
Computers and Mathematics with Applications 56 (2008) 670–678
www.elsevier.com/locate/camwa

Non-standard numerical method for a mathematical model of RSV
epidemiological transmission
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a Departamento de Matemáticas y Estadı́stica, Universidad de Córdoba, Ciudad Universitaria Carrera 6 No. 76-103, Monterı́a, Colombia
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Abstract

Respiratory Syncytial Virus (RSV) has long been recognized as the single most important virus causing acute severe respiratory-
tract infections with symptoms ranging from rhinitis to bronchitis in children who may require hospitalization. Outbreaks of RSV
occur every year and all children become infected within the first two years of life, and that overloads hospital casualty services.
The transmission dynamics of RSV are strongly seasonal. Epidemics occur each winter in temperate climates and often coincide
with the seasonal rainfall in tropical climates.

In this paper we develop a non-standard numerical scheme for a SIRS seasonal epidemiological model for RSV transmission.
This non-standard numerical scheme preserves the positivity of the continuous model and is applied to approximate the solution
using different sizes of step.

Finally this method is compared with some well-known explicit methods and simulations with data from Gambia and Finland
are carried out.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Respiratory syncytial virus (RSV) has long been recognized as the most important virus causing acute severe
respiratory-tract infections, give rise to symptoms ranging from rhinitis to bronchitis in children who require
hospitalization. RSV has been also implicated in severe lung diseases in adults, especially in the elderly. Infections
with RSV frequently occur in the early years of life and repeated infections are common in all age groups. Outbreaks
of RSV occur each year and, because the virus is highly contagious, essentially all children become infected within
the first 2 years of life. The transmission dynamics of RSV are strongly seasonal with a pronounced annual component
in many countries. Epidemics occur each winter in many temperate climates and are often coincident with seasonal
rainfall and religious festivals in tropical countries [1].
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The mathematical models have been revealed as a powerful tool to analyze the epidemiology of the
infectious illness, to understand its behavior, to predict its impact and to find out how external factors
change the impact. In the case of RSV, the building of a reliable model is a priority in order to
predict the medical care requirements for next seasons. Mathematical models for RSV have been developed
previously. For instance, in [2], a SIRS (susceptible–infectious–recovered–susceptible) and a MSEIRS (maternally
derived immunity–susceptible–latent–infectious–recovered–susceptible) mathematical models with four possible re-
infections are studied and applied with data from Gambia, Singapore, Florida and Finland. In [1] a nested RSV model,
stochastic simulations and fitting data from several countries are presented.

In Mathematical epidemiologic and others areas, models are non-linear IVP (initial value problem) systems. But,
they do not have solution in closed form (in term of the model parameters only) or it can locally predict the behavior of
systems. It is very important to design robust numerical methods to observe the behavior of the solutions numerically
for several time steps.

It is well known that the traditional schemes like forward Euler, Runge–Kutta and others to solve nonlinear initial
values problems, sometimes fail generating oscillations, bifurcations, chaos and false steady states [3]. Moreover,
some methods, despite using adaptative step sizes, still fail (see for instance [4]). One alternative way to prevent all
this class of numerical instabilities is the construction of schemes of finite differences using different techniques. The
nonstandard finite difference techniques developed by Mickens [5,6] have resulted in the creation of new methods,
see [8–15].

The aim of this paper is to present the construction of a nonstandard finite difference scheme for the numerical
solution of the SIRS model for modeling transmission of respiratory syncytial virus RSV presented by Weber et al. [2],
in which we combine a nonstandard difference method and a predictor-corrector. We analyze its behavior for different
parameter values of the model. The model is based on the partition of the host population into four subpopulations,
this are susceptibles S(t), infectious I (t) and recovered R(t) as in [2]. With this SIRS model we are able to discuss
how the different epidemiological parameters influence the global behavior in the evolution of the transmission of the
RSV.

The organization of this paper is as follows. In Section 2, some mathematical preliminaries and the model of
transmission of RSV are proposed. In Section 3 we build the numerical scheme numerical using the nonstandard
difference techniques. In Section 4 we analyze the convergence of the scheme. In Section 5 numerical simulations
for different parameter values of the model and different step sizes of the numerical scheme are reported and finally,
Section 6 ends the paper with discussion and conclusions.

2. Mathematical model

In this section, we presented the continuous mathematical model for the transmission of virus RSV presented by
A. Weber in [2], as a first order system of ordinary differential equations SIRS (Susceptibles, Infected, Recovered and
Susceptibles) and parameters of the form

Ṡ(t) = µ − µS(t) − β(t)S(t)I (t) + γ R(t), S(0) = S0 > 0

İ (t) = β(t)S(t)I (t) − ν I (t) − µI (t), I (0) = I0 > 0

Ṙ(t) = ν I (t) − γ R(t) − µR(t), R(0) = R0 > 0,

(1)

under the following hypothesis:

(1) The population is divided in three classes: Susceptibles S(t), who are all individuals that have not the virus,
Infected I (t), being all the infected individuals having the virus and able to transmit the illness and Recovered
R(t) who are all the individuals not having the virus and with a temporary immunity.

(2) The birth rate and death rate are equals to µ > 0. This means that Ṡ(t) + İ (t) + Ṙ(t) = 0 and from (1) one gets
S(t) + I (t) + R(t) = 1 is invariant. Therefore S(t) ≤ 1, I (t) ≤ 1, R(t) ≤ 1, for all t ≥ 0.

(3) The meeting coefficient function β(t) between clases S(t) and I (t), is a continuous T -periodic function, called
the transmission rate, and satisfying 0 < βl

:= mint∈R β(t) ≤ β(t) ≤ βu
:= maxt∈R β(t). Periodicity of the β(t)

is a way to incorporate the seasonality of the spread in the environment. It is usual to approximate this seasonally-
forced by a cosinusoidal function β(t) = b0(1 + b1 cos(2π(t + ϕ))) where b0 ≥ 0 is the baseline transmission
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Table 1
The values µ, ν, γ are expressed in rates per year

Country µ ν γ b0 b1 φ

Gambia 0.041 36 1.8 60 0.16 0.15
Florida 0.016 36 1.8 62 0.10 0.14
Finland 0.013 36 1.8 44 0.36 0.60
Singapore 0.016 36 1.8 77 0.14 0.28

The phase angle in years is denoted by φ [2].

Fig. 1. Numerical approximations of solutions to system (2) in Gambia, using the scheme (8), the explicit Euler, 4th Order Runge–Kutta and the
adaptive MatLab solver ode45.

parameter, 0 ≤ b1 ≤ 1 measures the amplitude of the seasonal variation in transmission and 0 ≤ ϕ ≤ 1 is the
phase angle normalized [2].

(4) The per capita rate of leaving the infected class I (t) is called ν and the per capita rate of recovered class R(t) is
γ .

As R(t) + S(t) + I (t) = 1, using this expression in (1) we have the following equivalent system

Ṡ(t) = k − kS(t) − β(t)S(t)I (t) − γ I (t), S(0) = S0 > 0

İ (t) = β(t)S(t)I (t) − ωI (t), I (0) = I0 > 0,

R(t) = 1 − S(t) − I (t), for all t ≥ 0,

(2)

where k = µ + γ and ω = µ + ν. We assume that

γ < ν (3)

i. e., the per capita rate of recovered is greater than the per capita rate of leaving the infected class.

3. Scheme construction

In this section we develop a numerical scheme that it will be used in the next section to solve the system of ordinary
differential equations representing the evolution of the different subpopulations in regard to transmission of virus RSV.
The construction of the scheme is based on nonstandard techniques developed by Mickens [5,6].

Let us denote by Sn, I n, βn and Rn the approximations of S(nh), I (nh), R(nh) and β(nh) respectively for
n = 0, 1, 2 . . ., and h > 0 the step size of the scheme. The discretization of the system (2) and the developing of
the numerical method is based on the approximations of the temporal derivatives by a first order forward scheme,
using the non-standard difference techniques as we mentioned previously. If f (t) ∈ C1(R), we define the derivative
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Fig. 2. Numerical approximations of solutions to system (2) in Finland, using the scheme (8), the explicit Euler, 4th Order Runge–Kutta and the
adaptive MatLab solver ode45.

Fig. 3. Numerical approximations of solutions to system (2) in Florida, using the scheme (8), the explicit Euler, 4th Order Runge–Kutta and the
adaptive MatLab solver ode45.

as

d f (t)

dt
=

f (t + h) − f (t)

ϕ(h)
+O(h) as h −→ 0, (4)

where ϕ(h) called the denominator functions that satisfy

ϕ(h) = 1 − exp(−h), see for instance [6, p. 19].

Thus, for the first equation of (2), we have

Sn+1
− Sn

ϕ(h)
= k − kSn+1

− βn Sn+1 I n
− γ I n, (5)

where the second term on the right-side of (5), has the discrete form

−S → −Sn+1,

−βSI → −βn Sn+1 I n .
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Fig. 4. Numerical approximations of solutions to system (2) in Singapore, using the scheme (8), the explicit Euler, 4th Order Runge–Kutta and the
adaptive MatLab solver ode45.

Fig. 5. Numerical solutions to (2) in Gambia with all methods.

One way to determine convergence schemes with an arbitrarily high order of accuracy is suggested by converting the
original differential equation into an equivalent integral equation [7]. Thus, taking the second equation of (2) as a
differential equation of first order in I (t), we have the solution in the interval [t0, t] for t > t0 given by

I (t) = I (t0) exp
(∫ t

t0
(β(u)S(u) − ω) du

)
,

and using the ideas of Mickens in [5, p. 148], we can obtain a scheme by making in the equation above the following
substitutions:

t0 −→ tn = ϕ(h)n,

t −→ tn+1 = ϕ(h)(n + 1),

I (t0) −→ I n,

I (t) −→ I n+1,

S(t0) −→ Sn,

S(t) −→ Sn+1.
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Thus, one gets

I n+1
= I n exp

(∫ tn+1

tn
(β(u)S(u) − ω) du

)
,

and using the quadrature trapezoidal formula, we concluded that

I n+1
= I n exp

(
ϕ(h)

2
(βn+1Sn+1

+ βn Sn) − ϕ(h)ω

)
. (6)

Finally, on the same way, we have

S(t) = exp
(

−

∫ t

t0
(k + β(u)I (u)du)

)
S0

+ exp
(

−

∫ t

t0
(k + β(u)I (u)du)

) ∫ t

t0
(k − γ I (τ )) exp

(
−

∫ τ

t0
(k + β(u)I (u)du)

)
dτ

and we present the following scheme as a corrector of (5)

Sn+1
= Sn exp

(
−

ϕ(h)

2
(2k + βn+1 I n+1

+ βn I n)

)
+

ϕ(h)

2
(k − γ I n+1)

+
ϕ(h)

2
(k − γ I n) exp

(
−

ϕ(h)

2
(βn+1 I n+1

− βn I n)

)
. (7)

After rearranging the explicit formulations, we obtain the following discrete system:

Sn+1
p =

ϕ(h)(k − γ I n) + Sn

1 + ϕ(h)k + ϕ(h)βn I n , (8a)

I n+1
= I n exp

(
ϕ(h)

2
(βn+1Sn+1

p − βn Sn) − ϕ(h)ω

)
, (8b)

Sn+1
c = Sn exp

(
−

ϕ(h)

2
(2k + βn+1 I n+1

+ βn I n)

)
+

ϕ(h)

2
(k − γ I n+1)

+
ϕ(h)

2
(k − γ I n) exp

(
−

ϕ(h)

2
(βn+1 I n+1

− βn I n)

)
, (8c)

and

Rn+1
= 1 − Sn+1

c − I n+1. (8d)

From the systems (8), we can see that the positivity requirement is satisfaced if S(t) ≤ ω/βl for all t ≥ 0
(βl

= mint∈[0,T ] β(t)) and 0 < h < hc, where hc is a critical value, that for this case we obtain hc ≤ 0.1, see [14]. To
calculate, using this scheme, we proceed as follows:

(i) Select values S0, I 0, R0, such that S0
+ I 0

+ R0
= 1.

(ii) Calculate S1 from (8a).
(iii) Using this value of S1 and I 0, calculate I 1 from (8b).
(iv) Correct the value S1

c , using S0, I 1 and the Eq. (8c).
(v) Calculate R1 from (8d).

(vi) Repeat all of the above steps, for n = 1, 2, 3 . . ..

Thus, we get the numerical solution of system (2).

4. Numerical simulations

To illustrate the behavior of the numerical solution of scheme (8), we perform several simulations. In a sequence of
executions runs, we change the parameters of the model using the set of biologically feasible parameter values given
in Table 1.
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Fig. 6. Numerical approximations of solutions to system (2) in Gambia, using the scheme (8) with with larger values of the time as t = 10, 20, 30
years.

Parameters µ, ν, γ correspond to birth rate, rate of recovered, rate of immunity lost respectively and b0, b1,
φ are average of transmission parameter, amplitude of the seasonal fluctuation and phase angle normalized in the
transmission rate β(t) for the transmission of virus RSV .

4.1. Numerical results and comparison with other schemes

In order to test convergence and stability properties of the schemes, we perform several numerical simulations with
different values for the parameters of the model according to the Table 1 with different step sizes. We compare the
performance of the method (8), the explicit Euler method, the explicit 4th Order Runge–Kutta using h = 0.04 and
they were compared with the solution computed by the adaptive MatLab solver ode45. Solutions of the Euler and
4th Order Runge–Kutta methods are not correct and Figs. 1–4, show this fact. Now, for a relatively small step size
h = 0.001 all three methods achieve the correct solution, (see Fig. 5).
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Fig. 7. Numerical approximations of solutions to system (2), using the scheme (8) with the variation of b0 for Finland.

4.2. Numerical results for very large time

We present further simulations of the method with larger values of the time as t = 10, 20, 30 years and h such
as: h = 0.001, 0.01, 0.1 respectively, and it shows that preserve positivity periodic solutions. The profiles of infective
populations for h = 0.001, 0.01, 0.1 portrayed in the graphics of Fig. 6 for Gambia, confirm that the scheme (8) is
stable for step sizes less than h = 0.1. This simulation verify the behavior positive T -periodic of the solution and is
globally asymptotically stable [16]. Furthermore, in the rate of transmission β(t), the parameter b0 ≥ 0 is changed
considerably and we make simulation with b0 = 44, 80, 120 and the value parameters corresponding to Finland.
In Fig. 7 we can see that the scheme preserve the positivity of the solutions, although the periodicity of solutions
change.
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5. Conclusions

In this paper, we propose a numerical scheme to solve a SIRS model for the transmission of virus RSV which is a
first-order ODE system and we analyze its behavior.

We applied the theory of nonstandard numerical methods to construct a nonstandard scheme. We combined
nonlocal approximations to transform the original system of differential Eq. (2) into an equivalent system of integral
equation, for solving the SIRS model for the transmission of virus RSV . This numerical scheme is analyzed and
tested in several numerical simulations and we can see that the scheme preserves essential positivity properties of
exact solutions of the SIRS model.

The classical explicit Euler and explicit fourth order Runge–Kutta schemes are compared with the scheme proposed
in (8). The forward Euler and fourth order Runge–Kutta schemes diverge for small step-sizes, in general for h > 0.01.
On the other hand, the scheme proposed in (8), shows convergence in all the numerical simulations performed for step
size less than hc = 0.1 and any initial condition.

We can see from the numerical simulations, that this SIRS model predicts the endemic effect of the transmission of
virus RSV for realistic parameter values taken from [2], for Gambia, Finland, Florida and Singapore and are illustrated
in Figs. 1–7 where the numerical simulation were done for large time and different step size. This epidemic model
of temporary immunity is interesting to understand the evolution of virus RSV as well as other diseases with similar
characteristics.

One future work is the introduction of vaccination programs in the SIRS model to see how this would affect the
evolution of the transmission of virus RSV and make numerical simulations to analyze the optimal parameter values
for the vaccination programs.
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