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The conventional HL process was used to consolidate the 
HL-6 sample. Glass fibers were placed manually inside of a 
mold then matrix material was spread evenly over the fiber 
layers. Entrapped air was then removed with squeegees and 
rollers. Hardening of the fiber/matrix system was 
accomplished at ambient temperature. In order to complete 
the VI process fibers were placed into or on top of a mold. 
The fibers were then coated in matrix and the entire layup 
was covered in plastic. Vacuum was then applied in order to 
spread the matrix throughout the fiber evenly. Preliminary 
testing showed that the vacuum pressure should be at least 20 ′′ 
Hg in order to gain the largest benefit in void reduction. The 
VL-6 sample was processed at 20′′ Hg, while VH-6 and VH-
12 samples were processed at the vacuum facility limit of 28 ′′ 
Hg. The VI processed samples created using the high 
pressure set up were used for the inner hull structures. 

Hybrid composite laminates (HYB-18 and HYB-19 
samples) were used for the outer hull side and outer hull 
bottom. The hybrid composite samples were formed by first 
using the HL technique to place three to four plies of mat 
material, along with 1 set of Owens Corning CDM 2408 
which has an [M/90/0] layup of fibers. This laminate is 

allowed to fully cure, then a VI process is completed at 28′′ 
Hg on the inside consisting of four sets of Vectorply E-LTM 
3612. Once this assembly dries there are unique properties of 
both laminate types found in the hybrid composite material.  

Table 1 gives a detailed description of the six material 
systems investigated over the course of this experiment. It is 
composed of 6 columns which help to define the 6 composite 
laminates in an easy to understand format. The first column 
introduces the sample name. The orientation column fully 
describes the laminate layup sequence, which for the most 
part is a mat, 90 degree, 0 degree method with variance 
mainly in the number of ply sets used. E-glass materials from 
Vectorply E-LTM 3610, 3611, and 3612 were utilized for the 
VI processed laminates. For the HL side of the hybrid 
laminates, another type of E-glass (Owens Corning CDM 
2408) was used. Two matrix materials were utilized during 
testing which include Derakane Momentum 411-200 epoxy 
vinyl ester for the VI processed laminates, and Reichhold 
Hydrex 100 epoxy vinyl ester for the HL side of the hybrid 
samples. The last column shows the total thickness of the 
composite samples after fabrication processes were complete. 

 
Table 1 Material systems used in this study. 

Sample 
Name 

No of 
Plies Orientation Glass Material Matrix 

material
Thickness 

(mm) 

HL-6 6 [M/90/0]2 Vectorply E-LTM 3610 A 3.66 

VL-6 6 [M/90/0] 2 Vectorply E-LTM 3610 A 2.46 

VH-6 6 [M/90/0] 2 Vectorply E-LTM 3612 A 2.39 

VH-12 12 [M/90/0]4 Vectorply E-LTM 3611 A 5.08 

HYB-18 18 [M3H/(M/90/0)1H/(M/90/0) 4V] 

Owens Corning CDM 2408 for the 
handlay-up processed plies B 

7.75 
Vectorply E-LTM 3612 for the 

vacuum infusion processed plies A 

HYB-19 19 [M4H/(M/90/0)1H/(M/90/0) 4V] 

Owens Corning CDM 2408 for the 
handlay-up processed plies B 

7.80 
Vectorply E-LTM 3612 for the 

vacuum infusion processed plies A 

M = mat: layer of chopped fibers with approximately 1mm thickness after curing 
A = Derakane Momentum 411-200 Epoxy Vinyl Ester 
B = Reichhold Hydrex 100 Epoxy Vinyl Ester 
H = hand layup process 
V = vacuum infusion process 

 
 
Mechanical property test procedures 

 
Static tension and compression tests were conducted to 

investigate the performance of the six reviewed composite 

samples. Tensile properties such as tensile modulus, tensile 
strength, and strain at failure of composite laminates were 
determined in accordance with ASTM D3039. A universal 
mechanical tester (Instron Model 4482) and an extensometer 



48                                                                Inter J Nav Archit Oc Engng (2010) 2:45~56 
 
 

 

(Instron 2630-100 series clip on type) were used for the 
tension test with a cross head speed of 2 mm/min.  

Properties in compression were determined by static 
compression tests in accordance with ASTM D695. Loading 
of the specimen was at a standard cross head speed of 1.3 
mm/min. A strain gage was placed in the center of the 
specimen to measure the strain state during testing. More 
than five coupons were tested for each sample type in order 
to achieve accurate average values. Fig. 2 shows the test 
sample configurations of ASTM D3039 and ASTM D695, 
respectively. 
 

 
(a) Tension test sample (ASTM D3039). 

 

 
 

(b) Compression test sample (ASTM D695). 
 

Fig. 2 Test sample configurations in mm. 
 

Ignition loss tests were performed in accordance with 
ASTM D2584. This type of test is used to measure fiber and 
resin weight percent, sample density, and percent void 
content. Testing was carried out in a Lucifer model RD7-H21 
furnace at 565°C for one hour. Prepared samples were 
weighed and measured before and after leaving the oven to 
determine the amount of matrix material burned off, and the 
remaining weight of the fiber.  
 
 
 
RESULTS AND DISCUSSION 
 
Effects of vacuum pressure 
 
Void content 

Ignition loss tests were used to verify the effects of 
vacuum pressure on each of the material systems investigated. 

Three different pressures were analyzed: 0′′, 20′′, and 28′′ Hg, 
during the fabrication of the samples seen in Table 2. 
Specimens were also created with vacuum pressures set at 5′′ 
and 10′′ Hg, but their void content was not very different 
from hand layup, and so they were not included here. The 
vacuum infusion facility’s maximum capacity was 28′′ Hg, 
which was only limited by the vacuum pump itself.   
 
 
Table 2 Average fiber vs. matrix wt%, vol%, and sample 
density. 

Property / Samples HL-6 VL-6 VH-6

Density (g/cc) 1.53 1.76 1.81 

Weight 
% 

Fiber 53.7 68.9 70.7 

Matrix  46.3 31.1 29.3 

Volume 
% 

Fiber  31.9 47.7 49.9 

Matrix  66.0 50.8 49.5 

Void  2.1 1.5 0.6 

 
Table 2 shows the ignition test results for the three 

evaluated material systems: HL-6, VL-6, and VH-6. By 
increasing pressure from ambient to 28′′ Hg a 71% decrease 
in void volume was realized. This reduction in voids leads to 
a 36% increase in fiber weight percent per unit volume. 
Overall the decreased void content leads to a more intimate 
matrix fiber interface with fewer stress concentrations and 
loose fibers. Another benefit of high vacuum pressure is the 
decrease in matrix needed to fully saturate the fiber. This 
saves valuable resources and allows for a better 
understanding of the exact quantity of matrix material 
necessary to complete a project (Borsellino et al., 2007). As 
vacuum increases the fiber is also compacted neatly, which 
aids in load distribution and offers a thinner cross section 
with a higher amount of strength per unit volume. 
 
Tensile properties 

Changes in vacuum pressure had very profound effects 
on the tensile properties of the GFRP samples tested. In all, 5 
specimens were created from each of the three panel types: 
HL-6, VL-6 and VH-6 in accordance with ASTM 3039. The 
vacuum pressure was then varied between 0′′ (ambient): 20′′ 
Hg: 28′′ Hg respectively. All of the samples are identical in 
every regard accept for the vacuum pressure used during 
fabrication which made it possible to observe the differences 
in tensile modulus, ultimate tensile strength, and maximum 
percentage strain at failure. Fig. 3 (a) shows the typical 
tensile stress-strain curves for HL-6, VL-6, and VH-6 
samples. 
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Therefore, end crushing or premature failure of the VH-6 
samples result in a lower average UCS value than expected 
and yield no noticeable difference in UCS when compared 
with the HL-6 sample.  

 
Table 4 Average Compressive Properties of selected 
materials. 

 HL-6 VL-6 VH-6 VH-12
Vacuum pressure 

(′′Hg) 0 20 28 28 

Sample thickness 
(mm) 3.66 2.46 2.39 5.08 

Ultimate compressive 
strength (MPa) 237.62 223.46 221.23 326.41

Modulus  
(GPa) 18.03 21.62 25.81 24.04

Max % Strain 1.503 1.254 1.060 1.578

Typical failure 
modes 

Shear in 
gage 

section/ 
End 

crushing 

End 
crushing 

End 
crushing

Shear in 
gage 

section

 
The beneficial effect of high vacuum pressure in 

composite fabrication was found in compressive modulus. 
From Table 4 it is apparent that modulus is increasing with 
increasing pressure. The total average compressive modulus 
increase was 7.78 GPa or 43% between the HL-6 and the 
VH-6 samples (0′′ and 28′′ Hg). Premature failure in end 
crushing does not have an effect on the modulus so these 
values give a good idea of what the composite strength 
should be. In Table 4, modulus is consistent among the 
samples (VH-6 and VH-12) with various thicknesses and the 
same fabrication condition. 

 
Mechanical properties of hybrid composites 

 
Tensile Properties 

Static tension tests were performed on each of the hybrid 
composite samples, HYB-18 and HYB-19. Fig. 7 (a) shows a 
typical stress-strain curve for the hybrid composite samples. 
There are four distinct regions in the curve, which can be 
compared to the failure evolution schematic seen in Fig. 7 (b). 
By combining the graph and the schematic it becomes clear 
that the failure of each particular section of the laminate gives 
rise to unique characteristics in the stress-strain curve. In 
region 1, the graph rises steadily and both HL and VI 
processed sides are stressed equally. The curve hits its first 
peak and drops a bit at region 2. This is mainly due to the 
failure in the HL side of the sample. This abrupt failure 
causes a drop in the amount of load being carried by the 
composite while strain remains the same. The initial failure in 
the HL side is expected because the layup sequence of the 
HL side mostly consists of plies with chopped glass fiber mat. 

In addition, the HL processed laminate showed less UTS and 
max % strain when compared with the VI processed 
laminates, as explained earlier. The curve steadily rises again 
through region 3 where the VI portion of the sample is still 
intact and continues to carry load. Finally the VI portion of 
the sample reaches the second and maximum peak followed 
by the ultimate failure of the material in region 4. 

 

 
(a) Typical stress vs. strain graph of the hybrid samples 

(HYB-19 Specimen #2-T). 
 
 

 
 

(b) Schematics of failure sequences in tension test. 
 

Fig. 7 (a) typical stress vs. strain graph of the hybrid samples 
(HYB-19 Specimen #2-T) and (b) the schematics of failure 
sequences in tension test. 

 
Five specimens were tested and averaged from each 

sample type. The average property values in each failure 
region were then input into Table 5 in order to more fully 
define the material failure characteristics.  It was also useful 
to compare the hybrid composite samples with a VH-12 
specimen, which has the same characteristic layup as the VI 
side of the hybrid layups. 
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This means both sides adhere well during the formation of 
the hybrid structure. 
 
Compressive Properties 

Static compression testing was accomplished in 
accordance with ASTM D695. Fig. 9 (a) and (b) show the 
typical stress strain curve in compression for the hybrid 
samples and the failure evolution schematic which coincides 
with it.  
 

 
 
(a) A typical stress vs. strain graph (HYB-18 Specimen #5-C) 

of the hybrid samples. 
 

 
 

(b) The schematics of failure. 
 
Fig. 9 A typical stress vs. strain graph (HYB-18 Specimen 
#5-C) of the hybrid samples and the schematics of failure.  
 

Here the curve steadily rises as both the HL and VI sides 
hold loading in region 1. The curve reaches its maximum 
stress state at region 2 where the VI portion of the composite 
fails abruptly. Even though the VI portion is failed, the HL 
portion still remains intact and continues to carry load. 
Region 3 indicates that the curve steadily rises until the 
ultimate failure in the HL portion. Note that over half of the 
samples did not show region 3, because the HL portion has 
less compressive strength than the VI portion. For these 

samples the series of failures in the VI and HL sides of the 
hybrid composites occur almost simultaneously. In other 
words, ultimate failure usually occurs once the VI side of the 
sample finally ruptures in the gage section. The dominant 
failure mode in compression was gage section rupture caused 
by fiber kinking at the center of the sample where forces 
were concentrated. 

Table 6 shows the average compressive properties for the 
two sample types, to include: ultimate compressive strength, 
maximum percentage strain at failure, and compressive 
modulus in GPa. From the data it was found that the material 
properties of HYB-18 and HYB-19 were almost identical in 
compression. It is worth noting that the HYB-19 sample has a 
higher modulus in regions 1 and 3 due to more HL plies and 
higher fiber content by weight. The modulus of region 1 for 
both composite samples is also very close to that (24.04 GPa) 
of the VH-12 sample. This is due to an identical VI layup and 
a HL side which does not add a lot of compressive strength. 
Also the average UCS for the hybrid composite samples is 
between 263 and 265 MPa which is approximately 20% less 
than VH-12, but remains improved by 11% over the HL-6 
sample examined earlier. 
 
Table 6 Compressive Properties of HYB-8 and HYB-9. 

Sample name HYB-18 HYB-19

Sample thickness (mm) 7.75 7.80 

Material 
contents 

Resin content  
(weight %) 42.3 41.9 

Fiber content  
(weight %) 57.7 58.1 

Compression 
test results 

Modulus in  
region 1 (GPa) 23.62 25.37 

Max strength in 
region 2 (MPa) 266.25 263.31 

Modulus in  
region 3 (GPa) 12.1 12.8 

Max % strain 1.441 1.309 

 
Fig. 10 gives the overall pictures and SEM micrographs 

of the fracture surfaces of a HYB specimen in compression. 
The pictures clearly show the failure modes that occur in the 
composite. The failure progression in compression is the 
opposite of tension, since the VI side fails first due to 
increased stiffness and lower maximum strain percent. The 
VI side tends to fail due to fiber kinking or shear crippling, 
which is a localized band across the specimen in which fibers 
rotate by a large amount (Schultheisz and Waas, 1995). The 
HL side of the hybrid composites usually demonstrates 
failure shortly after the VI side. The failure on the HL side is 
mostly caused by brittle or shear banding matrix material 
(Mallick, 2007). This is a typical failure mode in chopped 
fiber mat and is seen in the SEM (HL side) picture in Fig. 10. 
Overall there were no major delaminations of the HL and VI 
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