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A nonnegative square matrix A is primitive if some power Ak >
0 (that is, Ak is entrywise positive). The least such k is called the

exponent of A. In [2], Akelbek and Kirkland defined the scrambling

index of a primitive matrix A,which is the smallest positive integer

k such that any two rows of Ak have at least one positive element

in a coincident position. In this paper, we give a relation between

the scrambling index and the exponent for symmetric primitive

matrices, and determine the scrambling index set for the class of

symmetric primitivematrices.We also characterize completely the

symmetric primitivematrices in this class such that the scrambling

index is equal to the maximum value.

© 2009 Published by Elsevier Inc.

1. Introduction

A nonnegative square matrix A is primitive if some power Ak > 0 (that is, Ak is entrywise positive).

The least such k is called the exponent of A, denoted by exp(A). In [2], by using Seneta’s [9] definition

of coefficients of ergodicity, Akelbek and Kirkland provided an attainable upper bound on the second

largest moduli of eigenvalues of a primitive matrix that makes use of the so-called scrambling index.

The scrambling index of a primitive matrix A is the smallest positive integer k such that any two rows

of Ak have at least one positive element in a coincident position, and denoted by k(A).
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In the study of exponents, themaximum index problem (MIP), the extremal matrix problem (EMP)

and the index set problem (ISP) are the three main problems. For surveys on the exponents of various

classes of primitive matrices, see [7].

The scrambling index gives another characterization of primitivity. For a primitive matrix A, by the

definition of the scrambling index and the exponent it is easy to see that k(A) � exp(A). It is natural
that we consider the relation between exp(A) and k(A), the estimation and evaluation of k(A), and the

corresponding MIP, EMP and ISP for scrambling indices for various classes of primitive matrices.

It iswell known that graph theoreticalmethods are often useful in the study of the powers of square

matrices, so we now introduce some graph theoretical concepts.

Let D = (V, E) denote a digraph on n vertices. Loops are permitted, but no multiple arcs. A u → v

walk inD is a sequenceofverticesu, u1, . . . , up = vandasequenceofarcs (u, u1), (u1, u2), . . . , (up−1, v),
where thevertices and the arcs arenotnecessarily distinct. A closedwalk is au → vwalk,whereu = v.

A path is a walk with distinct vertices. A cycle is a closed u → v walk with distinct vertices except for

u = v. The length of a walkW is the number of arcs inW , and denoted by |W|. The length of a shortest

cycle in D is called the girth of D. The notation u
k→ v (resp. u

k
� v) is used to indicate that there is a

u → vwalk (resp. no u → vwalk) of length k. The distance from vertex u to vertex v inD, is the length

of a shortest walk from u to v, and denoted by d(u, v). The diameter of D is max{d(u, v)|u, v ∈ V(D)}.
A p-cycle is a cycle of length p, denoted by Cp.

A digraphD is strongly connected if there is a u → v path for each pair u, v of vertices ofD. A digraph

D is primitive if there exists some positive integer k such that u
k→ v for every vertex u and vertex v

(not necessarily distinct) of D. The smallest such k is called the exponent of D, denoted by exp(D). For
any pair of vertices u and v (not necessarily distinct) of D, the local exponent from u to v, denoted by

expD(u, v), is the least integer k such that u
m→ v for every m� k. It is clear that

exp(D) = max{expD(u, v)| u, v ∈ V(D)}. (1.1)

It is well known (see, e.g. [3]) that a digraphD is primitive if and only ifD is strongly connected and the

greatest common divisor of the lengths of its cycles is 1. The scrambling index of a primitive digraph

D is the smallest positive integer k such that for every pair of vertices u and v, there exists a vertex w

such that u
k→w and v

k→w in D, it is denoted by k(D). For two distinct vertices u, v ∈ V(D), the local

scrambling index of u and v is the number

ku,v(D) = min{k| u k→w and v
k→w, for some w ∈ V}.

Clearly,

k(D) = max{ku,v(D)|u, v ∈ V(D), u /= v}. (1.2)

It is easy to see a nonnegative square matrix A is primitive if and only if its associated digraph D(A)
is primitive, and in this case we have

exp(A) = exp(D(A)) and k(A) = k(D(A)).

Akelbek andKirkland’s definition of the scrambling index is the sameasCho andKim’s [5] definition

of the competition index in the case of primitive digraphs. The two research groups started from

different point, but got the results almost at the same time. Their achievements are widely applied to

stochastic matrices and food webs. For details, see, e.g. [1,2,5,6].

In [2], Akelbek and Kirkland gave the best upper bound of scrambling index in terms of the order

n and the girth s of a primitive digraph, and settled the MIP and EMP for the scrambling index for the

class of all primitive matrices of order n. In [1], Akelbek and Kirkland characterized all the primitive

matrices in the class of all primitive matrices whose associated digraphs having n vertices and girth s,

such that the scrambling index is equal to the upper bound. Namely, Akelbek and Kirkland settled the

corresponding EMP.

In [10], Shao settled the ISP and EMP for the exponent for the class of symmetric primitivematrices

with order n. In [8], Liu et al. settled the ISP and EMP for the exponent for the class of symmetric

primitive matrices with order n and zero trace. The associated digraph of a symmetric matrix is a
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symmetric digraph, namely, a digraph such that for any vertices u and v, (u, v) is an arc if and only if

(v, u) is an arc. An undirected graph (possibly with loops) can be regarded as a symmetric digraph. It

is well known (see, e.g. [4,10]) that an undirected graph G is primitive if and only if G is connected and

has at least one odd cycle; namely, G is a connected nonbipartite graph.

The partitions of the set of all symmetric primitive matrices with order n are of two types:

(i) those in which the associated graphs of the symmetric primitive matrices have a cycle of length

r but no cycle of any odd length less than r, where 1� r � n and r ≡ 1(mod 2).
(ii) those inwhich the symmetric primitivematriceshaveexactly lpositivediagonal entries, namely,

the associated graphs of the symmetric primitive matrices have exactly l loops, where 0� l � n.

In this paper, we investigate the scrambling index of symmetric primitive matrices. Noting the

correspondence between symmetric primitive matrices and primitive graphs, we will establish our

results using graph theory.

Let n, l and r be integers with n� 2, 0� l � n, 1� r � n and r ≡ 1(mod 2). Let Sn(r) denote the set of
all primitive graphs of order n having a cycle of length r but no cycle of any odd length less than r, and

let Hn(l) denote the set of all primitive graphs of order n having l loops. In Section 2, we give a relation

between the exponent and the scrambling index for primitive symmetric digraphs. In Sections 3 and

4, we settle the MIP, EMP and ISP for the scrambling index for Sn(r) and Hn(l) respectively.

2. The scrambling index and the exponent

In this section we investigate the relation between k(D) and exp(D) for a primitive symmetric

digraph D.

Theorem 2.1. Let D be any primitive symmetric digraph of order n� 2, and let u, v be any pair of vertices

of D. Then

ku,v(D) �
⌈
expD(u, v)

2

⌉
, (2.1)

and

k(D) =
⌈
exp(D)

2

⌉
, (2.2)

where �a� denotes the smallest integer not less than a.

Proof. By the definition of expD(u, v), we have

u
expD(u,v)−−−−−→ v and u

expD(u,v)+1−−−−−→ v.

If expD(u, v) is even, then there is a vertex w of D such that

u

expD(u,v)
2−−−−−→w

expD(u,v)
2−−−−−→ v.

Hence

u

expD(u,v)
2−−−−−→w and v

expD(u,v)
2−−−−−→w.

By the definition of ku,v(D), we have

ku,v(D) �
expD(u, v)

2
.

If expD(u, v) is odd, then expD(u, v) + 1 is even, and there is a vertex w of D such that

u

expD(u,v)+1

2−−−−−→w and v

expD(u,v)+1

2−−−−−→w.
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Hence

ku,v(D) �
expD(u, v) + 1

2
.

Therefore (2.1) holds.

We now prove (2.2). If n = 2, then it is not difficult to verify that k(D) = 1 and exp(D) = 1 or 2.

So (2.2) holds. Therefore in the following we assume that n� 3.

By (1.1), (1.2) and (2.1), we have

k(D) = max{ku,v(D)|u, v ∈ V(D), u /= v}
�max

{⌈
expD(u, v)

2

⌉
|u, v ∈ V(D), u /= v

}

�max

{⌈
expD(x, y)

2

⌉
|x, y ∈ V(D)

}

=
⌈
max{expD(x, y)|x, y ∈ V(D)}

2

⌉
=

⌈
exp(D)

2

⌉
. (2.3)

We now show that

k(D) �
⌈
exp(D)

2

⌉
. (2.4)

By the definition of exp(D), we know that there exist x, y ∈ V(D) (perhaps x = y) such that

x
exp(D)−1

� y (2.5)

Suppose that

k(D) <

⌈
exp(D)

2

⌉
.

If exp(D) is odd, then clearly x /= y and
exp(D)−1

2
� k(D) � kx,y(D). Thus

x
2kx,y(D)−−−−−→ y

(
exp(D)−1

2
−kx,y(D)

)
2

−−−−−→ y,

and hence x
exp(D)−1−−−−−→ y. This contradicts (2.5).

If exp(D) is even, then
exp(D)

2
− k(D) − 1� 0. Let w ∈ V(D)\{x, y} be a neighbor of x or y (which

exists, since n� 3 and D is connected). If w is a neighbor of y, then w
1→ y. Since

exp(D)

2
− kx,w(D) − 1�

exp(D)

2
− k(D) − 1� 0,

we have

x
2kx,w(D)−−−−−→w

(
exp(D)

2
−kx,w(D)−1

)
2

−−−−−→ w.

Hence

x
exp(D)−2−−−−−→w

1→ y,

and hence x
exp(D)−1−−−−−→ y, contradicting (2.5). Similarly we can get a contradiction if w is a neighbor of

x.

Therefore in any case we have k(D) �
⌈
exp(D)

2

⌉
, and (2.4) is proved. Combining (2.3) and (2.4), we

obtain (2.2).
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This completes the proof of the theorem. �

The next theorem will be used in the subsequent two sections, which is contained in [8].

Theorem 2.2 [8]. Let D be a primitive symmetric digraph, and let u and v be any pair of vertices of D. If

u
k1−→ v and u

k2−→ v, where k1 − k2 ≡ 1(mod 2), then

expD(u, v) �max{k1, k2} − 1.

3. The scrambling index of Sn(r)

In this section we investigate the scrambling index of Sn(r). Let D = (V, E) be a strongly connected

digraph. For a vertex u ∈ V and a set X ⊆ V , let d(u, X) = min{d(u, x)| x ∈ X}. For u ∈ X , we define

d(u, X) = 0. We first establish the following lemmas.

Lemma 3.1. Let D be a primitive symmetric digraph, and let Cr be a cycle of odd length r in D. Let u, v be

any pair of vertices of D. Then

ku,v(D) �max{d(u, V(Cr)), d(v, V(Cr))} + r − 1

2
. (3.1)

Proof. Letw1, w2 ∈ V(Cr) such that d(u, w1) = d(u, V(Cr)) and d(v, w2) = d(v, V(Cr))(perhapsw1 =
w2). Then w1, w2 divide Cr into two parts C′, C′′. So

u
d(u,w1)+|C′|+d(w2 ,v)−−−−−−−−−−−−→ v and u

d(u,w1)+|C′′|+d(w2 ,v)−−−−−−−−−−−−→ v.

Setm = max{d(u, w1) + |C′| + d(w2, v), d(u, w1) + |C′′| + d(w2, v)}. Then clearly,

m � d(u, w1) + d(w2, v) + |C|
� 2max{d(u, V(Cr)), d(v, V(Cr))} + r.

Note that |C′| and |C′′| have different parity since |C| = r is odd. We have by Theorem 2.2 that

expD(u, v) �m − 1� 2max{d(u, V(Cr)), d(v, V(Cr))} + r − 1.

Thus by (2.1) of Theorem 2.1 we obtain

ku,v(D) �
⌈
expD(u, v)

2

⌉
�max{d(u, V(Cr)), d(v, V(Cr))} + r − 1

2
,

as desired. �

Lemma 3.2. Let n and r be integers with r ≡ 1(mod 2) and 3� r � n. Let G be any primitive graph in

Sn(r), and let u, v be two distinct vertices of an odd cycle Cr of G. Then

(i) If d(u, v) ≡ 0(mod 2), then ku,v(G) = d(u,v)
2

.

(ii) If d(u, v) ≡ 1(mod 2), then ku,v(G) = r−d(u,v)
2

.

Proof. Let u, v divide Cr into two parts C′, C′′. Without loss of generality, we may assume |C′| < |C′′|.
Then |C′| = d(u, v) and |C′′| = r − |C′| = r − d(u, v), since Cr is a shortest odd length cycle of G. Let

w ∈ V(G) such that

u
ku,v(G)−−−−−→w and v

ku,v(G)−−−−−→w.

Then
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Fig. 1. G0
n,r , r ≡ 1(mod 2) and 3� r � n.

u
ku,v(G)−−−−−→w

ku,v(G)−−−−−→ v.

(i) Since C′ is a shortest walk between u and v of even length d(u, v), we can find a vertex x ∈ V(C′)
such that

u

d(u,v)
2−−−−−→ x and v

d(u,v)
2−−−−−→ x.

Hence

ku,v(G) �
d(u, v)

2
.

If ku,v(G) < d(u,v)
2

, then there is awalk between u and vwith length 2ku,v(G) < d(u, v), a contradiction.

Thus ku,v(G) = d(u,v)
2

.

(ii) Since C′′ is a walk between u and v of even length r − d(u, v), we can find a vertex x ∈ V(C′′)
such that

u

r−d(u,v)
2−−−−−→ x and v

r−d(u,v)
2−−−−−→ x.

Hence

ku,v(G) �
r − d(u, v)

2
.

If ku,v(G) < r−d(u,v)
2

, then there is a closed walk u → w → v → uwith odd length 2ku,v(G) + d(u, v)

< r. This implies G has an odd cycle of length less than r, a contradiction. Thus ku,v(G) = r−d(u,v)
2

. �

Lemma 3.3. Let n and r be integers with r ≡ 1(mod 2) and 3� r � n. Let G0
n,r be the primitive graph in

Sn(r) as shown in Fig. 1. Then

k(G0
n,r) = r − 1

2
.

Proof. Let i, j be any pair of vertices of G0
n,r . If i, j ∈ {r, r + 1, . . . , n}, then

ki,j(G
0
n,r) = 1.

If i /∈ {r, r + 1, . . . , n} or j /∈ {r, r + 1, . . . , n}, then there is an odd cycle Cr of length r such that i, j ∈
V(Cr). By Lemma 3.2 we have

ki,j(G
0
n,r) � k1,2(G

0
n,r) = r − 1

2
.

Hence

k(G0
n,r) = max

i,j∈V(G0
n,r)

{ki,j(G0
n,r)} = r − 1

2
. �
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Fig. 2. Gm
n,r , r ≡ 1(mod 2), 1� r � n − 1 and 1�m� n − r.

Lemma 3.4. Let n, r and m be integers with r ≡ 1(mod 2), 1� r � n − 1 and 1�m� n − r. Let Gm
n,r be

the primitive graph in Sn(r) as shown in Fig. 2. Then

k(Gm
n,r) = m + r − 1

2
. (3.2)

Proof. LetW be a walk of odd length from the vertex n to n. ThenW must contain an odd cycle of Gm
n,r .

Note that Cr is the unique odd cycle of Gm
n,r , and d(n, V(Cr)) = m. Then |W| � r + 2m. This shows there

is no walk of length 2m + r − 2 from n to n, so

exp(Gm
n,r) � 2m + r − 1.

Hence by (2.2) of Theorem 2.1 we have

k(Gm
n,r) =

⌈
exp(Gm

n,r)

2

⌉
�m + r − 1

2
.

On the other hand, since maxu∈V(Gm
n,r)

{d(u, V(Cr))} = m, we have by (3.1) of Lemma 3.1 that

ku,v(G
m
n,r) �m + r − 1

2

for any pair of vertices u, v of Gm
n,r . So

k(Gm
n,r) �m + r − 1

2
.

Combining the above two relations, we obtain (3.2), as desired. �

Theorem 3.1. Let n and r be integers with n� 2, r ≡ 1(mod 2) and 1� r � n, and let

δr =
{
1 for r = 1,
r−1
2

for r ≡ 1(mod 2) and r � 3.

Let G be any primitive graph in Sn(r). Then

k(G) � δr ,

and this bound can be attained.

Proof. By definition we know that k(G) � 1. If r = 1, then we can use Lemma 3.4 to obtain form = 1

that

k(G1
n,1) = 1.

If r ≡ 1(mod 2) and r � 3, then by Lemma 3.3 we have that

k(G0
n,r) = r − 1

2
.
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Now let Cr be an r-cycle of G. Then there are two vertices u, v ∈ V(Cr) with d(u, v) = 1. Hence by (ii)

of Lemma 3.2 we have

k(G) � ku,v(G) = r − 1

2
.

The theorem now follows. �

Theorem 3.2. Let n be an integer with n� 2, and let r be an odd integer with 1� r � n. Let G be any

primitive graph in Sn(r). Then

k(G) � n − r + 1

2
.

Equality holds if and only if

(i) n� 3 and G is isomorphic to Gn−r
n,r , or

(ii) n = 2 (and so r = 1) and either G is isomorphic to G1
2,1 or G is isomorphic to the graph G′

2,1 obtained

from G1
2,1 by adding a loop to its other vertex.

Proof. Let Cr be an r-cycle of G. Then maxi∈V(G) d(i, Cr) � n − r. It follows from Lemma 3.1 that

k(G) = max
i,j∈V(G)

ki,j(G) � n − r + r − 1

2
= n − r + 1

2
.

If 1� r � n − 1 and G is isomorphic to Gn−r
n,r , then by Lemma 3.4 we have that

k(G) = k(Gn−r
n,r ) = n − r + 1

2
.

If r = n ≡ 1(mod 2) and G is isomorphic to G0
n,n, then by Lemma 3.3 we have that

k(G) = k(G0
n,n) = n − 1

2
= n − n + 1

2
.

If n = 2 and G is the graph G′
2,1 in (ii), then it is easy to see that

k(G) = 1 = 2 − 1 + 1

2
.

Now let G be a graph in Sn(r) and assume that k(G) = n − r+1
2

. First suppose that n� 3. Let Cr be
an r-cycle of G. Then

max
i∈V(G)

{d(i, Cr)} � n − r.

Also by Lemma 3.1 we have that

n − r + 1

2
= k(G) = max

u,v∈V(G)
ku,v(G) � max

i∈V(G)
{d(i, Cr)} + r − 1

2
.

Hence

max
i∈V(G)

{d(i, Cr)} = n − r,

and hence G contains a spanning subgraph G∗ isomorphic to Gn−r
n,r .

We now show that G∗ equals G. If r = n ≡ 1(mod 2), then G∗ is a cycle Cn of odd length n. Notice

that Cn is a shortest odd length cycle ofG, soG = G∗ andG is isomorphic toG0
n,n. If r � n − 1, then there

exists a vertex u of G and a vertex v of Cr such that d(u, v) = d(u, Cr) = n − r � 1. Let P be a shortest

path between u and v. Then |P| = n − r and P is an induced subgraph of G. Since Cr is a shortest odd

length cycle ofG, Cr is also an induced subgraph ofG. Suppose that there is an edge e ofG, but not ofG∗,
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which joins a vertex x of P and a vertex y of Cr , where x /= y. Then clearly, d(x, v) = 1 and y /= v. Let

the distinct two vertices y and v divide Cr into two parts C′ and C′′. Then |C′| and |C′′| have different

parity. Without loss of generality, we may assume that |C′| is odd. Then 1� |C′| � r − 2. Hence, there

is an odd cycle C of G with length |C| �(r − 2) + 1 + 1, which contains the three distinct vertices v, x

and y. Since G has no cycle of odd length less than r, we conclude |C| = r. Thus

max
i∈G

{d(i, C)} �max{1, n − r − 1}.
If maxi∈G{d(i, C)} = n − r − 1� 1, then by Lemma 3.1 we obtain the contradiction

k(G) = max
i,j∈V(G)

ki,j(G) � n − r − 1 + r − 1

2
< n − r + 1

2
.

If maxi∈G{d(i, C)} = 1 > n − r − 1, then n = r + 1, and G contains a spanning subgraph G′ isomor-

phic to G0
n,n−1. Hence by Lemma 3.3 we obtain the contradiction

k(G) � k(G′) = (n − 1) − 1

2
< n − (n − 1) + 1

2
.

Finally, suppose that there is a loop of G which is not an edge of G∗. Then r = 1 and it follows that

|Cr | = 1 implying that there is at least one vertex w ∈ V(G)\{v} with a loop. Hence

max
i∈V(G)\{v,w}{d(i, v), d(i, w)} � n − 2.

Applying Lemma 3.1 we have that

ki,j(G) � n − 2 for i, j ∈ V(G)\{v, w},
ki,v(G) � n − 2 for i ∈ V(G)\{v, w},

and

ki,w(G) � n − 2 for i ∈ V(G)\{v, w}.
Also we have kv,w(G) �

⌈
d(v,w)

2

⌉
�

⌈
n−1
2

⌉
� n − 2 since n� 3. Thus

k(G) = max
i,j∈V(G)

{ki,j(G)} � n − 2 < n − 1 + 1

2
,

a contradiction because r = 1. Therefore G = G∗ and G is isomorphic to Gn−r
n,r .

We now suppose that n = 2 and hence that r = 1. Then there are exactly two graphs G1
2,1 and G′

2,1

in S2(1). Since k(G1
2,1) = k(G′

2,1) = 1, G satisfies (ii) of the theorem. The theorem now follows. �

Theorem 3.3. Let n be an integer with n� 2, and let r be an odd integer with 1� r � n. Let K(n, r) =
{k(G)| G ∈ Sn(r)} be the scrambling index set for the class Sn(r). Then

K(n, r) = {δr , δr + 1, . . . , n − r + 1

2
},

where the expression for δr is given in Theorem 3.1.

Proof. Take an integermwith 1�m� n − r, and let G = Gm
n,r as in Fig. 2. Then by Lemma 3.4 we have

that

m + r − 1

2
∈ K(n, r).

So {
r − 1

2
+ 1,

r − 1

2
+ 2, . . . ,

r − 1

2
+ n − r

}
⊆ K(n, r).
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From this and the fact δr ∈ K(n, r), it now follows that

{δr , δr + 1, . . . , n − r + 1

2
} ⊆ K(n, r).

On the other hand, by Theorem 3.1 and Theorem 3.2 we obviously have

K(n, r) ⊆ {δr , δr + 1, . . . , n − r + 1

2
}.

Therefore, K(n, r) =
{
δr , δr + 1, . . . , n − r+1

2

}
. This completes the proof of the theorem. �

4. The scrambling index of Hn(l)

In this section we continue with the notation of the previous section but now we investigate the

scrambling index of Hn(l). Since the case n = 2 and the case 0� l � 1 were already settled in Section

3, we will only consider the remaining case n� 3 and 2� l � n.

Lemma 4.1. Let G be any primitive graph in Hn(l), and let u and v be any pair of vertices of G. Let P be a

shortest walk between u and v, and let w be a vertex with a loop such that

d(w, V(P)) = min{d(x, V(P))| x is a vertex with a loop, x ∈ V(G)}.
Then

(i) If d(w, V(P)) = 0, then

ku,v(G) �
⌈ |P|

2

⌉
�

⌈
n − 1

2

⌉
.

(ii) If d(w, V(P)) > 0, then

ku,v(G) � d(w, V(P)) +
⌈ |P|

2

⌉
� n − l − |P| +

⌈ |P|
2

⌉
� n − l.

Proof. (i) If d(w, V(P)) = 0, then

u
|P|−→ v and u

|P|+1−→ v.

It follows from Theorem 2.2 that

expG(u, v) � |P|,
and hence by (2.1) of Theorem 2.1 that

ku,v(G) �
⌈
expD(u, v)

2

⌉
�

⌈ |P|
2

⌉
�

⌈
n − 1

2

⌉
.

(ii) If d(w, V(P)) > 0, then d(w, V(P)) � n − l − |P|, and
u

|P|+2d(w,V(P))−−−−−−−−−−→ v and u
|P|+2d(w,V(P))+1−−−−−−−−−−→ v.

It follows from Theorem 2.2 that

expG(u, v) � |P| + 2d(w, V(P)).

Hence by (2.1) of Theorem 2.1 we have

ku,v(G) � d(w, V(P)) +
⌈ |P|

2

⌉
� n − l − |P| +

⌈ |P|
2

⌉
� n − l.

The lemma now follows. �
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Fig. 3. G ∈ Hn(l, n − 1), n −
⌈
n−1
2

⌉
� l � n.

Now we construct some subsets of Hn(l) as follows.

For 1� d � n − 1, we define

Hn(l, d) = {G| the diameter of G is d, G ∈ Hn(l)}.
For a path P and a graph G ∈ Hm+1(m), the graph P + G is obtained by identifying one of the end-

vertices of P with the vertex of Gwith no loop (Notice that the vertex of Gwith no loop is unique). We

define

Hn−l
n (l, ∗) = {P + G| |P| = n − l − 1, G ∈ Hl+1(l)}.

For l = n − 2,we define

H0
n(n − 2) ={G| G ∈ Hn(n − 2), the two vertices of G with no loop

are neighboring and have no common neighbor}.

Lemma 4.2. Let n and l be integers with n� 3 and n −
⌈
n−1
2

⌉
� l � n, and let G be any primitive graph in

Hn(l, n − 1) (see Fig. 3). Then

k(G) =
⌈
n − 1

2

⌉
. (4.1)

Proof. By Lemma 4.1 we have that

ku,v(G) �max

{
n − l,

⌈
n − 1

2

⌉}

for any pair of vertices u, v of G. Since n − l �
⌈
n−1
2

⌉
, it follows that

k(G) �
⌈
n − 1

2

⌉
. (4.2)

On the other hand, it is obvious that 1
n−2
� n. So

exp(G) � expG(1, n) � n − 1,

and so

k(G) =
⌈
exp(G)

2

⌉
�

⌈
n − 1

2

⌉
. (4.3)

Combining (4.2) and (4.3), we obtain (4.1). �

Lemma 4.3. Let n and l be integers with n� 3, n ≡ 1(mod 2) and n −
⌈
n−1
2

⌉
� l � n. Let G be any

primitive graph in Hn(l, n − 2) (see Fig. 4). Then

k(G) =
⌈
n − 1

2

⌉
= n − 1

2
. (4.4)

Proof. Note that if n ≡ 1(mod 2), then
⌈
n−2
2

⌉
=

⌈
n−1
2

⌉
= n−1

2
. The proof of this lemma is similar to

Lemma 4.2, we omit it. �
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Fig. 4. G ∈ Hn(l, n − 2), n is odd and n −
⌈
n−1
2

⌉
� l � n.

Fig. 5. G ∈ Hn−l
n (l, ∗), 2� l � n −

⌈
n−1
2

⌉
.

Lemma 4.4. Let n and l be integers with n� 3 and 2� l � n −
⌈
n−1
2

⌉
. Let G be any primitive graph in

Hn−l
n (l, ∗) (see Fig. 5). Then

k(G) = n − l. (4.5)

Proof. By Lemma 4.1 we have that

ku,v(G) �max

{
n − l,

⌈
n − 1

2

⌉}

for any pair of vertices u, v of G. Since n − l �
⌈
n−1
2

⌉
, it follows that

k(G) � n − l. (4.6)

On the other hand, let W be any walk of odd length from the vertex 1 to 1. Then W must contain an

odd cycle C of G. If |C| = 1, then |W| � 2(n − l) + |C| = 2(n − l) + 1. If |C| � 3, then |W| � 2(n −
l − 1) + |C| � 2(n − l − 1) + 3 = 2(n − l) + 1. Thus in any case we have |W| � 2(n − l) + 1. This

shows

1
2(n−l)−1

� 1.

Hence

exp(G) � expG(1, 1) � 2(n − l),

and hence

k(G) =
⌈
exp(G)

2

⌉
� n − l. (4.7)

Combining (4.6) and (4.7), we obtain (4.5), as desired. �

Lemma 4.5. Let n and l be integers with 4� n� 5 and l = n − 2, and let G be any primitive graph in

H0
n(n − 2). Then

k(G) =
⌈
n − 1

2

⌉
= n − l = 2. (4.8)

Proof. By Lemma 4.1 we have that

ku,v(G) �max

{
n − l,

⌈
n − 1

2

⌉}
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for any pair of vertices u, v of G. Since 4� n� 5 and l = n − 2,
⌈
n−1
2

⌉
= n − l = 2. So

k(G) � n − l =
⌈
n − 1

2

⌉
= 2. (4.9)

On the other hand, let x and y be the two vertices of G with no loop. By the definition of H0
n(n − 2), it

is obvious that

x
2

� y.

Hence

exp(G) � expG(x, y) � 3,

and hence

k(G) =
⌈
exp(G)

2

⌉
� 2. (4.10)

Combining (4.9) and (4.10), we obtain (4.8). �

Theorem 4.1. Let G be any primitive graph in Hn(l). Then

k(G) �

⎧⎨
⎩

⌈
n−1
2

⌉
, if n −

⌈
n−1
2

⌉
� l � n,

n − l, if 2� l � n −
⌈
n−1
2

⌉
,

(4.11)

and the following hold:
(i) If l = n −

⌈
n−1
2

⌉
, then k(G) =

⌈
n−1
2

⌉
= n − l if and only if G ∈ Hn(l, n − 1) ∪ Hn−l

n (l, ∗), or

G ∈ Hn(l, n − 2) and n is odd, or G ∈ H0
4(2), or G ∈ H0

5(3).

(ii) If n −
⌈
n−1
2

⌉
+ 1� l � n, then k(G) =

⌈
n−1
2

⌉
if and only if G ∈ Hn(l, n − 1), or G ∈ Hn(l, n − 2)

and n is odd.
(iii) If 2� l � n −

⌈
n−1
2

⌉
− 1, then k(G) = n − l if and only if G ∈ Hn−l

n (l, ∗).

Proof. Let u, v be any pair of vertices of G. Then by Lemma 4.1 we have

k(G) = max
u,v∈V(G)

{ku,v(G)}

�max

{
n − l,

⌈
n − 1

2

⌉}

=
⎧⎨
⎩

⌈
n−1
2

⌉
, if n −

⌈
n−1
2

⌉
� l � n,

n − l, if 2� l � n −
⌈
n−1
2

⌉
.

Hence (4.11) holds.

Let V(G) = {1, 2, . . . , n}, and let 1, i ∈ V(G) such that

k1,i(G) = k(G).

Let P1,i be a shortest path between 1 and i, and let m be a vertex with a loop such that

d(m, V(P1,i)) = min{d(x, V(P1,i))| x is a vertex with a loop, x ∈ V(G)}.
Wenow assume that l = n −

⌈
n−1
2

⌉
and prove (i). First suppose that k(G) =

⌈
n−1
2

⌉
= n − l. Then

k1,i(G) = k(G) =
⌈
n − 1

2

⌉
= n − l. (4.12)
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We consider two cases:

Case 1: d(m, V(P1,i)) = 0. Then by (i) of Lemma 4.1 and (4.12) we have that⌈
n − 1

2

⌉
= k1,i(G) �

⌈ |P1,i|
2

⌉
�

⌈
n − 1

2

⌉
.

Hence
⌈ |P1,i|

2

⌉
=

⌈
n−1
2

⌉
. Thus |P1,i| = n − 1, or |P1,i| = n − 2 and n is odd. Since P1,i is a shortest path

between thevertex1and thevertex i, thediameterofG is not less than |P1,i|. ThereforeG ∈ Hn(l, n − 1),
or G ∈ Hn(l, n − 2) and n is odd.

Case 2: d(m, V(P1,i)) > 0. Then by (ii) of Lemma 4.1 and (4.12) we have that

n − l = k1,i(G) � d(m, V(P1,i)) +
⌈ |P1,i|

2

⌉

� n − l − |P1,i| +
⌈ |P1,i|

2

⌉
� n − l.

Hence |P1,i| =
⌈ |P1,i|

2

⌉
and d(m, V(P1,i)) = n − l − |P1,i|. Thus

|P1,i| = 1 and d(m, V(P1,i)) = n − l − 1 =
⌈
n − 1

2

⌉
− 1.

Without loss of generality, we may assume that

d(i, m) = d(m, V(P1,i)) = n − l − 1 =
⌈
n − 1

2

⌉
− 1, i = 2 andm = n − l + 1.

We consider two subcases:

Subcase 2.1: d(m, V(P1,i)) = n − l − 1 = 1. Then n = 4 (and l = 2), or n = 5 (and l = 3). So G has

a loop at each vertex in V(G)\{1, 2}, and there is no vertex in {1, 2} with loop. If there is a vertex j in

V(G)\{1, 2} such that j is a common neighbor of the vertices 1 and 2, then clearly k1,2(G) = 1. This

contradicts (4.12). Thus G ∈ H0
4(2) (when n = 4), or G ∈ H0

5(3) (when n = 5).

Subcase2.2:d(m, V(P1,i)) = n − l − 1� 2.Thenmax{1, n − l − 2} = n − l − 2. LetP = 23 · · · (n −
l)(n − l + 1) be a shortest path between the vertex 2 and the vertex n − l + 1. Then there is no vertex

in V(P)\{n − l + 1} with loop.

Let P′ = 123 · · · (n − l) is a path between the vertex 1 and the vertex n − l (which exists, since

|P1,2| = 1). Then |P′| = n − l − 1 and there is no vertex in V(P′) with loop. Suppose that there is an

edge of G, but not of P′, which joins two vertices of P′. Then d(1, n − l) � |P′| − 1 = n − l − 2. So

d(1, n − l + 1) � d(1, n − l) + 1� n − l − 1, and so

k1,2(G) �max{d(1, n − l + 1), d(2, n − l + 1)} = n − l − 1.

This contradicts (4.12). Thus P′ is an induced subgraph of G.

Since G contains l loops, G has a loop at each vertex in V(G)\V(P′) = {n − l + 1, n − l + 2, . . . , n}.
Let G′

l+1 be the subgraph of G induced by {n − l, n − l + 1, . . . , n}, and let j be any vertex of G′
l+1.

Suppose that there is an edge of G, which joins j and a vertex in V(P′)\{n − l}. Then
d(j, V(P1,2)) �max{1, n − l − 2} = n − l − 2.

Hence

max{d(1, j), d(2, j)} � n − l − 2 + 1 = n − l − 1,

and hence k1,2(G) � n − l − 1. This contradicts (4.12). Thus we conclude that G′
l+1 is connected since

G is a primitive graph, and hence G′
l+1 ∈ Hl+1(l).

Therefore G = P′ + G′
l+1 ∈ Hn−l

n (l, ∗).

If G ∈ Hn(l, n − 1), then by Lemma 4.2 we have k(G) =
⌈
n−1
2

⌉
= n − l. If G ∈ ∪Hn−l

n (l, ∗), then

by Lemma 4.4 we have that k(G) =
⌈
n−1
2

⌉
= n − l. If G ∈ Hn(l, n − 2) and n is odd, then by Lemma
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Fig. 6. Γ h
n,l , 2� l � n −

⌈
n−1
2

⌉
and 1� h� n − l.

4.3 we have that k(G) =
⌈
n−1
2

⌉
= n − l. If G ∈ H0

4(2) or G ∈ H0
5(3), then by Lemma 4.5 we have that

k(G) =
⌈
n−1
2

⌉
= n − l = 2. Therefore (i) holds.

We now assume that n −
⌈
n−1
2

⌉
+ 1� l � n and prove (ii). Suppose that k(G) =

⌈
n−1
2

⌉
. Then

k1,i(G) = k(G) =
⌈
n − 1

2

⌉
. (4.13)

If d(m, V(P1,i)) > 0, then by (ii) of Lemma 4.1 and (4.13) we have that⌈
n − 1

2

⌉
= k(G) � n − l.

This contradicts the condition n −
⌈
n−1
2

⌉
+ 1� l � n. Thus d(m, V(P1,i)) = 0. The rest of proof is

similar to (i) of this theorem, so we omit it.

We now assume that 2� l � n −
⌈
n−1
2

⌉
− 1 and prove (iii). Suppose that k(G) = n − l. Then

k1,i(G) = k(G) = n − l. (4.14)

If d(m, V(P1,i)) = 0, then by (i) of Lemma 4.1 and (4.14) we have that

n − l = k(G) �
⌈
n − 1

2

⌉
.

This contradicts the condition 2� l � n −
⌈
n−1
2

⌉
− 1. Thus d(m, V(P1,i)) > 0. The rest of proof is

similar to (i) of this theorem, so we omit it (Note that in this case n� 5 and n − l − 1�
⌈
n−1
2

⌉
� 2).

This completes the proof of the theorem. �

Lemma 4.6. Let n, l and h be integers with 2� l � n −
⌈
n−1
2

⌉
and 1� h� n − l. Let Γ h

n,l be the primitive

graph in Hn(l) as shown in Fig. 6. Then

k(Γ h
n,l) = h. (4.15)

Proof. LetW be any walk of odd length from the vertex 1 to 1. ThenW must contain an odd cycle C of

Γ h
n,l . If |C| = 1, then |W| � 2h + |C| = 2h + 1. If |C| � 3, then |W| � 2(h − 1) + |C| � 2h + 1. Thus in

any case we have |W| � 2h + 1. This shows

1
2h−1
� 1.

Hence

exp(Γ h
n,l) � expΓ h

n,l
(1, 1) � 2h,

and hence

k(Γ h
n,l) =

⌈
exp(Γ h

n,l)

2

⌉
� h. (4.16)
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Fig. 7. Πh
n,l , n −

⌈
n−1
2

⌉
� l � n and 1� h�

⌈
n−1
2

⌉
.

On the other hand, let u, v be any pair of vertices of Γ h
n,l . Then

u
d(u,n)−→ n and v

d(v,n)−→ n.

Since max{d(u, n), d(v, n)} � h and there is a loop at the vertex n, we have

u
h→ n and v

h→ n.

So

k(Γ h
n,l) = max{ku,v(Γ h

n,l)| u, v ∈ V(Γ h
n,l), u /= v} � h. (4.17)

Combining (4.16) and (4.17), we obtain (4.15). �

Lemma 4.7. Let n, l and h be integers with n� 3, n −
⌈
n−1
2

⌉
� l � n and 1� h�

⌈
n−1
2

⌉
. Let Πh

n,l be the

primitive graph in Hn(l) as shown in Fig. 7. Then

k(Πh
n,l) = h. (4.18)

Proof. Since d(1, n) = 2h, we have exp(Πh
n,l) � 2h. Hence

k(Πh
n,l) =

⌈
exp(Πh

n,l)

2

⌉
� h.

On the other hand, let u, v be any pair of vertices of Πh
n,l . Note that there is a loop at the vertex

⌈
n−1
2

⌉
and max

{
d

(
u,

⌈
n−1
2

⌉)
, d

(
v,

⌈
n−1
2

⌉)}
� h. We have

u
h→

⌈
n − 1

2

⌉
and v

h→
⌈
n − 1

2

⌉
.

So

k(Πh
n,l) = max{ku,v(Πh

n,l| u, v ∈ V(Πh
n,l), u /= v} � h.

Combining the above two relations, we obtain (4.18). �

Theorem 4.2. Let n and l be integers with n� 3 and 2� l � n. Let K∗(n, l) = {k(G)| G ∈ Hn(l)} be the

scrambling index set for the class Hn(l). Then

(i) If 2� l � n −
⌈
n−1
2

⌉
, then

K∗(n, l) = {1, 2, . . . , n − l}.
(ii) If n −

⌈
n−1
2

⌉
� l � n, then

K∗(n, l) =
{
1, 2, . . . ,

⌈
n − 1

2

⌉}
.
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Proof. We first assume that 2� l � n −
⌈
n−1
2

⌉
and prove (i). Take an integer hwith 1� h� n − l, and

let G = Γ h
n,l as in Fig. 6. Then by Lemma 4.6 we have h ∈ K∗(n, l). Hence

{1, 2, . . . , n − l} ⊆ K∗(n, l).
On the other hand, by Theorem 4.1 we obviously have

K∗(n, l) ⊆ {1, 2, . . . , n − l}.
Therefore K∗(n, l) = {1, 2, . . . , n − l}.

We now assume that n −
⌈
n−1
2

⌉
� l � n and prove (ii). Take an integer h with 1� h�

⌈
n−1
2

⌉
, and

let G = Πh
n,l as in Fig. 7. Then by Lemma 4.7 we have h ∈ K∗(n, l). Hence{

1, 2, . . . ,

⌈
n − 1

2

⌉}
⊆ K∗(n, l).

On the other hand, by Theorem 4.1 we obviously have

K∗(n, l) ⊆
{
1, 2, . . . ,

⌈
n − 1

2

⌉}
.

Therefore K∗(n, l) =
{
1, 2, . . . ,

⌈
n−1
2

⌉}
. The theorem now follows. �
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