-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

sc.euce@mew DISCRETE
MATHEMATICS

|
4 k%
5

ELSEVIER Discrete Mathematics 289 (2004) 129-135

www.elsevier.com/locate/disc
Note

Characterization of graphs with equal domination
and connected domination numbérs

Xue-gang Cheh®*, Liang Sur, Hua-ming Xing
aDepartment of Mathematics, School of Science, Beijing Institute of Technology, Beijing 100081, PR China
bThe College of Information Science and Engineering, Shandong University of Science and Technology, Taian,
Shandong Province 271019, PR China
CDepartment of Mathematics, Langfang Teacher College, Langfang, Hebei 065000, PR China

Received 1 October 2002; received in revised form 26 July 2003; accepted 12 August 2004
Available online 11 November 2004

Abstract

Arumugam and Paulraj Joseph (Discrete Math 206 (1999) 45) have characterized trees, unicyclic
graphs and cubic graphs with equal domination and connected domination numbers. In this paper,
we extend their results and characterize the class of block graphs and cactus graphs for which the
domination number is equal to the connected domination number.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple edges. Terms
not defined here are used in the sense of Arumugdm

Let G = (V, E) be a simple graph of order. The degree, neighborhood and closed
neighborhood of a vertexin the graphG are denoted by (v), N (v) andN[v]=N (v) U{v},
respectively. For a subsgbfV, N (S) denotes the set of all vertices adjacent to some vertex
in SandN[S]= N(S)U S. The graph induced by C V is denoted by(S). The minimum
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degree and maximum degree of the graph G are denotéd®yand A(G), respectively.
Let P, denote the path with vertices.

A subsetSof V is called adominating setf every vertex inV — § is adjacent to some
vertex inS Thedomination numbeyp(G) of G is the minimum cardinality taken over all
dominating set of5. A dominating set is called @onnected dominating siétthe induced
subgraph(S) is connected. Theonnected domination numbgr(G) of G is the minimum
cardinality taken over all minimal connected dominating se.& connected dominating
setSwith cardinalityy.(G) is called ay.-set. LetS C V(G) andx € S, we say thak has a
private neighbour (with respect 8) if there is a vertex iV (G) — S whose only neighbour
in Sis x. Let PN(x, S) denote the private neighbours setxafith respect t&s

A vertexv of G is called asupportif it is adjacent to a pendant vertex. Any vertex of
degree greater than one is callediaternal vertex

For any connected grafgha vertexv € V is called acutvertexof G, if G — v is no longer
connected. A connected subgrapbf G is called ablock if B has no cutvertex and every
subgraphB’ € G with B € B’ andB # B’ has at least one cutvertex. A bloBlof G is
called arend blockif B contains at most one cutvertex®f Such a cutvertex is callezh
end block cutverteXA graphG is called ablock graph if every block inG is a complete
graph. A cycle inG containing only one cutvertex is called an end cycle.

A graphG is calledunicyclic graph if G contains exactly one cycle. A grafhis called
cactus graphif every edge is in at most one cycle Gf Arumugam and Paulraj Joseph
[1] have characterized trees, unicyclic graphs and cubic graphs with equal domination and
connected domination numbers.

Lemma 1 (Arumugam and Paulraj Josegph] ). For atree T of orden >3, y.(T) = y(T)
if and only if every internal vertex of T is a support

Since a tree is a special case of block graphs, Lemma 1 is extended by Theorem 2 in
Section 2.

Lemma 2 (Arumugam and Paulraj Josegh]). Let G be a unicyclic graph with cycle C
of length at leasb, and let X be the set of all vertices of degree 2 in C. THe&n) = 7.(G)
if and only if the following conditions hoid

(a) Every vertex of degree at leaddin V — N[X] is a support

(b) (X;) is connected angX; | < 3.

(c) If (X) = Py or P3, both vertices inV (X) of degree greater thaB are supports and
if (X) = P», at least one vertex itV (X) of degree greater tha is support

Lemma 3 (Arumugam and Paulraj Joseph] ). Let G be a unicyclic graph of order> 4
with cycle C of lengtl8, and let X be the set of all vertices of degir C. Theny(G)=7.(G)
if and only if the following conditions hoid

(a) Every vertex of degree at leaddtn V — N[X] is a support

(b) C contains exactly one vertex of degree at |&ast every vertex of degree at leekt
in C is a support

Lemma 4 (Arumugam and Paulrgfl]). Let G be a unicyclic graph of order > 5 with
cycle C of length, and let X be the set of all vertices of deg&im C. Theny(G) = 7.(G)
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if and only if the following conditions hoid

(a) Every vertex of degree at leaddtn V — N(X) is a support

(b) If | X| =1, all the three remaining vertices of C are supports andif>2, C contains
at least one support

Since unicyclic graph is a special case of cactus graph, Lemmas 2—4 are extended by
Theorem 4 in Section 2.

In this paper, we characterize the class of block graphs and cactus graphs for which the
domination number is equal to the connected domination number.

2. Main results

Obviously, complete graph and tree are special cases of block graph. For every connected
block graplG, letF andl denote the set of cutvertices and the block numb&mrekpectively.
The connected domination number of the block gr&ph given by the following theorem.

Theorem 1. Let G be a connected block graghen

1 forl =1,
Vc(G)_{|F| for 1>2.

Proof. If I =1, thenG is a complete graph. Obviously,(G) = 1. So, we only consider
the casd >2. If [ >2, thenF # (. SinceG is a connected block graph and every block
contains at least one cutvertéxis a connected dominating set@fHence;.(G) < |F|. If
1.(G) < | F|, then for arbitrary).-setSof G, there exists a cutvertaxsuch thaw ¢ S. Let
G1,Go, ..., Gy, denote the components6f— {v}. LetS;=SNV(G;)fori=1,2,..., w.
ThenUlgigw S; = § andSis disconnected, which is a contradiction. HengéG) = | F|.

O

If Gis a complete graph, then(G) = 7(G) = 1. So we only consider the connected
block graph withl > 2.

Theorem 2. Let G be a connected block graph with 2. Theny.(G) = y(G) if and only
if every cutvertex of G is an end block cutvertex

Proof. Since every cutvertex is in every connected dominating seyai@) = |F|, F is
the unigue minimum connected dominating seGin

Now, lety.(G) = y(G). If there exists a cutvertex such thatv is not an end block
cutvertex, thenF — {v} is a dominating set o& with cardinalityy(G) — 1, which is a
contradiction.

Conversely, if every cutvertaxis an end block cutvertex, theiG) > | F|. Sincey(G) <
1(G) andy.(G) = | F|, it follows thaty.(G) = y(G).

Let G be a connected cactus graph, Iet= {C1, C», ..., C,;} be the set of cycles .
Let D1 and D2 denote the set of cycles ID with exactly one cutvertex and at least two
cutvertices, respectively. Lddy1 C Do satisfy that any cycl€; € D21 contains at least
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one vertex of degree 2 but no two adjacent vertices of degree D4t D, satisfy that
any cycleC; € Dy has two cutvertices, sayandv, of C; such that the length of the longest
way between them i; not containing other cutvertices is at least three.lLdenote the
set of pendant vertices @. [J

Theorem 3. Let G be a connected cactus grafieny . (G)=n—2|D1| —|D21| — 2| D22| —
IL].

Proof. It is obvious that every-set of G does not contain pendant vertices and every
cutvertex is in every connected dominating seGofHence, if a vertex is neither in any
cycle nor a pendant vertex, then it must be a cutvertex and belongs toygvaey [

Casel: For eachC; € D1, C; has only one cutvertex. Hence€; is an end cycle and
everyy.-set must contain at leagt (C;)| — 2 vertices ofC;. That is to say, for every,-set
Sof G, C; has at most two vertices such that they are n& in

Case2: If there exists a cycl€; such that each vertex if; is of degree at least 3, then
every vertex inC; belongs to every.-setSof G.

Case3: For eachC; € Dy, sinceC; contains at least one vertex of degree 2 but no two
adjacent vertices of degree 2, it follows that evgpset must contain at leagt (C;)| — 1
vertices ofC;. That is to say, for every.-setSof G, C; has at most one vertex that is not
inS

Cased: For eachC; € D2y, C; has at least two cutvertices and there exist such two
cutvertices such that the length of a longest way between them ot containing other
cutvertices is at least 3. Hence, evegyset must contain at least (C;)| — 2 vertices of
Ci. That s to say, for every,-setSof G, C; has at most two vertices such that they are not
in S

By Cases (1)—(4),

P(@ZIVG) = Y 2= 31— Y 2-|L]

CieD CieDp CieD22
=n —2|D1| — |D21| — 2| D3| — |L|.

Since it is obvious that there exists a connected dominating set with cardinatity
2|D1| — |D21] — 2| D22| — L], it follows thaty(G) =n — 2| D1| — [D21] — 2| D2a| — |L|.

Lemma 5. If G is a cycle theny(G) = y.(G) if and only if G is isomorphic to a cycle of
length3 or 4.

For every cycle’;, let X; be the set of all vertices of degree Aip Let X = Ulgi <t Xi
andA = V(G) — N[X]. Let

B ={veN(X)|d(v) =3, N(v) N X;#0 for someX; with |X;|=2, C;eD3, 1<i <t},
Yo = {v|v € X; andC; is an end 4-cycle for i <r},

Y1={v € X;|C; € Do, |X;| =1, for 1<i<t},
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Yo={v e X;|C; € Do, |X;| =2, for 1<i<t},
Ys={v e X;|C; € Do, |X;| =3, for 1<i <t}

If Gis a connected cactus graph with no cutvertex, tBéma cycle or a path with at most

two vertices. By Lemma 5, the characterization of cyckewith y(G) = y.(G) is well
known. So, we only consider the connected cactus graph with at least one cutvertex. Let
H be a family of cactus graphs such that for each gragt tife following two conditions

hold: (1) every cycle is a 4-cycle and every vertex and edge is in at least one 4-cycle; (2)
every cycle has at most two cutvertices, and if a cycle has two cutverticasasaly, then

uandv are adjacent.

Theorem 4. Let G be a connected cactus graph with at least one cutvertex. j{li®n=
1¢(G) if and only if G is isomorphic to one graph of, |r the following conditions hotd

(a) Every end cycle is 8-cycle or4-cycle

(b) (X;) is connected andX; | <3for 1<i <zr.

(c) For eachv € A, v is either a pendant vertex or a support

(d) For each vertex of degree atlea®in N (X), at least one of the following conditions
holds

(d1) v is either a support or a cutvertex of an eBetycle

(d2) v € B and the component @B U Y>) — E({B)) containingv has at least a vertex
u € B such that u is a support or a cutvertex of an éhdycle in G

Proof. First, we prove the necessity. L8be any minimum connected dominating set of
G. Then|S| = y(G) = y.(G). If Gis isomorphic to one graph &, then we are done. So,
we only consider the case thatis not isomorphic to any graph &f.

If (&) does not hold, then there exists an end cy€le= vivz...vv1 With £ >5. It
is obvious that exactly two adjacent vertices@f do not belong tdS. Without loss of
generality, assume is the cutvertex an&containsvy, va, ..., v,—2. Hence,S — {vy} is a
dominating set ofs with cardinalityy(G) — 1, which is a contradiction.

Suppose (b) does not hold.(IX;) is disconnecteds contains all vertices of at least one
component, sax’;, of (X;). Sayv; € V(X}). ThenS — {v;} is a dominating set o& with
cardinalityy(G) — 1, which is a contradiction. IfX;) is connected an{X;| >4, we may
assume without loss of generality thét= {v1, va, ..., vy} wheres > 4. Then exactly two
adjacent vertices oX; do not belong t&.

If v1, v2¢ S, thenS — {v;} is a dominating set o& with cardinalityy(G) — 1, which is
a contradiction.

If vg_1, vy ¢ S, thenS — {v1} is a dominating set & with cardinalityy(G) — 1, which
is a contradiction.

If vi,vip1 ¢S, then(S — {vi_1, vi+2}) U {v;} is a dominating set o& with cardinality
7(G) — 1, which is a contradiction.

(c) For eachw € A, if v is neither a pendant vertex nor a support, then any vertex in
N[v]is acutvertex. Say[v] € S. Hence,S — {v} is a dominating set d& with cardinality
7(G) — 1, which is a contradiction.

(d) Since every vertex of degree at least 3 iV (X) is a cutvertex, it follows that € S.
SupposgsS| = 1. It is obvious that Pkb, S) # @. SupposésS| > 2. If PN(v, S) = ¢, then
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S — {v} is a dominating set o& with cardinality less than(G), which is a contradiction.
So, PNuv, S) # @. Let PN, S) ={v1, v2, ..., v, }. If vis neither a support nor a cutvertex
of an end 3-cycle, then RN, S) C U?:o Y; and we have the following claims.[

Claim 1. PN(v, S) — Yo # 0.

Suppose every vertex € PN(v, S) is a vertex of an end 4-cycle, say, w;/;v, for
1<i<m. SinceSis ay.set,l; € S for 1<i<m. If G has only one cutvertex, then
G is isomorphic to one graph @i, which is a contradiction. Henc& has at least two
cutvertices. SincéS) is connected, it follows that is dominated by other cutvertex B
So,8'=(S—{v, 11,12, ..., L,HU{w1, wo, ..., w,}isadominating set d& with cardinality
7(G) — 1, which is a contradiction.

Claim 2. PN(v, S) — Y3 # 0.

Suppose every vertex € PN(v, S) is a vertex of acycl€; € Do with | X;|=3.Assume,
vv;w;l;u; is a segment of;, wherev andu; are cutvertices o6 and{v;, w;, [;} = X; for
1<i<m. SinceSis ay.-set of G, V(Ci)\{v;, w;} € S for 1<i<m. Hence,S’ = (S —
{v,11,12, ..., Lp}) Ufw1, wo, ..., w,}is adominating set d& with cardinalityy(G) — 1,
which is a contradiction.

In a similar way, we can prove that

Claim 3. PN(v, S) — (Yo U Y3) # @.
Claim 4. PN(v, S) N Y1 =0.

By Claims 1-4, it follows that PN, §) N Y2 # @. Thus,v € B.

By the proofs of Claims 1-4, we assume without loss of generality that every vesfex
degree atleast 3iN (X) has all its private neighbours k. Otherwise, if PNv, S) N (YoU
Y3) # ¥, thenlet PNv, S)NYo={v1, v2, ..., vy} and PNv, S)NY3={v;11, vi12, ..., vg}.
So 1< s <m. Suppose that every vertex is a vertex of an end 4-cyclg; : vv; w;l;v for
i=1,2,...,1. Suppose that every vertex is a vertex of a cycle”; with |X;| = 3 and
vv;w;lju; is a segment o€ ;, wherev andu; are cutvertices oG, for j =1+ 1,1 +
2,...,s.LetS = (S —{l1, 1z, ..., ;) U{wi, wa, ..., ws}. ThenS’ is ay-set of G such
that PNv, §") N (Yp U Y3) = @. Furthermore every cutvertex is §.

It is obvious that each component (8 U Y2) — E({(B)) is a tree. If the component
B; of (B UY>) — E({B)) containingv satisfies that every vertex € V(B;) N B is
neither a support nor a cutvertex of an end 3-cyclésinthen we have the following
contradictions:

Casel: If there exists a vertex € V (B;) N B such thatiis adjacent to at least one other
cutvertex ofG not in B;, then partitionB; into levels according to the distance frami.e.,

a vertex is in level if it has distance fromu. Let M = {v € V(B;)|d(u, v) = 0(mod 3}
andW = {v € V(B;))|d(u,v) = 2(mod 3}. It is obvious that: €¢ M andM C S. Since
every vertex ofVis adjacent to exactly one vertex &f\ {u}, it follows that| W | = |M| — 1.
Let S = (S — M) U W. Since each vertex C(IUUE‘,(BI,)QB PN(v, §)) U (V(B)\{u}) is
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dominated byW andu is dominated by other cutvertex & not in B;, it follows that$’ is
a dominating set ofs with cardinalityy(G) — 1, which is a contradiction.

Case2: If every vertex: € V (B;) N B is not adjacent to any cutvertex@fot in B;, then
each cycleC; whereX; belongs to the compone# is a 4-cycle. Furthermore, for every
edgeur; that does not belong t& ((V (B;))), sincet; is neither a cutvertex nor a pendent
vertex ofG, it follows thatut; must be an edge of some cycle Suppose thd¥ (C;)| > 6.
Since|X;| <3, it follows thatu is adjacent to at least one cutvertex®hot in B;, which
is a contradiction. Suppose that(C;)| = 5. If | X;| = 3, thenu is adjacent to at least one
cutvertex ofG not in B;, which is a contradiction. IfX;| <2, thenu is still adjacent to at
least one cutvertex db not in B;, which is a contradiction. Sinogis not a cutvertex of
an end 3-cycle, it follows thaf; is a 4-cycle. Suppose that; is not an end 4-cycle. If
|X;| =1, thenuis adjacent to at least one cutvertex@®hnot in B;, which is a contradiction.
If |X;| =2, thenut; € E({B;)), which is a contradiction. Henc€; is an end 4-cycle. So,
Gis isomorphic taH, which is a contradiction.

Now, we prove the sufficiency.

Casel: G is isomorphic taH. It is clear thaty(G) = 7.(G).

Case2: G is not isomorphic td.

Let Sbe ay-set of G with minimum pendant vertices. Theéhdoes not contain every
pendant vertex. Otherwise, 18t be obtained fron® by replacing one of pendant vertices
in Swith its support, ther$’ is ay-set of G with fewer pendant vertices th& which is a
contradiction. Ifv is a cutvertex of an end 3-cycl& andv ¢ S, then there exists a vertex
u € V(C;) such thatx € S. Hence(S — {u}) U {v} is ay-set of G that containg . Without
loss of generality, assume that every cutvertex of end 3-cycle beloi®Byo(c), for each
v € A, if vis a pendant vertex, thenbelongs to neithe® nor anyy.-set ofG. If v is a
support, then belongs tocSand anyy.-set ofG.

By (d), for each vertex of degree atleast 3iN (X)), if v is either a support or a cutvertex
of an end 3-cycle, then belongs toS and anyy.-set of G. We assume that € B. Since
the componenB; of (B U Y2) — E((B)) containingv has at least a vertexe V(B;) N B
such thau is a support or a cut vertex of an end 3-cycléGnthen partitionB; into levels
according to the distance from i.e., a vertex is in level if it has distancd from u. It
follows thatS and anyy.-set of G contain the same number of verticesBa For each
end 4-cyclev;t;w;l;v;, wherev; is an end cutverteXS N {z;, w;, [;}| = 1. For each cycle
C; € Dy with | X;| =3, letv;;w;l;u;, wherev; andu; are cutvertices,S N {#;, w;, I;}| > 1.
Hencey(G) = y.(G). Sincey(G) <y.(G), it follows thaty(G) = y.(G).

Acknowledgements

We would like to thank the anonymous referees for their many helpful suggestions.

References

[1] S.Arumugam, J. PaulrajJoseph, On graphs with equal domination and connected domination numbers, Discrete
Math. 206 (1999) 45-49.



	Characterization of graphs with equal domination and connected domination numbers62626262
	Introduction
	Main results
	Acknowledgements
	References


