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Abstract

Arumugam and Paulraj Joseph (Discrete Math 206 (1999) 45) have characterized trees, unicyclic
graphs and cubic graphs with equal domination and connected domination numbers. In this paper,
we extend their results and characterize the class of block graphs and cactus graphs for which the
domination number is equal to the connected domination number.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple edges. Terms
not defined here are used in the sense of Arumugam[1].
Let G = (V ,E) be a simple graph of ordern. The degree, neighborhood and closed

neighborhood of a vertexv in the graphGare denoted byd(v),N(v) andN [v]=N(v)∪{v},
respectively. For a subsetSofV,N(S) denotes the set of all vertices adjacent to some vertex
in SandN [S] =N(S)∪ S. The graph induced byS ⊆ V is denoted by〈S〉. The minimum
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degree and maximum degree of the graph G are denoted by�(G) and�(G), respectively.
Let Pn denote the path withn vertices.
A subsetSof V is called adominating setif every vertex inV − S is adjacent to some

vertex inS. Thedomination number�(G) of G is the minimum cardinality taken over all
dominating set ofG. A dominating set is called aconnected dominating setif the induced
subgraph〈S〉 is connected. Theconnected domination number�c(G) of G is the minimum
cardinality taken over all minimal connected dominating sets ofG.A connected dominating
setSwith cardinality�c(G) is called a�c-set. LetS ⊂ V (G) andx ∈ S, we say thatx has a
private neighbour (with respect toS) if there is a vertex inV (G)−S whose only neighbour
in S is x. Let PN(x, S) denote the private neighbours set ofxwith respect toS.
A vertex v of G is called asupportif it is adjacent to a pendant vertex. Any vertex of

degree greater than one is called aninternal vertex.
For any connected graphGa vertexv ∈ V is called acutvertexofG, if G−v is no longer

connected. A connected subgraphB of G is called ablock, if B has no cutvertex and every
subgraphB ′ ⊆ G with B ⊆ B ′ andB �= B ′ has at least one cutvertex. A blockB of G is
called anend block, if B contains at most one cutvertex ofG. Such a cutvertex is calledan
end block cutvertex. A graphG is called ablock graph, if every block inG is a complete
graph. A cycle inG containing only one cutvertex is called an end cycle.
A graphG is calledunicyclic graph, if G contains exactly one cycle. A graphG is called

cactus graph, if every edge is in at most one cycle ofG. Arumugam and Paulraj Joseph
[1] have characterized trees, unicyclic graphs and cubic graphs with equal domination and
connected domination numbers.

Lemma 1 (Arumugam and Paulraj Joseph[1] ). For a tree T of ordern�3, �c(T )= �(T )
if and only if every internal vertex of T is a support.

Since a tree is a special case of block graphs, Lemma 1 is extended by Theorem 2 in
Section 2.

Lemma 2 (Arumugam and Paulraj Joseph[1] ). Let G be a unicyclic graph with cycle C
of length at least5,and let X be the set of all vertices of degree 2 in C. Then�(G)= �c(G)
if and only if the following conditions hold:
(a)Every vertex of degree at least2 in V −N [X] is a support.
(b) 〈Xi〉 is connected and|Xi |�3.
(c) If 〈X〉 = P1 or P3, both vertices inN(X) of degree greater than2 are supports and

if 〈X〉 = P2, at least one vertex inN(X) of degree greater than2 is support.
Lemma 3 (Arumugam and Paulraj Joseph[1] ). Let G be a unicyclic graph of ordern�4
with cycleCof length3,and let Xbe the set of all vertices of degree2 inC.Then�(G)=�c(G)
if and only if the following conditions hold:
(a)Every vertex of degree at least2 in V −N [X] is a support.
(b)C contains exactly one vertex of degree at least3 or every vertex of degree at least3

in C is a support.

Lemma 4 (Arumugam and Paulraj[1] ). Let G be a unicyclic graph of ordern�5 with
cycle C of length4,and let X be the set of all vertices of degree2 in C. Then�(G)= �c(G)
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if and only if the following conditions hold:
(a)Every vertex of degree at least2 in V −N(X) is a support.
(b) If |X|=1,all the three remaining vertices of C are supports and if|X|�2,C contains

at least one support.

Since unicyclic graph is a special case of cactus graph, Lemmas 2–4 are extended by
Theorem 4 in Section 2.

In this paper, we characterize the class of block graphs and cactus graphs for which the
domination number is equal to the connected domination number.

2. Main results

Obviously, complete graph and tree are special cases of block graph. For every connected
blockgraphG, letFandl denote thesetof cutverticesand theblocknumberofGrespectively.
The connected domination number of the block graphG is given by the following theorem.

Theorem 1. Let G be a connected block graph, then

�c(G)=
{
1 for l = 1,
|F | for l�2.

Proof. If l = 1, thenG is a complete graph. Obviously,�c(G) = 1. So, we only consider
the casel�2. If l�2, thenF �= ∅. SinceG is a connected block graph and every block
contains at least one cutvertex,F is a connected dominating set ofG. Hence,�c(G)� |F |. If
�c(G)< |F |, then for arbitrary�c-setSof G, there exists a cutvertexv such thatv /∈ S. Let
G1,G2, . . . ,Gw denote the components ofG−{v}. LetSi=S∩V (Gi) for i=1,2, . . . , w.
Then

⋃
1� i�w Si =S andSis disconnected, which is a contradiction. Hence,�c(G)=|F |.

�

If G is a complete graph, then�c(G) = �(G) = 1. So we only consider the connected
block graph withl�2.

Theorem 2. Let G be a connected block graph withl�2.Then�c(G)= �(G) if and only
if every cutvertex of G is an end block cutvertex.

Proof. Since every cutvertex is in every connected dominating set and�c(G) = |F |, F is
the unique minimum connected dominating set inG.
Now, let �c(G) = �(G). If there exists a cutvertexv such thatv is not an end block

cutvertex, thenF − {v} is a dominating set ofG with cardinality�(G) − 1, which is a
contradiction.
Conversely, if every cutvertexv is an end block cutvertex, then�(G)� |F |. Since�(G)�

�c(G) and�c(G)= |F |, it follows that�c(G)= �(G).
LetG be a connected cactus graph, letD = {C1, C2, . . . , Ct } be the set of cycles inG.

Let D1 andD2 denote the set of cycles inD with exactly one cutvertex and at least two
cutvertices, respectively. LetD21 ⊆ D2 satisfy that any cycleCi ∈ D21 contains at least



132 X.-g. Chen et al. / Discrete Mathematics 289 (2004) 129–135

one vertex of degree 2 but no two adjacent vertices of degree 2. LetD22 ⊆ D2 satisfy that
any cycleCi ∈ D22 has two cutvertices, sayuandv, ofCi such that the length of the longest
way between them inCi not containing other cutvertices is at least three. LetL denote the
set of pendant vertices inG. �

Theorem 3. Let G be a connected cactus graph, then�c(G)=n−2|D1|−|D21|−2|D22|−
|L|.

Proof. It is obvious that every�c-set ofG does not contain pendant vertices and every
cutvertex is in every connected dominating set ofG. Hence, if a vertex is neither in any
cycle nor a pendant vertex, then it must be a cutvertex and belongs to every�c-set. �

Case1: For eachCi ∈ D1, Ci has only one cutvertex. Hence,Ci is an end cycle and
every�c-set must contain at least|V (Ci)| − 2 vertices ofCi . That is to say, for every�c-set
Sof G, Ci has at most two vertices such that they are not inS.
Case2: If there exists a cycleCi such that each vertex inCi is of degree at least 3, then

every vertex inCi belongs to every�c-setSof G.
Case3: For eachCi ∈ D21, sinceCi contains at least one vertex of degree 2 but no two

adjacent vertices of degree 2, it follows that every�c-set must contain at least|V (Ci)| − 1
vertices ofCi . That is to say, for every�c-setSof G, Ci has at most one vertex that is not
in S.
Case4: For eachCi ∈ D22, Ci has at least two cutvertices and there exist such two

cutvertices such that the length of a longest way between them inCi not containing other
cutvertices is at least 3. Hence, every�c-set must contain at least|V (Ci)| − 2 vertices of
Ci . That is to say, for every�c-setSofG,Ci has at most two vertices such that they are not
in S.
By Cases (1)–(4),

�c(G)� |V (G)| −
∑
Ci∈D1

2−
∑
Ci∈D21

1−
∑
Ci∈D22

2− |L|

= n− 2|D1| − |D21| − 2|D22| − |L|.
Since it is obvious that there exists a connected dominating set with cardinalityn −

2|D1| − |D21| − 2|D22| − |L|, it follows that�c(G)= n− 2|D1| − |D21| − 2|D22| − |L|.

Lemma 5. If G is a cycle, then�(G) = �c(G) if and only if G is isomorphic to a cycle of
length3 or 4.

For every cycleCi , letXi be the set of all vertices of degree 2 inCi . LetX=⋃
1� i� t Xi

andA= V (G)−N [X]. Let
B = {v∈N(X)|d(v)�3, N(v) ∩Xi �=∅ for someXi with |Xi |=2, Ci∈D2,1� i� t},
Y0 = {v|v ∈ Xi andCi is an end 4-cycle for 1� i� t},
Y1 = {v ∈ Xi |Ci ∈ D2, |Xi | = 1, for 1� i� t},
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Y2 = {v ∈ Xi |Ci ∈ D2, |Xi | = 2, for 1� i� t},
Y3 = {v ∈ Xi |Ci ∈ D2, |Xi | = 3, for 1� i� t}.

If G is a connected cactus graph with no cutvertex, thenG is a cycle or a path with at most
two vertices. By Lemma 5, the characterization of cyclesG with �(G) = �c(G) is well
known. So, we only consider the connected cactus graph with at least one cutvertex. Let
H be a family of cactus graphs such that for each graph ofH the following two conditions
hold: (1) every cycle is a 4-cycle and every vertex and edge is in at least one 4-cycle; (2)
every cycle has at most two cutvertices, and if a cycle has two cutvertices, sayuandv, then
u andv are adjacent.

Theorem 4. Let G be a connected cactus graph with at least one cutvertex. Then�(G)=
�c(G) if and only if G is isomorphic to one graph of H, or the following conditions hold:
(a)Every end cycle is a3-cycle or4-cycle.
(b) 〈Xi〉 is connected and|Xi |�3 for 1� i� t .
(c) For eachv ∈ A, v is either a pendant vertex or a support.
(d)For each vertexv of degree at least3 inN(X), at least one of the following conditions

holds:
(d1)v is either a support or a cutvertex of an end3-cycle.
(d2)v ∈ B and the component of〈B ∪ Y2〉 − E(〈B〉) containingv has at least a vertex

u ∈ B such that u is a support or a cutvertex of an end3-cycle in G.

Proof. First, we prove the necessity. LetSbe any minimum connected dominating set of
G. Then|S| = �(G)= �c(G). If G is isomorphic to one graph ofH, then we are done. So,
we only consider the case thatG is not isomorphic to any graph ofH.
If (a) does not hold, then there exists an end cycleCi = v1v2 . . . vt v1 with t�5. It

is obvious that exactly two adjacent vertices ofCi do not belong toS. Without loss of
generality, assumev1 is the cutvertex andScontainsv1, v2, . . . , vt−2. Hence,S − {v2} is a
dominating set ofGwith cardinality�(G)− 1, which is a contradiction.
Suppose (b) does not hold. If〈Xi〉 is disconnected,Scontains all vertices of at least one

component, sayX′
i , of 〈Xi〉. Sayvi ∈ V (X′

i ). ThenS − {vi} is a dominating set ofGwith
cardinality�(G) − 1, which is a contradiction. If〈Xi〉 is connected and|Xi |�4, we may
assume without loss of generality thatXi = {v1, v2, . . . , vs} wheres�4. Then exactly two
adjacent vertices ofXi do not belong toS.
If v1, v2 /∈ S, thenS − {vs} is a dominating set ofGwith cardinality�(G)− 1, which is

a contradiction.
If vs−1, vs /∈ S, thenS − {v1} is a dominating set ofGwith cardinality�(G)− 1, which

is a contradiction.
If vi, vi+1 /∈ S, then(S − {vi−1, vi+2}) ∪ {vi} is a dominating set ofG with cardinality

�(G)− 1, which is a contradiction.
(c) For eachv ∈ A, if v is neither a pendant vertex nor a support, then any vertex in

N [v] is a cutvertex. So,N [v] ⊆ S. Hence,S−{v} is a dominating set ofGwith cardinality
�(G)− 1, which is a contradiction.
(d) Since every vertexv of degree at least 3 inN(X) is a cutvertex, it follows thatv ∈ S.

Suppose|S| = 1. It is obvious that PN(v, S) �= ∅. Suppose|S|�2. If PN(v, S) = ∅, then
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S − {v} is a dominating set ofGwith cardinality less than�(G), which is a contradiction.
So, PN(v, S) �= ∅. Let PN(v, S)={v1, v2, . . . , vm}. If v is neither a support nor a cutvertex
of an end 3-cycle, then PN(v, S) ⊆ ⋃3

j=0 Yj and we have the following claims.�

Claim 1. PN(v, S)− Y0 �= ∅.

Suppose every vertexvi ∈ PN(v, S) is a vertex of an end 4-cycle, sayvviwiliv, for
1� i�m. SinceS is a �c-set, li ∈ S for 1� i�m. If G has only one cutvertex, then
G is isomorphic to one graph ofH, which is a contradiction. Hence,G has at least two
cutvertices. Since〈S〉 is connected, it follows thatv is dominated by other cutvertex inS.
So,S′=(S−{v, l1, l2, . . . , lm})∪{w1, w2, . . . , wm} is a dominating set ofGwith cardinality
�(G)− 1, which is a contradiction.

Claim 2. PN(v, S)− Y3 �= ∅.

Suppose every vertexvi ∈ PN(v, S) is a vertex of a cycleCi ∈ D2 with |Xi |=3.Assume,
vviwiliui is a segment ofCi , wherev andui are cutvertices ofG and{vi, wi, li} =Xi for
1� i�m. SinceS is a �c-set ofG, V (Ci)\{vi, wi} ⊆ S for 1� i�m. Hence,S′ = (S −
{v, l1, l2, . . . , lm})∪ {w1, w2, . . . , wm} is a dominating set ofGwith cardinality�(G)− 1,
which is a contradiction.
In a similar way, we can prove that

Claim 3. PN(v, S)− (Y0 ∪ Y3) �= ∅.

Claim 4. PN(v, S) ∩ Y1 = ∅.

By Claims 1–4, it follows that PN(v, S) ∩ Y2 �= ∅. Thus,v ∈ B.
By the proofs of Claims 1–4, we assume without loss of generality that every vertexv of

degree at least 3 inN(X) has all its private neighbours inY2. Otherwise, if PN(v, S)∩ (Y0∪
Y3) �= ∅, then let PN(v, S)∩Y0={v1, v2, . . . , vl} and PN(v, S)∩Y3={vl+1, vl+2, . . . , vs}.
So 1�s�m. Suppose that every vertexvi is a vertex of an end 4-cycleCi : vviwiliv for
i = 1,2, . . . , l. Suppose that every vertexvj is a vertex of a cycleCj with |Xj | = 3 and
vvjwj ljuj is a segment ofCj , wherev anduj are cutvertices ofG, for j = l + 1, l +
2, . . . , s. Let S′ = (S − {l1, l2, . . . , ls}) ∪ {w1, w2, . . . , ws}. ThenS′ is a�-set ofG such
that PN(v, S′) ∩ (Y0 ∪ Y3)= ∅. Furthermore every cutvertex is inS′.
It is obvious that each component of〈B ∪ Y2〉 − E(〈B〉) is a tree. If the component

Bi of 〈B ∪ Y2〉 − E(〈B〉) containingv satisfies that every vertexu ∈ V (Bi) ∩ B is
neither a support nor a cutvertex of an end 3-cycle inG, then we have the following
contradictions:
Case1: If there exists a vertexu ∈ V (Bi)∩B such thatu is adjacent to at least one other

cutvertex ofG not inBi , then partitionBi into levels according to the distance fromu, i.e.,
a vertex is in leveli if it has distancei from u. LetM = {v ∈ V (Bi)|d(u, v) ≡ 0(mod 3)}
andW = {v ∈ V (Bi)|d(u, v) ≡ 2(mod 3)}. It is obvious thatu ∈ M andM ⊂ S. Since
every vertex ofW is adjacent to exactly one vertex ofM\{u}, it follows that|W |= |M|−1.
Let S′ = (S − M) ∪ W . Since each vertex of(

⋃
v∈V (Bi)∩B PN(v, S)) ∪ (V (Bi)\{u}) is
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dominated byWandu is dominated by other cutvertex ofG not inBi , it follows thatS′ is
a dominating set ofGwith cardinality�(G)− 1, which is a contradiction.
Case2: If every vertexu ∈ V (Bi)∩B is not adjacent to any cutvertex ofGnot inBi , then

each cycleCi whereXi belongs to the componentBi is a 4-cycle. Furthermore, for every
edgeuti that does not belong toE(〈V (Bi)〉), sinceti is neither a cutvertex nor a pendent
vertex ofG, it follows thatuti must be an edge of some cycleCi . Suppose that|V (Ci)|�6.
Since|Xi |�3, it follows thatu is adjacent to at least one cutvertex ofG not inBi , which
is a contradiction. Suppose that|V (Ci)| = 5. If |Xi | = 3, thenu is adjacent to at least one
cutvertex ofG not inBi , which is a contradiction. If|Xi |�2, thenu is still adjacent to at
least one cutvertex ofG not inBi , which is a contradiction. Sinceu is not a cutvertex of
an end 3-cycle, it follows thatCi is a 4-cycle. Suppose thatCi is not an end 4-cycle. If
|Xi |=1, thenu is adjacent to at least one cutvertex ofGnot inBi , which is a contradiction.
If |Xi | = 2, thenuti ∈ E(〈Bi〉), which is a contradiction. Hence,Ci is an end 4-cycle. So,
G is isomorphic toH, which is a contradiction.
Now, we prove the sufficiency.
Case1:G is isomorphic toH. It is clear that�(G)= �c(G).
Case2:G is not isomorphic toH.
Let S be a�-set ofG with minimum pendant vertices. ThenS does not contain every

pendant vertex. Otherwise, letS′ be obtained fromSby replacing one of pendant vertices
in Swith its support, thenS′ is a�-set ofGwith fewer pendant vertices thanS, which is a
contradiction. Ifv is a cutvertex of an end 3-cycleCi andv /∈ S, then there exists a vertex
u ∈ V (Ci) such thatu ∈ S. Hence(S − {u}) ∪ {v} is a�-set ofG that containsv. Without
loss of generality, assume that every cutvertex of end 3-cycle belongs toS. By (c), for each
v ∈ A, if v is a pendant vertex, thenv belongs to neitherSnor any�c-set ofG. If v is a
support, thenv belongs toSand any�c-set ofG.
By (d), for each vertexv of degree at least 3 inN(X), if v is either a support or a cutvertex

of an end 3-cycle, thenv belongs toSand any�c-set ofG. We assume thatv ∈ B. Since
the componentBi of 〈B ∪ Y2〉 − E(〈B〉) containingv has at least a vertexu ∈ V (Bi) ∩ B
such thatu is a support or a cut vertex of an end 3-cycle inG, then partitionBi into levels
according to the distance fromu, i.e., a vertex is in leveli if it has distancei from u. It
follows thatS and any�c-set ofG contain the same number of vertices inBi . For each
end 4-cyclevitiwilivi , wherevi is an end cutvertex,|S ∩ {ti , wi, li}|�1. For each cycle
Ci ∈ D2 with |Xi | = 3, letvitiwiliui , wherevi andui are cutvertices,|S ∩ {ti , wi, li}|�1.
Hence,�(G)��c(G). Since�(G)��c(G), it follows that�(G)= �c(G).
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