurs primarily through receptors that bear no sequence rela-

tionship to mammalian taste receptors. The majority of bitter

and sweet taste receptors in flies, mosquitoes, and many other

insects are members of a large protein superfamily, called

gustatory receptors, which in Drosophila contains 68 members

(Clyne et al., 2000; Dunipace et al., 2001; Robertson et al.,

2003; Scott et al., 2001). These proteins have seven transmem-

brane domains, but they share no sequence relationship to

GPCRs. Rather, they are distantly related toDrosophila olfactory

receptors (ORs), which have an opposite membrane topology

from GPCRs and form ligand-gated ion channels (Benton

et al., 2006; Sato et al., 2008; Wicher et al., 2008). Similarly, in-

sect GRs have an inverted topology relative to GPCRs (Xu

et al., 2012; Zhang et al., 2011) and may form ionotropic recep-

tors (Sato et al., 2011).

Bitter Taste through Gustatory Receptors

In flies, different sets of bitter-sensitive GRNs have distinct

sensitivities. On the basis of their responsiveness to a panel of

16 bitter compounds, the L-, I-, and S-type sensilla that decorate

the labella are classified into five groups, four of which are

sensitive to bitter chemicals (Weiss et al., 2011). Of the four,

two groups are narrowly tuned to distinct sets of bitter com-

pounds (I-a and I-b), while the other two groups respond broadly

to bitter tastants but vary in their patterns of activity (S-a and

S-b). It remains possible that using a larger panel of bitter com-

pounds, future analyses will reveal yet additional subgroups.

The spatial distribution of Grs has been studied using trans-

genic flies harboring gene reporters, which show that at least

38 Gr genes are expressed in the labellum, most of which (33)

are localized to bitter GRNs (Weiss et al., 2011). Gratifyingly,

the expression of these 33Gr genes falls into four general groups

that appear to correspond to the four functional sets of bitter

neurons. Moreover, as might be expected, the two sets of

GRNs that are broadly tuned (S-a and S-b) express many Grs,

while the two narrowly tuned sets of GRNs (I-a and I-b) express

fewerGrs. The larval taste organs in the head express aminimum

of 39 Grs (Colomb et al., 2007; Kwon et al., 2011), which are

found in the tip of the head only (15 Grs), the pharyngeal

taste organs only (11 Grs), or in both locations (13 Grs) (Kwon
et al., 2011). Most of these receptors are presumed to be bitter

receptors.

The roles of only a small handful of the bitter GRs have been

dissected genetically using gene knockouts. Nevertheless, a

few principles have emerged from the limited functional analyses

of bitter taste in the adult fly. First, the repertoire of GRs that

contribute to the detection of a bitter compound is large and

the requirement for individual subunits is complex. In a survey

of five bitter Grs, mutations in any of three impaired caffeine

sensing (Gr33a, Gr66a, and Gr93a) (Lee et al., 2009, 2010;

Moon et al., 2006, 2009), while in a screen of six Grs for roles

in sensing DEET, single mutations in any one of three disrupted

avoidance of this insect repellent (Lee et al., 2010). However, the

combination of all of the GRs that are currently known to be

required for responding to any given aversive compound is not

sufficient to confer sensitivity to the compound either in a heter-

ologous expression system or after expressing the GRs in vivo in

sugar-responsive GRNs. This points to the possibility that a large

number of receptor subunits (>3) comprise the functional bitter

or DEET receptors. Consistent with this proposal, some GRNs

in the labellum express a minimum of 28 Grs, while one of the

larval GRN classes expresses at least 17 Grs (Kwon et al.,

2011; Weiss et al., 2011).

A second general observation is that some GRs are required

for responding to large numbers of aversive chemicals and

may act as coreceptors. Gr32a, GrR33a, and Gr66a are needed

for detection of most bitter chemicals (Lee et al., 2010; Moon

et al., 2009). These three Grs, as well as two additional Grs

(Gr89a and Gr39a.a) are expressed in all bitter-responsive

GRNs. Thus, this collection of five GRs has been suggested to

be the ‘‘core-bitter GRs’’ (Weiss et al., 2011). Core-bitter GRs

might function in the bitter response as obligatory coreceptors,

analogous to ORCO in the olfactory response (Benton et al.,

2006). In larvae, GR33a and GR66a may also be core-bitter

GRs since they are the Grs that are the most widely expressed

among the larval GRNs (Kwon et al., 2011).

While some GRs contribute broadly to bitter taste detection,

other GRs are very narrowly tuned and confer ligand specificity.

Examples are Gr8a and Gr93a, which are needed for sensing

L-canavanine and caffeine, respectively, but are dispensable

for all other aversive compounds tested (Lee et al., 2009,

2012). Narrowly tuned GRs might be critical in defining the

chemical specificity of the GRs, in combination with other GRs.

Different combinations of complex sets of GR receptors may

explain how a limited number of bitter GRs confer the capacity

to respond to a vast collection of structurally diverse bitter

compounds. Thus, in contrast to vertebrate bitter detection,

which is mediated by receptors that act largely as homomultim-

ers (Kuhn et al., 2010), flies employ a much more complex strat-

egy to sample foods for bitter chemicals.

Bitter Taste, TRP Channels, and Taste Plasticity

The responsiveness of the labellum to bitter compounds is not

limited to GRs. At least three TRP channels are expressed in

the labellum and contribute to the sensation of aversive com-

pounds, most likely through mechanisms that are independent

of GRs. One of these channels, TRPA1, is expressed in a subset

of bitter GRNs in sensilla on the labellum and is required for the

generation of action potentials and behavioral avoidance to
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aristolochic acid, but not other bitter chemicals tested (Kim et al.,

2010). A contribution of TRPA1 to taste has also been suggested

in the caterpillar of the moth Manduca sexta, where electro-

physiological responses of GRNs to aristolochic acid increases

at higher temperatures (e.g., 22� versus 30�C) (Afroz et al.,

2013). The temperature dependence is consistent with the

observation that TRPA1 is both directly and indirectly activated

by changes in temperature in Drosophila and other insects

such as Anopheles gambiae (Kang et al., 2012; Kwon et al.,

2008; Viswanath et al., 2003; Wang et al., 2009; Zhong et al.,

2012). The taste responses in the moth to other chemicals that

are not mediated by TRPA1, such as sugars, salts, and quinine,

are not temperature dependent (Afroz et al., 2013).

A related TRPA channel, Painless, is also expressed in GRNs

in the labellum and is required for the behavioral avoidance to

isothiocyanates (AITC; wasabi) (Al-Anzi et al., 2006). However,

it remains unknown whether AITC-induced action potentials

are affected in painless mutants, leaving open the question of

whether Painless is a direct sensor of AITC or serves some other

function in GRNs, such as in synaptic transmission.

Another TRP channel member, TRP-Like (TRPL), is also

expressed in GRNs and is both necessary and sufficient to

confer sensitivity to camphor (Zhang et al., 2013b). TRPL

does not respond to other aversive compounds tested, making

it narrowly tuned like TRPA1. Camphor is not harmful to insects

and the aversion it elicits may be attributed to trickery on the

part of plants to avoid consumption. In turn, flies can adapt to

this formerly aversive but nontoxic food, and long-term expo-

sure to a camphor diet greatly increases the fly’s acceptance

of camphor-containing foods. This decrease in aversion to

camphor occurs through Ube3a-dependent ubiquitination of

TRPL and degradation of the channel (Zhang et al., 2013b).

After a decline in the TRPL protein in the dendrites, there is a

moderate elimination of synaptic boutons in the axonal termi-

nals of trpl GRNs in the SOG region of the brain. Thus, a

combination of these two events appears to underlie the taste

plasticity. Once the flies are returned long-term to a camphor-

free diet, the original concentration of the TRPL protein and

synaptic boutons returns, and the fly’s aversion to camphor is

restored. Thus, reversible changes in the GRNs can form the

basis through which an animal adapts to a dynamic food envi-

ronment.

Sweet Receptors

Flies are attracted to many of the same sugars as humans (Gor-

desky-Gold et al., 2008; Hiroi et al., 2002), although they respond

most robustly to disaccharides (such as sucrose and maltose)

and oligosaccharides (Dahanukar et al., 2007). The fly sweet

receptors belong to the same superfamily of receptors that

includes most of the bitter receptors, the GRs. In adult flies, a

minimum of three receptors are required for sensing all sugars

tested, except for fructose: GR5a, GR64a, and GR64f (Dahanu-

kar et al., 2001, 2007; Jiao et al., 2007, 2008; Slone et al., 2007).

These three receptors are coexpressed in the sugar-responsive

GRNs in the labellum, along with five other related GRs that

comprise the Gr-Sugar (Gr-S) clade (Dahanukar et al., 2007;

Jiao et al., 2007). It seems likely that the other members of

GR-S clade contribute to sugar sensation. However, this has

not yet been demonstrated.
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GR5a and GR64a sense structurally different sugars; GR64a

participates in the response to sucrose and maltose (Dahanukar

et al., 2007; Jiao et al., 2007), while GR5a is needed for detection

of trehalose and melezitose (Dahanukar et al., 2001, 2007; Ueno

et al., 2001). In addition, GR64f might be a coreceptor since, with

the exception of fructose, it is required for the responses for all

sugars tested and functions in concert with GR5a and GR64a

(Jiao et al., 2008). However, expression of GR64f in combination

with either GR64a or GR5a is not sufficient to confer a sugar

response to bitter-responsive GRNs or tissue culture cells, indi-

cating that additional subunits may be required.

Unlike bitter compounds andmost sugars, which are detected

by a complex set of GRs, a single GR, GR43a, has been reported

to detect fructose. Genetic studies demonstrate that Gr43a is

required for responding specifically to fructose (Miyamoto

et al., 2012). In addition, in vitro expression studies show that

the silkworm homolog of GR43a (BmGR-9) is a cation channel

that is directly activated by fructose but not other sugars (Sato

et al., 2011). Drosophila GR43a also appears to be a fructose-

activated channel (Sato et al., 2011), although its substrate spec-

ificity remains to be established.

Drosophila larvae sense a similar array of sugars as adult flies

(Miyakawa, 1982; Schipanski et al., 2008). However, the genes

encoding either the main sugar-sensitive GRs in the adult

labellum or the related Gr-S genes are not detected in larval

GRNs (Colomb et al., 2007; Kwon et al., 2011). Instead, the fruc-

tose receptor Gr43a is essential for detecting multiple sugars

(Mishra et al., 2013). This is surprising given the narrow response

specificity of the silkworm homolog of GR43a (BmGR-9) (Sato

et al., 2011). Gr43a is expressed in two locations—in pharyngeal

GRNs and in the brain—where two separatemechanisms, acting

over different time periods, explain the ability of GR43a to

mediate responses to multiple sugars (Mishra et al., 2013). The

more rapid phase, which occurs during the first 2 min after

contact with a potential food source, is sensitive to fructose

and sucrose (a glucose-fructose disaccharide) and might be

mediated by GR43a in the pharynx. The slower phase

takes �16 min to develop and is sensitive to most other

sugars. This latter response might be delayed due to the addi-

tional time necessary for metabolism of the sugars to fructose

and transport of fructose to the brain, where it is detected by

GR43a (Mishra et al., 2013).

Suppression of Sweet Taste by Bitter Compounds

Many foods are comprised of a combination of sugars and

bitter compounds, which stimulate opposing behavior

responses that need to be reconciled. Bitter compounds sup-

press feeding, not just by activating bitter-responsive GRNs,

but also by inhibiting sugar-sensitive GRNs (Meunier et al.,

2003). The suppression of sugar GRNs depends on a member

of the family of ‘‘odorant binding proteins’’ (OBPs), OBP49a,

which is expressed in gustatory organs (Jeong et al., 2013).

OBP49a is synthesized in accessory cells, released into endo-

lymph fluid bathing the GRNs, and then acts non-cell-autono-

mously on sugar-activated GRNs. OBP49a binds directly to

bitter compounds and then interacts with the sugar receptor

GR64a on the cell surface of the GRNs to suppress its activity

(Jeong et al., 2013). This non-cell-autonomous mechanism for

suppression of the sugar response by bitter compounds
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provides a strategy for ensuring that bitter compounds in sugar-

laden foods are not consumed.

Amino Acid Taste in Flies

Fruit flies taste amino acids, although their predilection is

enhanced if they are raised on a food source devoid of amino

acids (Toshima and Tanimura, 2012). In females, the preference

is greatest for cysteine, phenylalanine, threonine, and tyrosine,

while males prefer leucine and histidine. However, none of 18

standard amino acids tested stimulates action potentials in

GRNs in sugar-responsive sensilla (Dahanukar et al., 2007),

raising the possibility that taste pegs may sense amino acids.

Another amino acid, L-canavanine, which is toxic because it is

incorporated into proteins in place of L-arginine, elicits an avoid-

ance response in flies (Mitri et al., 2009) and is sensed by GRNs

in a subset of S-type sensilla (Lee et al., 2012). Although taste

receptors for standard amino acids are unknown, GR8a and

GR66a are both required for L-canavanine avoidance (Lee

et al., 2012).

Drosophila Sweet, Bitter, and Amino Acid Transduction

Activation ofDrosophilaGRNs by sugars, bitter compounds, and

the amino acid L-canavanine appears to occur both through

direct activation of ion channels, as well as through G protein-

signaling pathways. Multiple signaling pathways are also found

in other insects, such as Manduca sexta (Glendinning et al.,

2002). A direct activation mechanism may be employed by

GRs, as at least one GR (the fructose receptor) appears to be

a cation channel (Sato et al., 2011). However, it is not known

whether other GRs are ionotropic receptors.

Several different G protein subunits are implicated in sugar

signaling, including Gg, Goa, Gsa, and Gqa (Bredendiek et al.,

2011; Ishimoto et al., 2005; Kain et al., 2010; Ueno et al.,

2006). The effector for Gqa is a PLCb, and mutation or knock-

down in sugar-responsive GRNs of plcb21c or any of the genes

encoding TRPC channels (TRP, TRPL, and TRPg) impairs the

behavioral response to trehalose (Kain et al., 2010). However,

these studies did not address whether these proteins functioned

in GRNs. The effector for Gsa is adenylyl cyclase, and this protein

might function in taste transduction in GRNs since RNAi knock-

down of AC78C reduces trehalose and sucrose-induced action

potentials at low, but not high, sugar concentrations (Ueno and

Kidokoro, 2008).

G protein-coupled signaling pathways may also contribute to

the sensation of bitter tastants. AC78C is needed for the

response to caffeine (Ueno and Kidokoro, 2008), and the PLCb

encoded by norpA is required in trpA1-expressing GRNs for

the behavioral and electrophysiological responses to the bitter

compound aristolochic acid (Kim et al., 2010). These latter

results suggest that a Gq/PLC/TRPA1 pathway functions in the

detection of aristolochic acid. Another G protein, Goa47A, is

necessary for detection of L-canavanine (Devambez et al., 2013).

The G protein-coupled signaling pathways that function in

insect taste could serve to enhance the responses to low

concentrations of ligands, similar to the function of a phototrans-

duction cascade in amplifying the response to a photon of light.

At least in one case, the GPCR signaling appears to be coupled

to a TRP channel (TRPA1) (Kim et al., 2010). However, an open

question is whether GRs are GPCRs, in addition to functioning

as ionotropic channels. While this seems unlikely in view of the
inverse topology of GRs relative to classical GPCRs (Xu et al.,

2012; Zhang et al., 2011), there is controversial evidence that

the distantly related ORs might serve as both GPCRs and iono-

tropic receptors (Nakagawa and Vosshall, 2009; Wicher et al.,

2008). Nevertheless, an alternative possibility is that the GPCR

signaling pathways in GRNs function in parallel to GRs, or might

modulate the activity of GRs through phosphorylation or other

regulatory mechanisms.

Diversity in Sizes of Arthropod GR families
TheDipteranGRs are unrelated tomammalian taste receptors but

share a common ancestor with the insect ORs. Drosophila mela-

nogaster encodes 68GRs, which is similar to size of the 62-mem-

ber Drosophila OR family (Robertson et al., 2003). Due to the

critical roles of GRs in sensing and adapting to highly variable

chemical environments and in mate selection, the GRs are

exceedingly divergent among insects. In fact, only a limited num-

ber of GRs have recognizable homologs between different insect

species. In some insects, the size of the GR family is relatively

large, such as in the mosquito disease vectors Aedes aegypti

and Anopheles gambiae, which include 114 and 90, respectively

(Hill et al., 2002; Kent et al., 2008). Conversely, the genome of

the honey bee,Apismellifera, encodes only 10GRs, as compared

to 163ORs (Robertson andWanner, 2006; Zhou et al., 2012). This

expansion of the ORs probably reflects the importance of olfac-

tion in sensing a wide botanical repertoire and a complexity of

volatile pheromones, while the limited number of GRs might be

sufficient since bees feed primarily on nectar and pollen. The

genomes of ant species such asCamponotus floridanus,Harpeg-

nathos saltator, and the Argentine ant Linepithemahumile encode

the largest numbers of ORs among insects whose genomes have

been sequenced (�350 ORs) but fewer and more variable

numbers of GRs (17–97) (Smith et al., 2011; Zhou et al., 2012).

These variations in the sizes of the ant GR families might be a

consequence of differences in feeding behaviors and the number

of pheromones detected by contact chemosensation.

Examination of the distribution of the GRs and ORs among

distantly related organisms suggests that the GRs may be the

more ancient chemosensory family. The waterflea, Daphnia

pulex, encodes 58 GRs but is devoid of ORs (Peñalva-Arana

et al., 2009). While it is possible that the entire OR family was

lost in this crustacean, a more likely scenario is that the GRs

are more ancient and that the ORs emerged with the terrestrial

arthropods, such as insects (Peñalva-Arana et al., 2009). In

further support of the proposal that the GRs predated ORs, the

worm C. elegans encodes some GRs, such as LITE-1, but no

OR family members (Liu et al., 2010; Robertson et al., 2003).

The family of ionotropic receptors (IRs), which are distantly

related to ionotropic glutamate receptors (Benton et al., 2009),

may be at least as old as GRs, as IRs are encoded in

C. elegans (Croset et al., 2010). The original role of IRs may be

detection of nonvolatile compounds, since IRs are expressed

in pharyngeal neurons in worms and flies, and their last common

ancestor was probably an aquatic organism (Croset et al., 2010).

Sour and Salty
Sour and salty are considered ‘‘mineral’’ tastes, as the effective

stimulus is a simple element/ion. Discerning the mechanism of
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Figure 3. Sour Taste
Sour taste in vertebrates is initiated when protons enter through an apically
located proton-selective ion channel. Weak acids may also activate sour cells
by penetrating the cell membrane and acidifying the cytosol, leading to closure
of resting K+ channels and membrane depolarization.
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transduction has been more difficult than for the ‘‘organic’’

tastes, partly because the stimulus is so simple and is always

present. Sour taste is evoked by acidic pH and by organic acids,

such as acetic acid, that penetrate the cell membrane. Salty

taste is elicited by Na+ concentrations from 10 mM to 500 mM

and consists of at least two components, with different distribu-

tions and pharmacological properties.

Sour Taste in Mammals

Sour is detected by a subset of taste receptor cells in the tongue

and palate epithelium that respond to acidic pH and weak

organic acids with electrical activity (Huang et al., 2006, 2008).

Over the years, a number of candidates for sour receptors or

components of sour signaling have been proposed, including

ASICs, HCNs, K+ channels, and most recently the TRP channels

PKD2L1 and PKD1L3 (Roper, 2007). However, presently there is

no evidence that any of these proteins mediate sour taste, and

knockouts of mouse PKD2L1 or PKD1L3 only slightly attenuate

nerve responses to acid stimulation (Horio et al., 2011). Nonethe-

less, PKD2L1-expressing cells respond to, and are required for,

sensory response to acids (Chang et al., 2010; Huang et al.,

2006; Oka et al., 2013). The response of PKD2L1-expressing

cells to acids is mediated by an unusual proton-selective ion

channel (Chang et al., 2010). Proton selectivity allows the cells

to respond to acids without interference from Na+, which may

vary independently in concentration. The molecular identity of

the proton channel is presently unknown.

Entry of protons into sour cells produces cellular acidification,

which may affect cell signaling. Notably, taste cells express

several resting two-pore K+ channels (Lin et al., 2004; Richter

et al., 2004), which may be blocked by intracellular acidification
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to produce further depolarization of the cell (Figure 3). The idea

that intracellular acidification activates sour cells is attractive,

as it could explain why, at the same pH, acetic acid and other

weak acids that penetrate the cell membrane taste more sour

than strong acids, such as HCl, that do not penetrate the cell

membrane (Lyall et al., 2001; Roper, 2007).

In addition to sour stimuli, PKD2L1-expressing cells are

required for the gustatory response to carbonation (CO2). This

response is dependent on a membrane-anchored carbonic an-

hydrase isoform 4, Car4 (Chandrashekar et al., 2009), which in-

terconverts CO2 +H2O to H+ +HCO3
�. Themechanism bywhich

Car4 contributes to the activation of sour cells is not known. One

possibility is that protons generated apically by this enzymatic

reaction enter through the proton channel to depolarize the cell.

It shouldbenoted that the response toacidsandcarbonation is

complicated by the fact that the trigeminal system, which heavily

innervates the mouth and oral cavity, is also sensitive to these

stimuli (Bryant andSilver, 2000). TRPA1 is expressedbynocicep-

tors and can be activated by CO2 and acetic acid (Wang et al.,

2010), and the capsaicin receptor, TRPV1, is activated by extra-

cellular protons (Tominaga et al., 1998). Moreover, afferent nerve

fibers that innervate the oral cavity retain sensitivity to acids in

otherwise taste-blind mice (Ohkuri et al., 2012). Thus, somato-

sensory afferents undoubtedly contribute to the burning sensa-

tion experienced when ingesting sodas and organic acids.

Taste of Sour and Carbonation in Drosophila
Fruit flies prefer slightly acidic foods, such as carbonated water,

while they reject foods that are too acidic. Carbonated water

triggers Ca2+ influx in the region of the SOG innervated by taste

peg GRNs, suggesting that these neurons are involved in CO2

detection (Fischler et al., 2007). Fruit flies avoid many carboxylic

acids with a low pH. Behavioral and physiological analysis re-

veals that the avoidance to carboxylic acid is mainly mediated

by a subset of bitter GRNs (Charlu et al., 2013). In addition, acids

also inhibit the activity of sugar GRNs. However, the molecular

identities of the taste sensors for both weak carboxylic acids

and strong metallic acids are unknown. Nevertheless, since

only a subset of bitter GRNs sense acids, this localized expres-

sion pattern may contribute to the discrimination of sour versus

bitter tastants (Charlu et al., 2013).

Salt Taste Receptors

The taste of salt is complex from two perspectives. First, while

we frequently think of salt taste as the sensation of Na+, other

cations such as Li+ or K+ may also be perceived as salty,

although less potently than Na+. Second, salt can be attractive

or aversive depending on concentration, with lower concentra-

tions (<100 mM) being attractive. This dichotomy reflects the

fact that moderate levels of salt are necessary to maintain mus-

cle contraction, action potentials, and many other functions,

while excessive salt intake is deleterious and in humans can

lead to hypertension.

Salt Taste in Mammals

Two distinct mechanisms underlie cellular sensitivity to salt

taste in mice and other rodents, one that is sensitive to the

diuretic amiloride (Brand et al., 1985; Heck et al., 1984) and

another that is insensitive. In humans, salt taste is amiloride

insensitive, reflecting either species differences in receptor

pharmacology or loss of the amiloride-sensitive component.
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Figure 4. Salt Taste
(A) Themouse low-salt sensor is a protypical ENaC
channel composed of three subunits. The high-salt
sensor in TRPM5- or PKD2L1-expressing taste
cells is not known.
(B) The low-salt sensors in fly larvae and adults.
(C) No Na+ influx through IR76b when adult flies
are not exposed to salt-containing food, since the
Na+ concentration in the endolymph is low.
(D) The concentration of Na+ concentration in the
endolymph rises when adult flies are exposed to
salt-containing food, leading to an influx of Na+

through constitutively open IR76b and activation
of the GRNs.

Neuron

Review
The amiloride-sensitive component of salt taste is selective for

Na+ and Li+ over other monovalent cations such as K+, is sensi-

tive to low concentrations of salts (<100 mM), and is generally

appetitive (Brand et al., 1985). Amiloride-sensitive salt taste oc-

curs only in the front of the tongue (Ninomiya, 1998).

Given the sensitivity of low-salt taste to amiloride, which is a

relatively specific blocker of epithelial Na+ channels (ENaCs),

these channels were considered candidate low-salt receptors

(Kretz et al., 1999). ENaC is composed of three subunits, a, b

and g, of which the a subunit is absolutely essential and forms

part of the pore (Figure 4A) (Canessa et al., 1994). Indeed,

ENaC a appears to be a component of the low-salt sensor since

a taste-cell-specific knockout eliminates sensitivity and behav-

ioral attraction to low concentrations of salt (Chandrashekar

et al., 2010).

Identification of the ‘‘salty cells’’ has been more difficult since

subunits of ENaC are detected in a wide range of cell types,

including PKD2L1-expressing and TRPM5-expressing cells.

The observation that only a small fraction of taste cells express

all three subunits of the ENaC channel and that these cells do

not express markers for other taste qualities suggests that these

‘‘ENaC-alone’’ cells constitute the sensory cells for amiloride-

sensitive salt taste (Chandrashekar et al., 2010).

The cellular basis for sensitivity to high concentrations of

salts is comparatively more complicated. Based on taste nerve

recordings, there is a population of broadly tuned high-salt fi-

bers that are insensitive to amiloride and activated by KCl

and NaCl (Breza and Contreras, 2012). These fibers innervate

both the front and back of the tongue, in contrast to the amilor-

ide-sensitive fibers that innervate only the front of the tongue.

Currently, the identity of the high-salt receptor remains a mys-

tery, as the early proposals that TRPV1 was the high-salt

sensor (Lyall et al., 2004) are not supported (Breza and Contre-

ras, 2012).

The cells that mediate the behavioral responses to high salts

are not specifically dedicated to sensing high salt, but instead

comprise at least two populations of cells with previously identi-

fied functions in sensing bitter and sour (Oka et al., 2013). Inac-
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tivation of TRPM5 or PLCb2, expressed

by bitter cells, eliminates a component

of the high-salt response, while silencing

PKD2L1-expressing sour cells eliminates

the remaining components (Oka et al.,

2013). Remarkably, mice in which
PKD2L1-expressing cells are silenced and TRPM5 is inactivated

find high salt concentrations attractive, presumably due to acti-

vation of the amiloride-sensitive ENaC channels by high salt (Oka

et al., 2013). How high salts activate the two types of cells is not

entirely clear. High salts could activate bitter cells through an

allosteric effect on the receptors, while a requirement for car-

bonic anhydrase (CA4) in sour cells suggests that the balance

between acid and base may be altered by high salts at the apical

surface of the cell (Oka et al., 2013).

Salt Taste in Drosophila
Salt taste preferences in Drosophila are similar to those in mam-

mals in that larvae and adult fruit flies also prefer low-salt foods,

while they reject high-salt foods. In larvae, two ENaC channel

familymembers, ppk11 and ppk19, are reported to be expressed

in the terminal organ and required for sensing low salt (Figure 4B)

(Liu et al., 2003a). However, these channels do not appear to

function in the salt response in adults (Zhang et al., 2013a).

In adult flies, the attraction to low salt and the aversion to high

salt occur through a competition between two types of salt-

responsive GRNs. At low and moderate salt concentrations

(e.g., %100 mM NaCl), GRNs in L-type sensillum are much

more robustly activated than the salt-activated GRNs in S- and

I-type sensilla. Conversely, at high salt conditions (R500 mM

NaCl), GRNs in several S-type sensilla provide the dominant

responses. When the activities of the low-salt GRNs associated

with the L-type sensilla predominate, feeding is stimulated. How-

ever, at high salt concentrations, when the GRNs in S-type

sensilla predominate, feeding is suppressed. Thus, the winner

of the competition between the two antagonistic pathways dic-

tates the net behavioral output.

A member of the ionotropic glutamate receptor (IR) family

member, IR76b, is required for low-salt sensing in adult flies

(Zhang et al., 2013a). IRs were identified originally as a new class

of olfactory receptor (Benton et al., 2009). However, several IRs

are also expressed in GRNs (Croset et al., 2010). IR76b is ex-

pressed in GRNs distinct from those that respond to sugars

and bitter compounds, and the IR76b GRNs extend their projec-

tions into a unique region of the SOG (Zhang et al., 2013a).
81, March 5, 2014 ª2014 Elsevier Inc. 993
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The IR76b channel is not gated by voltage or salt but is con-

tinuously open. This feature of IR76b is reminiscent of the

mammalian low-salt channel (ENaC), which is also a Na+ leak

channel (Canessa et al., 1994; McDonald et al., 1995). The

open states of IR76b and ENaC are well suited for low-salt

sensors given the unusually low Na+ compositions bathing the

taste cells in both insects and mammals, relative to the insect

hemolymph or mammalian blood. As a result, there is little Na+

conductance when the animals are not exposed to salt-contain-

ing food (Figure 4C). When the Na+ concentration outside the

taste cells rises after intake of salt, the Na+ flux through the

IR76b and ENaC channels depolarize the taste receptor cells

(Figure 4D). Thus, despite the lack of relatedness between IRs

and ENaC channels, flies and mammals appear to solve the

challenge of sensing low salt in food through similar strategies

employing Na+ leak channels. A major question is the identity

of the sensors in flies and mammals that function in the percep-

tion of high salt. Notably, the TMC-1 (trans-membrane channel

like) was recently reported to be the Na+ channel that controls

high-salt avoidance in C. elegans (Chatzigeorgiou et al., 2013),

raising the possibility that related TMC channels function in

high-salt taste in other animals.

Noncanonical Taste Qualities in Mammals
Vertebrates can sense a variety of other important qualities in

potential foods, such as wetness and fattiness, but whether

they qualify as bona fide tastes is still an open question. Fats

are detected by several routes, including olfaction and somato-

sensation, and they elicit postingestive effects that promote con-

sumption. But are they tasted? Several lines of evidence argue

that the answer is yes. The observation that mice prefer water

spiked with free fatty acids, which are breakdown product of tri-

acylglycerides that are found in vegetable and animal-derived

products, supports a role for the taste system in detecting this

rich source of calories (Gaillard et al., 2008). Taste cells express

putative receptors for fat taste including K+ channels that are

sensitive to polyunsaturated fatty acids, a fatty acid transporter

(CD36), and two fat-sensitive GPCRs, GPR40 and GPR120 (Liu

et al., 2011). The most promising of these candidate receptors

is GPR120, which is required for preference to fatty acids in

mice (Cartoni et al., 2010) and is expressed in human TRCs

(Galindo et al., 2012).Most strikingly, the pharmacological profile

of GPR120, which is highly sensitive to long-chain fatty acids,

matches psychophysical data on taste quality from human sub-

jects (Galindo et al., 2012). Because long-chain fatty acids evoke

a fatty taste only when dissolved in an otherwise tasteless lipid

matrix, input from the somatosensory and taste systems must

be integrated, either at the level of the taste cell or higher brain

centers (Rolls et al., 1999), to produce the complex attractive

sensation associated with fatty foods.

Another noncanonical sensory attribute encoded by taste cells

is referred to as ‘‘calcium taste.’’ Ca2+, an ion required for a vast

array of cellular functions, is attractive to Ca2+-deprived animals,

but is rejected by Ca2+-sated animals. Paradoxically, the aver-

sive response to Ca2+ requires a functioning T1R3 receptor, a

subunit of the umami and sweet receptor (Tordoff et al., 2008).

That T1R3 functions as a Ca2+ receptor in vivo is further sup-

ported by the observation that human subjects report an attenu-
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ation of the taste of Ca2+ by the T1R3 blocker lactisole (Tordoff

et al., 2012). One explanation for these observations is that

that T1R3 functions as an aversive Ca2+ sensor in the subset

of cells that express T1R3 alone but not other subunits of sweet

or umami receptors, which are hardwired to attractive behaviors.

In this model, the T1R3-only cells may show a high degree of

plasticity in how they signal to afferent nerve fibers, activating

higher brain centers that cause rejection of Ca2+, depending

on the internal state of the organism.

Last among these noncanonical tastes is the taste of water.

Animals can detect wetness across their body by virtue of the

somatosensory system, and this system is also likely to

contribute to the sensing of aqueous solutions in the oral cavity.

In addition, various tastes have been ascribed to distilled water,

from bitter to salty and sweet. Notably, application of water after

exposure to some artificial sweeteners, such as saccharin, elicits

a sweet taste (Galindo-Cuspinera et al., 2006). This has been

shown to reflect an inhibitory action on the sweet receptor of

high concentrations of some artificial sweeteners, which when

removed produces a transient reactivation of the receptor and

a sweet taste (Galindo-Cuspinera et al., 2006). While it would

seem beneficial for vertebrates to detect water, no water recep-

tor has been identified.

Noncanonical Taste Qualities in Drosophila

Flies are attracted by the taste of a variety of long- and short-

chain fatty acids, except when concentrations are very high

(Masek and Keene, 2013). The appeal of fatty acids is not due

to their acidity and is mediated through sugar-GRNs. Currently,

the receptors for fatty acids are not known, but a requirement for

PLC in detection of fatty acids suggest that theymight beGPCRs

(Masek and Keene, 2013). If so, then fatty acid taste may bear

greater similarities between flies and mammals than bitter and

sweet taste. The same GRNs that are activated by sugars and

low concentrations of fatty acids are also activated by glycerol

(Wisotsky et al., 2011). Furthermore, a receptor that is required

for sensing glycerol, GR64e, belongs to the GR-S clade that

includes the three sugar receptors: GR5a, Gr64a, and GR64f.

GR64e appears to be a glycerol receptor, since misexpression

of this GR in CO2-responsive olfactory neurons endows these

olfactory receptor neurons with the ability to respond to glycerol

(Wisotsky et al., 2011).

Flies also use their gustatory system to sense water, employ-

ing a GRN that is activated by low osmolarity (Inoshita and

Tanimura, 2006). The detection of water depends on a member

of the degenerin/epithelial Na+ channel (DEG/ENaC) family of

channels, referred to as PPK28 (Cameron et al., 2010; Chen

et al., 2010). This channel is activated by low osmolarity and is

required and sufficient for conferring water sensitivity.

Extraoral Taste Receptors in Mammals
Cells outside the taste system such as those in the gut and in

the lungs also sense nutrients or toxins and some of the signaling

molecules first identified in taste cells may be doing double duty

in these organs (Behrens and Meyerhof, 2011). For example,

bitter taste receptors are expressed in the airways, where their

activation in ciliated epithelial and solitary chemosensory cells

leads to changes in respiratory function that protect against
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inhaled toxins and irritants (Kinnamon, 2011). Taste receptors

are also expressed by sperm. Most remarkably, in mice carrying

a humanized T1R3 gene, infertility is induced by treatment with a

human T1R3-specific blocker (Meyer et al., 2012). These studies

point to the importance of developing chemicals that target taste

receptors for treating conditions ranging from asthma to infer-

tility.

Perhaps more important in the context of trying to understand

taste signaling and its relation to behavior is the discovery

that taste receptors are expressed in the gastrointestinal tract,

where they are positioned to contribute to the regulation of

ingestive behavior or satiety (reviewed in Breer et al., 2012).

Ingested chemicals are detected by a variety of different cell

types that line the intestinal lumen, including enterocytes,

brush cells, and enteroendocrine cells, none of which are

neuronal but which may communicate through vagal afferents

or by afferents emanating from the enteric system. Among these,

brush cells express gustducin, TRPM5, and T1R3. However, a

direct role for these molecules in signaling the caloric quality of

ingested foods has not been demonstrated conclusively.

Bitter receptors are also found in enteroendocrine cells in the

stomach (Wu et al., 2002), where they may function to elicit

protective measures upon ingestion of toxins, such as vomiting.

This hypothesis has been difficult to test using mice, which do

not show a vomiting response. Instead, and somewhat counter-

intuitively, intragastric infusion of bitter receptor agonists elicits

an increase in feeding and a delay in gastric emptying (Janssen

et al., 2011). However, these experiments are complicated by the

fact that many bitter chemicals are cytotoxic. An alternative

might be to usemice that express an unnatural receptor (RASSL)

under the promoter of a bitter receptor (Mueller et al., 2005) and

that can be challenged by intragastric administration of the inert

agonist spiradoline.

Vertebrates Pheromones Detected through Contact

Chemosensation

Contact chemosensation is used to detect both tastes and

pheromones in vertebrates, and these sensory systems are

housed in different organs. Pheromones are detected primarily

by the vomeronasal organ (VNO), which lies above the palate

and has access to chemicals that enter through the nasal or

oral cavity (Dulac and Torello, 2003). Receptors for pheromones

fall into two main classes, the V1Rs and the V2Rs, which bear

structural similarity to the T2Rs and T1Rs, respectively. A TRP

channel (TRPC2) is an essential downstream element, analogous

to the role of TRPM5 in taste cells (Liman et al., 1999; Stowers

et al., 2002). In humans and other apes, the TRPC2 gene and

many of the VNO receptors are pseudogenes, indicating that

VNO signaling was lost when primates acquired trichromatic

color vision (Liman and Innan, 2003). The similarity between

components of VNO sensory signaling and those of taste trans-

duction make it tempting to suggest that the two systems

evolved from a common precursor with a more general role in

contact chemosensation.

Fly Taste Receptors Outside the Mouthparts
In flies, there are at least three families of receptors/channels that

function in the gustatory response: GRs, IRs, and TRPs. Among

these families the GRs (gustatory receptors) are so-named since
they were originally thought to function exclusively in taste.

However, there is now a wealth of evidence demonstrating

expression and roles for GRs outside the main mouthparts in

the proboscis—the labellum and pharynx. These include expres-

sion associated with external taste sensilla in the legs, wing

margins, female ovipostor, as well as expression in a segment

of the antenna (arista) and in the brain. GRs are also expressed

in a variety of afferent neurons associated with other senses,

including olfaction, proprioception, hygrosensation, and thermo-

sensation (Dunipace et al., 2001; Scott et al., 2001; Thorne and

Amrein, 2008).

Expression of GRs in legs accomplishes two tasks. First, it

endows the flies with the ability to taste chemicals in the environ-

ment without placing the prospective foods in their mouth and,

second, it allows flies to directly sample pheromones on pro-

spective mates. The gustatory receptors Gr68a and GR39a are

expressed in male forelegs where they may sense female

pheromones, as knockdown of the RNAs or mutation of Gr39a

decreases mating with females (Bray and Amrein, 2003; Wata-

nabe et al., 2011). In addition to GRNs, Gr68a is expressed in

mechanosensory neurons (Ejima and Griffith, 2008; Kogane-

zawa et al., 2010), raising the possibility that it contributes to

courtship through a combination of chemo- and mechano-

sensory functions. Mutation of at least two other Grs that are

expressed in forelegs (Gr32 and Gr33a) increases male-male

courtship and therefore may be receptors for a male pheromone

(Koganezawa et al., 2010; Miyamoto and Amrein, 2008; Moon

et al., 2009).

Two Grs function in olfaction, rather than contact chemosen-

sation. These include Gr21a and Gr63a, which are expressed in

olfactory receptor neurons in the antenna and are required and

sufficient for the detection of CO2 (Jones et al., 2007; Kwon

et al., 2007). Orthologs of Gr21a and Gr63a are expressed in

another olfactory organ (maxillary palps) of the mosquito vectors

for malaria (Anopheles gambaie), West Nile virus (Culex pipiens),

and yellow fever (Aedes aegypti) and knockdown of these RNAs

in this latter mosquito impairs CO2 detection (Erdelyan et al.,

2012). Thus, two GR family members are actually olfactory

receptors and they appear to function as heteromultimers. Addi-

tional GRs are expressed in Drosophila olfactory receptor neu-

rons and may therefore serve as olfactory receptors rather than

gustatory receptors (Dunipace et al., 2001; Scott et al., 2001).

Multiple Grs are expressed in tissues outside the gustatory

and olfactory systems (Park and Kwon, 2011b; Thorne and

Amrein, 2008). These include 18 Gr that are expressed in multi-

dendritic neurons in the body wall and four that that are ex-

pressed in neurons that innervate male and female reproductive

organs (Park and Kwon, 2011b). Similar to the reports that

mammalian taste receptors are expressed in enteroendocrine

cells, a survey of gene reporters indicates that at least 12 Grs

are expressed in enteroendocrine cells in the midgut of

Drosophila (Park and Kwon, 2011a). The fructose receptor

Gr43a is expressed in many neurons that are not associated

with taste, including several in the brain and uterus. In the brain,

GR43a senses a rise in fructose in the hemolymph following

feeding (Miyamoto et al., 2012). Fructose is a better indicator

of food consumption than the main hemolymph sugars glucose

and trehalose because it is present only at low levels in
Neuron 81, March 5, 2014 ª2014 Elsevier Inc. 995
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hemolymph under starvation conditions and its concentration

rises dramatically upon feeding. A homolog of Gr43a (HaGr9a)

is expressed in the foregut of the agriculture pest, the cotton boll-

worm (Helicoverpa armigera) (Xu et al., 2012). These studies

imply roles for GRs in sensing internal chemical signals that regu-

late a host of physiological processes ranging from egg laying to

nutrient sensing.

At least three GRs function in detecting sensory inputs other

than chemicals. The locus (Gr28b) that encodes these proteins

is complex as it includes five transcriptional start sites and en-

codes five different proteins, all with different N termini and

common C termini (Robertson et al., 2003; Thorne and Amrein,

2008). One of the genes, Gr28b.d, is expressed in three warm-

activated ‘‘hot neurons’’ in the arista—an appendage extending

out from the antenna. GR28b(D) helps flies sense a rapid increase

in temperature above 26�C and might be directly heat activated

since misexpression of GR28a(D) in sugar-responsive GRNs or

motor neurons confers heat sensitivity to these cells (Ni et al.,

2013). The function of GR28b(E) is not known, but it might be a

thermosensor since it can restore thermosensitivity tohot neurons

in flies missing GR28b(D) (Ni et al., 2013). A third member of the

Gr28b locus, which remains to be defined, appears to be a light

sensor in class IV dendritic arborization neurons in larvae (Xiang

et al., 2010). This latter finding is reminiscent of the earlier demon-

stration that aC. elegans protein that is related to the GR28b pro-

teins (LITE-1) is required for phototaxis (Liu et al., 2010).

The preceding findings demonstrate that GRs function in

multiple senses, including taste, smell, light sensation, and tem-

perature sensation. The functions of other receptors/channels

that contribute to taste, IRs and TRP channels, also have

polymodal roles. This isbestdocumented forTRPchannels,which

contribute to many sensory modalities in flies and mammals

(Fowler and Montell, 2013; Venkatachalam and Montell, 2007).

Currently, roles for IRs are documented in olfaction and salt taste.

Given thebroad rolesofGRsandTRPs, itwouldnotbesurprising if

IRs also prove to function in many sensory modalities.

Concluding Remarks and Future Questions
Gustatory receptors were first identified in mammals, leading

to the expectation that invertebrates such as Drosophila

melanogaster would use related GPCRs to sense the basic

qualities of sweet, bitter, and umami. Surprisingly, insect taste re-

ceptors are not only unrelated to the mammalian receptors but

are mostly inotropic. Such receptors might provide insects with

the capacity to quickly sample the chemical environment, while

GPCR-mediated signaling offers the ability to amplify weak sig-

nals and provide for adaptation. Another surprise is that taste re-

ceptors are not restricted to the gustatory organs but are ex-

pressed in many cell types, and in some cases contribute to the

ability to sense changes in temperature, light, and olfactory cues.

Questions for the future include identification of the receptors

for high-salt and sour taste and for noncanonical tastes such as

fatty acids in mammals. The nature of the receptors that allow

animals to evaluate food texture are also not known. Also limited

is a molecular understanding of taste plasticity, and the mecha-

nisms through which animals integrate chemical taste with tem-

perature, texture, and food odors, to decide whether to consume

or reject a food. Finally, the dissection of extraoral roles for taste
996 Neuron 81, March 5, 2014 ª2014 Elsevier Inc.
receptors is just beginning and may to lead to insights into the

integration of neuronal activity and metabolism.
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