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1. I N T R O D U C T I O N  

In this note, we discuss approximation schemes for solving parameter estimation problems for 

parabolic partial differential equations posed on a two-dimensional domain. The technique is 

based on the standard Galerkin method, with approximating subspaces generated by bicubic 

spline basis functions. When pointwise state space data are given, it is necessary to obtain 

pointwise convergence results relating the approximating subspaces to the full infinite-dimensional 

s tate  space. In [1], such results were derived for parabolic problems posed on a one-dimensional 
domain. Here we establish convergence for the analogous two-dimensional problem. (For another 

approach to this problem see [2].) We note that we are motivated by the parameter estimation 
problem for transport  models used in population dispersal experiments, in which pointwise data 
(representing population counts) are collected over a two-dimensional domain, see [3]. 
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2. M A T H E M A T I C A L  F O R M U L A T I O N  

We consider the Initial Value-Boundary Value Problem (IV-BVP) on f~ = [0, 1] x [0, 1] 

ut + ~7. (Vu) = ~7. (D ® Vu) + c~u + f ,  

x,  y) =  o(7(z, y)) ,  

u(t ,  x,  y) = o, 

t e (0, T], 

on Of], 

(1) 

where f = f(/3, t, x, y) and D, V, c~, and/3  are assumed to be functions of t, x, and y, with 
D = (D1,D2)  and V = (V1, V2). With respect to our motivating applications, the dependent 
variable, u = u(t ,  x,  y), represents the population density of a species, whose dispersal over a two- 
dimensional domain is assumed to result from an innate diffusive mechanism, D, and a convective 
or "directed transport"  mechanism, V. The parameter c~ represents a general "source/sink" 
or "growth/decay" term. Homogeneous Dirichlet boundary conditions are assumed, since any 
nonhomogeneous boundary conditions can be incorporated into the parameters/3 and V. 

To demonstrated the well-posedness of this IV-BVP and to facilitate the discussion of the 
approximation of the associated parameter estimation problem, we recast equation (1) as a weak 
variational system on the Hilbert space H = L2(~): 

(ut, ¢1 + n(q) (u ,  ¢) = (f, ¢/,  for all ¢ in H~(f]), 
= (2) 

where L(q) is the bilinear form on H a ( a  ) x H~(f~) defined by: 

L(q)(¢, ~b) = (DV¢,  V¢)  - (V¢, V¢) - (a¢, ¢). (3) 

Here q is a "vector" of unknown parameters (D, V, a,/3, V) belonging to some set Q of admissible 
parameters belonging to the space X = {Hi([0, T]; n2(f~))} 2 × {g°( (0 ,  T) x f])}3. For a general 
account of this approximation framework for parameter estimation problems for distributed pa- 
rameter  systems, see [4,5]. Under appropriate compactness and boundedness assumptions on Q 
(essentially guaranteeing the coercivity of the bilinear form L) as well as continuity assumptions 
on f and u0 (see [6]), the well-posedness of this problem follows from the abstract theory of 
Lions [7]. 

To formulate the parameter  estimation problem, we assume that  for each time ti E (0, T], 
i = 1, 2 , . . . ,  P we have a matrix A(ti) of observations (taken at the m .  n locations (Xl, Y l ) , . . . ,  
(Xm, yn)).  Associated with each A(ti) is a matrix r ( t ~ ; q )  = (u(ti,xj,yk;q)) of model based 
"predictions". We then seek to solve the problem, (:P): 

P 

m i n i m i z e  J(q) = ~ HA(t/) - F(ti; q)][2 (4) 

i=1 

over all q belonging to Q. Here, the norm is the standard Euclidean norm on a ran. This problem 
is typically infinite-dimensional in both the state and parameter spaces, and we are led to develop 
appropriate approximation schemes. Here, we shall focus only on the state space approximations, 
as the convergence results which we wish to establish are independent of the approximation of 
the parameter  space Q. (For details on these parameter space approximations see [8,9].) 

Following the standard Galerkin technique, we define a sequence of finite-dimensional approx- 
imating state subspaces H g C L 2, N = 1, 2 , . . . ,  with p g  : L 2 ~ H N the canonical orthogonal 
projection. Furthermore, we assume that  H g c HI( f ] )  and that  for all z E C2(f]) fq Hol(f]): 

[]PNz-z[I 0 and ] [ v ( P g z - z ) ] l o  <_ e(N){llzxxl[0+ Ilzyyll0}, 

where e(N) ~ 0 as N ~ cx~. 
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Restricting the bilinear form (3) to H N x H N, we then define the Galerkin approximation, 
u N = uN(t ,  ", "; q) to be the solution of: 

u N < t , ~b} + L(q) (u N, ~)  = (f,'@), 

uN (o) = p N  u o. 

for all ~b in H N, 
(5) 

These finite-dimensional initial-value problems then yield a sequence of approximate estimation 
problems (pN):  

P 

minimize dN(q) = E [ I  A(ti) -- u N ( t i ' x j ' y k ;  q)ll 2 (6) 
i=1 

over all q belonging to the set of admissible parameters, Q. (Again, the norm is the Euclidean 
norm on Rm~.) 

3.  C O N V E R G E N C E  A R G U M E N T S  

The finite-dimensional approximation problems (pN)  produce solutions qN that ,  under the 
compactness assumption on the set Q, converge at least subsequentially to some parameter q*. 
To establish that  q* is a minimizer of the full cost functional J ,  we must prove the general 
s tatement tha t  "convergence of qN to q* implies convergence of j N ( q N )  to J(q*) as N -~ oc". 
Since we have chosen to minimize a pointwise least squares fit-to-data criterion, it is clear our 
approximation scheme must guarantee pointwise convergence of the state approximations. That  
is, under the topology on Q, we must show that  convergence of qg  t o  q* i m p l i e s  uN( t ,  Xj,  Yk; qN) 
converges to u * ( t, x j , yk ;q*)  as N --~ c~, for each of the data  points ( x j , yk ) ,  for 1 < j _< m and 1 < 
k_<n.  

Notice thai; we do not demand global pointwise convergence of the state approximations. 
Rather, it suffices to show pointwise convergence on a neighborhood Djk  of each of the points 
( x j , y k )  and then piece together at most a finite number (in fact m .  n) of such results. The 
arguments for this rely on a general estimate that  bounds the L~°(D) norm of any member of 
a broad class of finite-element subspaces (including those generated from bicubic splines) I)y a 
global H i ( f / )  norm, where D is an open subset of f~ (see [10]). To establish the convergence in 
Hl(f~) of u g ( t ;  q g )  t o  u * ( t ;  q*) as N --* oo, we observe that  by the triangle inequality it suffices 
to argue that  IluN(t) - pNu*(t)II1 ~ O, since lIP N - u*(t)lll -~ 0 by standard spline estimates 
(see [11]). We then use the weak variational formulation of our approximation scheme to derive a 
Gronwall inequality for each of the expressions Nu N (t) - pNu* (t)Iio and [[V(u p (t) - pXu*  (t))ll0. 
For details, see [1,12]. Finally, since u N and u* are actually continuous (continuity of u N follows 
from finite-dimensionality and continuity of u* follows from standard results on parabolic equa- 
tions, see [6]'1, we have that  the convergence of u N to u* in Lo~(D) is actually convergence in 
C(D).  
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