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Summary

Demethylation of histone H3 lysine 4 is carried out by
BHC110/LSD1, an enzyme with close homology to

monoamine oxidases (MAO). Monoamine oxidase A
or B are frequent targets of selective and nonselective

small molecular inhibitors used for treatment of de-
pression. Here we show that in contrast to selective

monoamine oxidase inhibitors such as pargyline, non-
selective monoamine oxidase inhibitors potently in-

hibit nucleosomal demethylation of histone H3 lysine
4. Tranylcypromine (brand name Parnate) displayed

the best inhibitory activity with an IC50 of less than
2 mM. Treatment of P19 embryonal carcinoma cells

with tranylcypromine resulted in global increase in

H3K4 methylation as well as transcriptional derepres-
sion of two BHC110 target genes, Egr1 and the plurip-

otent stem cell marker Oct4. These results attest to the
effectiveness of tranylcypromine as a small molecular

inhibitor of histone demethylation.

Introduction

In eukaryotes, DNA is highly compacted within the nucle-
osome structure representing the in vivo target of multi-
ple chromatin modifying enzymes [1]. Histones compos-
ing the nucleosome core particle undergo many different
types of histone modifications including methylation,
acetylation, phosphorylation, ubiquitination, and glyco-
sylation [2]. Such histone modifications are hypothe-
sized to signal changes in chromatin structure leading
to gene expression changes and recruitment of regula-
tory transcription complexes [3].

A significant advance in the chromatin modification
field was the discovery of enzymes (PAD4/PADI4,
BHC110/LSD1 and JmjC domain-containing demethy-
lases) capable of demethylating histones [4–9]. PAD4/
PADI4 has been found to convert monomethyl-arginine
to citrulline by demethylimination. The JmjC domain-
containing demethylases demethylate mono-, di-, or
trimethylated lysines by a hydroxylation-based mecha-
nism [7–9]. BHC110/LSD1 has been shown to be a
FAD-dependent polyamine oxidase responsible for
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demethylating mono- and dimethyl histone H3 lysine 4
(H3K4), which in turn repress gene transcription [6].

BHC110 has been found within a number of multipro-
tein complexes sharing the two enzymatic core subunits:
histone deacetylase (HDAC1/2) and BHC110 [10–17]. Our
earlier study has shown that repression of neuronal-
specific genes by the neuronal silencer, REST, requires
the recruitment of a BHC110-HDAC1/2-containing com-
plex termed BHC (BRAF-HDAC complex) [12]. We and
others have recently found that nucleosomal demethyla-
tion by BHC110 requires the participation of the core-
pressor of REST (RE1-silencing transcription factor) pro-
tein, CoREST [18, 19].

We have been interested in defining small molecules
that inhibit BHC110 demethylation activity. Notably,
the BHC110 active site shares sequence homology
with monoamine oxidase (MAO) enzymes responsible
for oxidizing arylalkylamine neurotransmitters such as
dopamine and serotonin [18, 20]. Structural analysis
of inhibitor-MAO complexes demonstrates that alkyl-
ation of the flavin cofactor of the enzyme is a mechanism
of MAO inhibition [21]. Since BHC110 and MAO both
contain a flavin ring as a cofactor, we asked whether
MAO inhibitors may serve as inhibitors of BHC110.
The results described below provide evidence that tra-
nylcypromine, a nonselective MAO inhibitor, acts as
a potent inhibitor of BHC110-mediated demethylation
of H3K4.

Results and Discussion

Analysis of Monoamine Oxidase Inhibitors on

Histone Demethylation
Since BHC110 contains an amino oxidase catalytic do-
main, we were interested to know whether monoamine
oxidase inhibitors could act as histone demethylase in-
hibitors. We analyzed six monoamine oxidase inhibitors.
Three monoamine oxidase inhibitors were specific for
monoamine oxidase A or B and three were nonselective
monoamine oxidase inhibitors (Figure 1A). We first exam-
ined high concentrations of each inhibitor (1 and 5 mM)
on histone demethylation by recombinant BHC110 gen-
erated in insect cells (Figure 1B). While specific mono-
amine oxidase inhibitors, clorgyline and deprenyl, only
displayed a small inhibition at 5 mM concentration, the
nonselective inhibitors showed a robust inhibition at 1
mM concentration (Figure 1B). This was most evident
with phenelzine and tranylcypromine (Figure 1B). We
next analyzed phenelzine and tranylcypromine in more
detail by lowering the concentration required for
BHC110 inhibition. This analysis revealed that while 200
mM phenelzine could inhibit H3K4 demethylation by
BHC110, tranylcypromine displayed an inhibitory activity
even at 100 nM concentration (Figure 1C). These results
demonstrate that the nonselective monoamine oxidase
inhibitors phenelzine and tranylcypromine could serve
as histone H3K4 demethylation inhibitors and tranylcy-
promine (brand name, Parnate) displays the best inhibi-
tory activity.
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Analysis of Monoamine Oxidase Inhibitors on
Nucleosomal Demethylation

We next examined the monoamine oxidase inhibitors for
inhibition of nucleosomal demethylation by recombinant
BHC110 and CoREST generated in insect cells. Al-
though BHC110 alone catalyzes demethylation of lysine
4 in free H3, the SANT domain-containing protein
CoREST is a necessary cofactor for nucleosomal deme-
thylation by BHC110 [18, 19]. Interestingly, while nial-
amide, clorgyline, deprenyl, and pargyline were devoid
of any inhibitory activity, phenelzine and tranylcypro-
mine displayed potent inhibitory activity at 1 mM
(Figure 2A). Titration of lower concentrations of phenel-
zine and tranylcypromine revealed that, similar to the
effect of inhibitors on recombinant BHC110, tranylcy-
promine displayed a greater inhibitory effect on nucleo-
somal demethylation by recombinant BHC110/CoREST
(Figure 2B). Multiple titrations of decreasing concentra-
tions of tranylcypromine revealed an IC50 of less than
2 mM for both histone and nucleosomal demethylation
(Figure 2C and data not shown). It is noteworthy that
the reported IC50 of tranylcypromine for inhibiting either
monoamine oxidase A or B is 20 mM [22], reflecting

Figure 1. MAO Inhibitors Inactivate BHC110-Mediated H3K4

Demethylation

(A) Structures and properties of MAO inhibitors.

(B) Inhibitory effect of MAO inhibitors on histone demethylation by

recombinant (r) BHC110 (1.5 mg).

(C) Effect of different concentrations of phenelzine and tranylcypro-

mine on histone demethylation by recombinant BHC110 (1.5 mg).

In (B) and (C), bulk histones (4 mg) were used as substrate and the

reaction mixture was analyzed by SDS-PAGE, followed by Western

blotting.
a greater efficacy for tranylcypromine in inhibiting
H3K4 demethylation by BHC110.

Tranylcypromine Inhibits the Demethylase Activity

without Affecting the Deacetylase Activity
Since BHC110 is a component of complexes containing
HDAC1/2, we assessed the effect of tranylcypromine on
H3K4 demethylation and deacetylation of H3K9 and
H3K14. BHC110-containing complexes were isolated
using stable cell lines expressing Flag-BHC110 or Flag-
CoREST (Figure 3A). Titration of increasing concentra-
tions of tranylcypromine revealed a specific inhibition
of H3K4 demethylation of nucleosomes by BHC110-con-
taining complexes while deacetylation of nucleosomal
Histone H3 by HDAC1/2 was not affected (Figures 3B
and 3C). These results point to a specific role for tranyl-
cypromine in inhibition of histone H3K4 demethylation.

Analysis of Tranylcypromine on Histone
Demethylation In Vivo

We were interested to know whether OCT4/POU5F1, an
important regulator of early development and ES cell

Figure 2. MAO Inhibitors Inactivate Nucleosomal H3K4 Demethyla-

tion

(A) Inhibitory effect of MAO inhibitors on nucleosomal demethyla-

tion by recombinant BHC110 (1.5 mg) and CoREST (0.75 mg).

(B) Effect of different concentrations of phenelzine and tranylcypro-

mine on nucleosomal demethylation by recombinant BHC110 (1.5

mg) and CoREST (0.75 mg). In (A) and (B), nucleosomes were used

as substrate and the reaction mixture was analyzed by SDS-

PAGE, followed by Western blotting.

(C) A representative plot for inhibition of rBHC110 demethylation

activity by tranylcypromine. Bulk histones (4 mg) were used as sub-

strate. Followed by Western blot analysis, dimethyl K4 levels were

quantified. Data are presented as the mean 6 SEM of at least three

experiments. The inset represents a smaller range of titration be-

tween zero to 12 mM tranylcypromine.
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identity [23, 24], is repressed through a demethylation
mechanism. Chromatin immunoprecipitation (ChIP) ex-
periments using antibodies against BHC110 and
CoREST demonstrated the localization of the BHC com-
plex to the CR4 region responsible for stem cell mainte-
nance in the OCT4 promoter in pluripotent P19 embryo-
nal carcinoma cells (Figures 4A and 4B). We next
treated P19 cells with 2 mM tranylcypromine (Parnate) or
2 mM deprenyl as a control for three hours. Analysis of
transcription by quantitative RT-PCR revealed a specific
derepression of OCT4 transcription by 2 mM tranylcypro-
mine (Figure 4C). Moreover, analysis of histone H3 di-
methyl K4 levels at Oct4 promoter showed a specific
enhancement of histone methylation following treatment
of P19 cells with tranylcypromine consistent with the
inhibition of BHC110 histone demethylation activity
(Figure 4D).

Figure 3. Tranylcypromine Inhibits Nucleosomal Demethylation but

Not Deacetylation

(A) Analysis of BHC110-containing complexes isolated from

nuclear extracts by silver staining (right panel). Left panel depicts

silver staining of the Flag affinity eluate from untagged HEK 293

cell (mock). Asterisks denote nonspecific polypeptides.

(B and C) Effect of different concentrations of tranylcypromine on

nucleosomal demethylation/deacetylation by BHC110 complex

(B) or CoREST complex (C). Nucleosomes were used as substrate.

The reaction mixture was analyzed by SDS-PAGE, followed by

Western blotting.
In addition, we analyzed another gene Egr1 that acts
as an important regulator of many cellular processes
such as growth control, transformation, and apoptosis
[25]. Similar to the Oct 4 promoter, BHC110 and CoREST
are recruited to the proximal region of the Egr1 promoter
(Figures S1A and S1B in the Supplemental Data avail-
able with this article online). After Parnate treatment,
levels of dimethyl H3K4 of Egr1 promoter are signifi-
cantly increased, resulting in concomitant derepression
of Egr1 gene expression (Figures S1C and S1D). Finally,
global analysis of dimethyl H3K4 levels following

Figure 4. Tranylcypromine Increases Pou5f1/Oct4 Expression and

Inhibits Demethylation in P19 EC Cells In Vivo

(A) A schematic representation of the mouse Oct4 promoter show-

ing a cluster of DNA response elements. Arrows above CR4 ele-

ment denote primers.

(B) Analysis of binding of CoREST and BHC110 to the CR4 regula-

tory region of Pou5f1/Oct4 promoter using ChIP assay.

(C) Analysis of Oct4 mRNA levels measured by qRT-PCR after treat-

ment of P19 EC cells with tranylcypromine (2 mM) and deprenyl (2 mM).

(D) Analysis of BHC110 and dimethyl H3K4 occupancy on Oct4 pro-

moter by qChIP after treatment of P19 EC cells with tranylcypromine

(2 mM) and deprenyl (2 mM).

(E) Analysis of dimethyl H3K4 levels after treatment of P19 EC cells

for 21 to 26 hr with various concentrations of tranylcypromine

(20 nM to 50 mM). Whole-cell lysates were analyzed by SDS-PAGE,

followed by Western blotting. Dimethyl K4 levels were quantified.

Data are presented as the mean 6 SEM of at least three experiments.

*p < 0.02, **p < 0.01, ***p < 0.001.
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treatment of P19 cells with increasing amounts of tranyl-
cypromine revealed enhanced levels of methylation
(Figure 4E). Taken together, our results identify tranylcy-
promine as a small molecular inhibitor of histone H3K4
demethylation in vitro and in vivo.

In this study we demonstrate the utility of nonselective
monoamine oxidase inhibitors as small molecular inhib-
itors of histone H3K4 demethylation by BHC110. Impor-
tantly, only the nonselective monoamine oxidase inhibi-
tors displayed inhibitory activity toward BHC110,
consistent with a previous report that selective inhibi-
tors including pargyline failed to inhibit BHC110 activity
toward demethylation of H3K4 [26]. Pargyline was previ-
ously reported to inhibit the androgen receptor-induced
altered activity of BHC110 toward demethylation of
H3K9 at a high concentration of 1 mM [27]. At the pres-
ent it is not clear how an irreversible monoamine oxidase
inhibitor, pargyline, could inhibit H3K9 demethylation
without affecting H3K4 demethylation.

Tranylcypromine displayed the best activity with an
IC50 of less than 2 mM. The efficacy of tranylcypromine
in inhibiting H3K4 is remarkable because the IC50 for inhi-
bition of monoamine oxidase A or B by tranylcypromine is
20 mM [22], reflecting a better activity for the drug in inhib-
iting BHC110. Importantly, tranylcypromine has been
used for the symptomatic treatment of moderate to
severe depression. It has also been used to treat psy-
chotic depressive states such as depressive phases of
manic-depressive psychosis, involutional melancholia,
reactive depressions and psychoneurotic depressions
of moderate to severe intensity. Since the efficacy of tra-
nylcypromine for inhibiting BHC110 is nearly 10-fold
greater than for inhibiting monoamine oxidases, it will
be interesting to know whether lower doses of tranylcy-
promine selectively targeting BHC110 will have beneficial
effects on treatment of depression. Moreover, small mo-
lecular inhibitors such as trichostatin A and 5-azacytidine
have not only been utilized for research applications to
probe genomic deacetylation and DNA demethylation,
respectively, but also have potential clinical applications
[28–30]. It is likely that tranylcypromine would be a valu-
able tool in the future to probe the role of histone deme-
thylation in gene regulation and other cellular processes
such as differentiation and oncogenesis.

Significance

Dimethyl H3K4 is a histone mark associated with eu-

chromatin and actively transcribed genes. The histone
demethylase (BHC110/LSD1), a component of multipro-

tein corepressor complexes, was recently shown to
target dimethyl H3K4 for demethylation. Since the

catalytic domain of BHC110 has extensive sequence
homology with monoamine oxidases, we reasoned

that monoamine oxidase inhibitors displaying antide-
pressive effects may target BHC110. Our results dem-

onstrate that nonselective monoamine oxidase inhibi-
tors are potent inhibitors of demethylation by BHC110

with tranylcypromine displaying an IC50 of less than
2 mM. In addition, treatment of cells with tranylcypro-

mine increases global levels of dimethyl H3K4 and de-
represses the transcriptional activity of BHC110 target

genes. These findings not only illuminate histone
demethylation as a novel target of antidepressive
medication, but also identify small molecular inhibitors
that would prove beneficial for dissecting the cellular

processes involving histone demethylation.

Experimental Procedures

Histones, Nucleosomes, and Other Reagents

Bulk histones were purchased from Sigma (H9250). Analysis of

histone H3 in bulk histone showed a second band that has been

described as a cleaved form of histone H3 spanning amino acid res-

idues 28–135 in a previous report [31]. Nucleosomes were purified

from HeLa nuclear pellet as previously described [32, 33]. Mamma-

lian expression plasmid encoding FLAG-CoREST was generated

using HindIII/SalI sites in pFLAG-CMV�2 (Sigma). Anti-BHC110

antibodies were generated as previously described. Anti-dimethyl

K4 H3 (12–460) and anti-acetyl (K9/K14) H3 (06–599) antibodies

were purchased from Upstate. The anti-H3 (ab1791) antibody was

from Abcam Ltd (Cambridge, United Kingdom) and recognizes

C-terminal of histone H3. Tranylcypromine hydrochloride and clor-

gyline hydrochloride were from BIOMOL research laboratories and

MP biomedical, respectively. Nialamide and pargyline hydrochloride

were from Sigma. Phenelzine sulfate and selegiline (deprenyl) were

from Spectrum Chemicals.

Affinity Purification of the BHC110 Complex

and Recombinant Proteins

To generate a stable cell line expressing FLAG-CoREST, HEK

(human embryonic kidney) 293 cells were cotransfected with the

mammalian expression plasmid encoding FLAG-CoREST and a se-

lectable marker for puromycin resistance. Transfected cells were

grown in the presence of 5 mg/ml puromycin, and individual colonies

were isolated and analyzed for stable expression of FLAG-CoREST.

The BHC110 and CoREST complexes were purified from 150–200

mg nuclear extracts isolated from the stable cell lines using anti-

FLAG M2 affinity resin as previously described [18]. Baculoviral

recombinant proteins (FLAG-BHC110 and FLAG-CoREST-(His)6)

were purified from Sf21 insect cells infected by recombinant viruses

using anti-FLAG M2 affinity resin (Sigma) as previously described

[18]. BHC110-associated proteins have been identified and

described [12, 17, 18]. The amount of BHC110 in complexes was

determined by silver staining, and recombinant proteins were deter-

mined by colloidal staining compared with known amounts of BSA.

Demethylation and Deacetylation Assays

Demethylation and deacetylation assays were performed as previ-

ously described [18]. To measure IC50, the assays were performed

for 7 min.

Quantitative RT-PCR and Chromatin Immunoprecipitation

Cells were treated with either vehicle (0.02% DMSO), 2 mM deprenyl

or 2 mM tranylcypromine for 3 hr in DMEM media supplemented with

15% FBS, 0.1 mM nonessential amino acid solution (Invirogen), 0.1

mM b-mercaptoethanol, antibiotics and antimycotics. RNA was pre-

pared using the Qiagen Rneasy kit and reverse-transcribed using In-

vitrogen’s First Strand Synthesis kit. Quantitative PCR was per-

formed using the Opticon2 (MJ research) with Finnzymes DyNAmo

HS SYBR Green qPCR kit. Each sample was analyzed in triplicate

for both GAPDH and Pou5f1/Oct4 (with primers: sense 50-TTGGGCT

AGAGAAGGATGTGGTT-30 and antisense 50-GGAAAAGGGACTGAG

TAGAGTGTGG-30), and quantified using opticon software. Messen-

ger RNA levels were normalized by GAPDH levels. Relative mRNA

levels represent fold increase over control. Data are presented as

mean 6 SEM. Chromatin immunoprecipitation assays were per-

formed as described [12]. Anti-BHC110 (10 ml) or anti-dimethyl K4

(5 mg) was used for each assay. Each sample value in qPCR was nor-

malized by input value. PCR was performed using primers (sense 50-

GGAACTGGGTGTGGGGAGGTTGTA and antisense AGCAGATTAA

GGAAGGGCTAGGACGAGAG) spanning the response element CR4

located in mouse Pou5f1/Oct4 promoter (22098 to 21928) [34]. Pro-

moter occupancy levels of BHC110 and dimethyl K4 H3 were mea-

sured with the DyNAmo HS SYBR Green qPCR kit using Opticon2

software, and are expressed as fold change over control (vehicle).

Data are presented as the mean 6 SEM.
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Supplemental Data

Supplemental Data include one figure and are available at http://

www.chembiol.com/cgi/content/full/13/6/563/DC1/.
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