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Abstract: This paper is devoted to the study of isometries of cohomogeneity one Riemannian 
spaces, namely Riemannian manifolds acted on by a Lie group of isometries G with principal 
ort';ts of codimension one. We show that, for a class of such manifolds, every one parameter 
group of isometrics preserves the foliation induced by the action of the Lie group G. 
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Introduct ion  

Cohomogeneity one Riemannian manifolds, namely Riemannian spaces acted on by 
a closed Lie group of isometries with one orbit of codimension one, have been used 

quite intensively in recent hterature. In particular in 1982 B6rard Bergery ([4]) used 
cohomogeneity one Riemannian spaces to produce new examples of Einstein spaces. 
Bryant and Salamon ([7]) succeeded in constructing explicit examples of metrics with 
holonomy G2 and Spin(7), by considering cones on homogeneous spaces endowed with 
a warped product metric. Such examples are cohomogeneity one Riemannian spaces 
and have maximal degree of symmetry:  indeed, if the holonomy group of a Riemannian 
space is contained in G2 or in Spin(7), the Ricci curvature is forced to vanish and, by a 
result of Alekseevsky-Kimelfeld (see e.g. [5]), it is clear that there are no homogeneous 
non-flat examples of such spaces. 

More recently, Alekseevsky ([1,2, 3]) began a more systematic s tudy of cohomogene- 
ity one Riemannian manifolds by using a Lie group theoretic approach; he developed 
some basic ideas explained in the book of Bredon ([6]) about general actions of compact 
Lie groups on manifolds and used the general notion of slice, as given in [12], in the 
Riemannian setting. In particular, in [2], a general description of cohomogeneity one 
manifolds is provided from the viewpoint of group theory, by reducing the problem of 
their classification to a problem in representation theory. 
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Nevertheless, it seems that cohomogeneity one Pdemannian manifolds have never 
been investigated from the differential geometric point of view. Actually, several fields 
of differential geometry,  like foliation theory or curvature analysis, could be successfully 
applied to provide a better  understanding of the geometric properties of such manifolds. 

The present paper is aimed at starting such research, by examining at first a par- 
ticular class of cohomogeneity one Riemannian manifolds in which every orbit is an 
umbilical hypersurface of the ambient manifold. We shall interpret this condition in 
terms of the metric structure and will give a theorem on the isometry group of such 
spaces. 

Section 1 will be devoted to some basic facts on cohomogeneity one Riemannian 
manifolds and to explanation of our main result together with a corollary (Corollary A), 
which we think could be of some general interest. 

Section 2 will be devoted to the proof of the stated results. 
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1. P r e l i m i n a r i e s  

Throughout  the following (M,g)  will denote a C °O Riemannian manifold. In the 
present paper we shall deal with cohomogeneity one Riemannian manifolds and the 
behaviour of the flow of Killing vector fields with respect to the induced foliation. For 
sake of completeness we shall now go through some basic facts about cohomogeneity one 
Riemannian manifolds, which have been largely used in recent literature (see [2, 3, 5, 6]). 

D e f i n i t i o n  1.1. Let (M,g)  be a complete Riemannian manifold and let G c I ( M , g )  
be a closed Lie group of isometries of M. We say that M is of cohomogeneity one under 
the action of G if G has an orbit of codimension one. 

From the general theory of G-manifolds (see [10, 6, 3]), the condition given in Def- 
inition 1.1 is equivalent to the fact that the orbit space f~ = M / G  is a topological 
space of dimension one. Indeed, we may affirm that the orbit space ~ is always a 
1-dimensional Hausdorff space homeomorphic to one of the following topological spaces: 
~, S 1, ItS+ = [0, +oo), [0, 7r] C ~. In the following we will denote by ~ : M ~ ~ the 
projection onto the orbit space f~. 

Let us now introduce some basic terminology for G-manifolds: 

D e f i n i t i o n  1.2. Given a point x E M, the orbit Px = Gx is called principal (singular) 
if the corresponding image in the orbit space f~ is an internal (resp. boundary)  point 
of f~. The point x will be called regular (resp. singular) and the set of all regular points 
will be denoted by Mreg. 
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From the structure theorems, a point x is regular if and only if there exists a neigh- 
borhood V~(~) C f~ of ~(x) so that U = ~-I(V~(~)) admits a G-invariant diffeomorphism 
with G / K  x V~(~), where K is the stability subgroup of G at x. Indeed, for any any open 
and connected interval I C f~ (=  the interior of f~), ~ -1 ( I )  is a non-compact, connected 
G-manifold with only regular orbits: in this case, the whole ~ -1 ( I )  is G-invariantly 
diffeomorphic to G/  K x I. This implies also that all regular orbits are diffeomorphi,: 
to G / K .  

We note moreover, that the action of the Lie group G induces a codimension one 
tbliation ~: of the open dense subset Mr~g consisting of regular points: the maximal leaf 
of ~ through a regular point x C greg is given by the orbit of G through x. The normal 
bundle L of such foliation is a rank one subbundle of T M  defined on Mreg a0nd it is 
always trivial: indeed the mapping ~ is a regular submersion of Mreg onto Q which 
is naturally oriented. 

On the other hand, if a point x is singular, there exists a neighborhood U C M of x, 
so that there exists a G-invariant diffeomorphism between U and G XH V, where H i:~ 
the stability subgroup of G at x, V is an euclidean space and H acts orthogonally on 
V and transitively on the unit sphere in V. 

A singular point x is called exceptional if the codimension of the orbit G(x) is still 
one; in this case the foliation ~ is still defined on the open subset A = MregUG(z), but 

the normal bundle LIA is not trivial any more. 

D e f i n i t i o n  1.3. A (complete) geodesic 7 on a Riemannian manifold of cohomogeneity 
one is called normal geodesic if it crosses each orbit orthogonal]y. 

In the next proposition, we list some of most relevant properties of Riemannian 
manifolds of cohomogeneity one. 

P r o p o s i t i o n  1.4. a) A geodesic 3' is normal if and only if it is orthogonal to the orbit 
G'x at one point x E 7; 

b) each regular point belongs to a unique normal geodesic; 
c) the map ~l~ : 7 ~ Q is surjective and it defines a covering over the set Q of 

internal points of Q; 
d) the group G transforms normal geodesics into normal geodesics and acts on the 

set of normal geodesics transitively; 
e) let x be a regular point of M; then there exists a neighborhood U of x such that 

(U,g) is locally isometric to ( ( G / K  x I ) ,gt  + dt2). Here, K is the isotropy group of 
G at x, I is an open interval of ~, gt is a family of left invariant metrics on G / K ,  
depending smoothly on t E I, dt 2 is the standard metric of ~. 

For a), b), c) and d), see [1,2,3]; for e) consider the following facts. Let 7 be the 
normal geodesic such that 7(0) = x and let I be an open interval which contains 0 
and such that 7 ( I )  crosses only principal orbits. Then, by means of n (by point c)), we 
may identify I with an open set of ~ and 7It with a section of the fibering n-~(I)( :~ 
G / K  x I) --+ I. Being 7 a geodesic, it is then clear that the G-invariant diffeomorphism 
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between a - l ( I )  and G / K  × I induces an isometry between the metric g and gt + dt 2. 
A particular case is given when the one parameter  family of metrics gt is expressed 

by 

g, = ¢ ( t ) 2 g o ,  

where ¢(t)  is a nowhere vanishing C ~ function and go is a fixed G-invariant Rie- 
mannian  metric on G / K ;  in this case we shall say that the given cohomogeneity one 
Riemannian space inherits an adapted warped product structure (for a general t reatment  
of warped product structures, we refer to [ll] and [5]). Many examples of such spaces 
are given by revolution hypersurfaces in the euclidean space: actually in a joint work 
([13]), it has been shown that a compact cohomogeneity one Riemannian manifold, 
which is isometrically immersed as a hypersurface of the euclidean space, is a revolu- 
tion hypersurface if and only if it has an adapted warped product structure. In [13], 
we also gave a necessary and sufficient condition for a cohomogeneity one Riemannian 
manifold to have a warped product structure, namely we proved that 

P r o p o s i t i o n  1.5. A cohomogeneity one Riemannian manifold (M,g)  has an adapted 
warped product structure if  and only if the induced foliation ~ is umbilical in M.  

This proposition motivates the definition 

De f in i t i on .  A cohomogeneity one Riemannian manifold (M,g)  will be said to be 
umbilical if the induced foliation ~ is umbilical. Our main theorems, we shall prove 
in the next section, deals with isometries on umbilical cohomogeneity one Riemannian 
manifolds. 

T h e o r e m  I. Let (M, g) be a compact umbilical cohomogeneity one Riemannian mani- 
fold. I f  the orbit space ~ is diffeomorphic to S ], then every Killing vector field preserves 
the induced foliation. 

T h e o r e m  II .  Let (M,g)  be a compact, irreducible homogeneous space. Suppose more- 
over (M, g) is a cohomogeneity one Riemannian man~old under the action of a con- 
nected Lie group G, such that the principal orbit G/  K is an isotropy irreducible space. 
Then (M,g)  is isometric to a sphere or to a real projective space. 

As a concluding remark, we quote here that in Remark 1 of the next section, we 
explain how one can deal with cohomogeneity one Riemannian manifolds having exactly 
two exceptional singular orbits; in particular we show that there is a two fold covering 
of the manifold on which the same group G acts with codimension one principal orbits 
and no singular ones. 

2. P r o o f  o f  the  T h e o r e m s  

To fix notations, we denote by (M,g)  the compact cohomogeneity one Riemannian 
manifold and by G the group of isometries acting on it with principal orbits of codimen- 
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sion one. Moreover we are supposing that the orbit space 12 = M / G  is diffeomorphic 
to S 1 and that the induced foliation ~, given by the orbits under the action of G, is 

umbilical. 
We shall indicate by ~ a unit vector field everywhere normal to the foliation ~: we 

recall that the field ~ is geodesic, that is V ~  = 0. By our assumption of umbilicity, 
there is a C ~ function f : M -~ It( such that for all X E T~  

VX~ = - f X .  (2.1) 

We take any Killing vector field Z on M and we want to show that for any X E T ~  

[Z, X] e T~. (2.2) 

This is actually equivalent to showing that, for any normal geodesic 7 : ~ --* M and 
for any Killing vector field X induced by the action of G, the function g :/i~ ~ K given 

by 
= g ( [ Z ,  x ] ,  s e (2 .3 )  

vanishes identically. Now we note immediately that, since +(s) = ~-~(s) and since [Z, X] 
is a Killing vector field, 

~ g ( s )  = g(V~[Z,X],~)  + g ( [ Z , X ] , V ~ )  0 

that is the function 9 is constant.  We have to prove that this constant is zero. 

First of all we prove the following 

L e m m a  2.1. For every normal geodesic 7 parametrized by an arc parameter, the 
mapping t¢ o 7 : ~ ~ $1 is periodic. 

P r o o f .  We fix a point Xo E M and consider the normal geodesic 7 : ---*M issuing from 
Xo, that is 7(0)  = Xo. We know that the mapping ~ o 7 : ~ ---* $1 defines a covering, 

hence we may define the real number 

T = inf{t E ~+ I n(7(t))  = g(Xo)}. (2.4) 

Since 7 (T)  E G(Xo), there exists g E G with 7(T)  = g(Xo). Since every g E G preserves 
the foliation ~, we have only two possibilities, namely 

dg~o(+(O)) = + +(T). 

We shall examine these two cases separately. If dg~o(;y(O)) = ~/(T), then by the unique- 
ness of geodesics, we have that g o 7(s)  = 7(s  + T) for all s E ~ and the map ~ o 7 is 

obviously periodic. 
Let us now assume that dgzo(;~(O)) = - '~(T):  again by uniqueness we have 

= w e 

But then g (7 (1T) )  1T 1T = 7(7 ), that is g fixes the point 7(~ ); moreover, since g preserves 

globally but not pointwise the geodesic 7, we have 

dg.c(½T)(Z/(1T)) = --~(1T].  (2.5) 
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1 We now consider the point xl = ")'(TT) and repeat the same argument as above: we 
denote by 7/: ~ ~ M the normal geodesic through Xl (actually r/(s) = "y(s + ½T) for 
all s • It() and define a real number S as in (2.4) for the geodesic y. Again we have 
that ~/(S) = h(xa) for some h • G; if dhx~(il(O)) = //(S), then ~ o y is periodic. If it 
happens that dhx~(il(O)) = -/1(S),  then h' = h o g  • G is such that h'(Xl) = ~(S),  since 
h stabilizes xl ,  and moreover dh~  (//(0)) = / / ( S ) ,  so that ~ o r/is periodic. 

Now since G acts transitively on the set of normal geodesics, we get that for every 
normal geodesic 1' the mapping ~ o -~ is periodic. [] 

C o r o l l a r y  2.2.  For all normal geodesic "y : ~ ~ M,  the funct ion f o 7 is periodic. 

P r o o f .  Indeed the function f is given by ( n -  1)Tr A, where A is the shape operator 
of the leaves of the foliation ~, so that f is invariant under the action of G. Now if 
~' : ~ -~ M is a normal geodesic, we know by the previous lemma, that there exists 

T > 0 with 7(s)  - "y(s + T ) m o d  G for all s E ~: then f( 'y(s + T))  = f ( 7 ( s ) )  for all 
s E ~,  by the invariance of f under the action of G. [] 

We now turn to the function g defined in (2.3) and note that 

g( s) = g ( v z x ,  - g (V  x Z ,  

= - g ( V ~ X ,  Z).~(s) + g(V~Z,  X).y(s) 

= -2g(v x, + x ) )  

= + 2 f g ( Z , X ) .  

So if we consider the function ¢ : II~ ---, ~ given by 

= s e 

we may write 

g(s) = ¢ ' (s)  + 2 f ( s )¢ ( s )  = C, 

where we have indicated by f also the composition mapping f o 7 and by C a real 
constant.  We have to prove that C = 0. First of all we show that we may  suppose 
¢(0) = 0: indeed if g(Z ,X)~(o  ) (: O, then there exists a real number a E I~ with 
g ( Z  + aX ,  X).y(0 ) = 0; on the other hand Z + a X  is still a Killing vector field and 
[Z + aX ,  X] = [Z, X],  so that we may consider Z + a X  instead of Z. The following 
lemma will conclude the proof. 

L e m m a  2.3.  Let ¢ : ~ ~ ~ be a C °O function which belongs to Loo(R) and which 
satisfies ¢(0) = 0. I f  f : ~ ~ ~ is a Coo periodic funct ion such that 

¢ ' ( s )  + 2 f ( s ) ¢ ( s )  = c (2.5) 

for  some constant, then C = O. 
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P r o o f .  We suppose that C # 0 and for sake of simplicity we may suppose C > O, 
otherwise we change 4) into - ¢ .  We define the function F : II~ ---, It( given by 

J0 F(s) = f ( t )d t  

and note that,  since f is periodic, we may find two constants A, B such that 

As - B <~ F(s) <~ As + B, s E ~. (2.6) 

Now equation (2.5) can be integrated in the following way 

4)(s) = C rio ~ 
exp(2F(t))  dt 

exp(2r( )) ' s e a .  

Now for s ) 0, using (2.6), we get 

f0 s exp(2 r(t)) dt 
C ) C e x p t - 2 B )  "( ( )) 

e x p ( 2 r ( s ) )  A 

so that,  if A < 0, we get 

tim C e x p ( - 2 B )  ( 1 -  exp ( -As ) )  = + ~ ,  
s~+oo  A 

which implies 114)11~ = +e¢, contradicting our assumption 4) E L°°(~). So we get A/> 0. 
If A > 0, then, for s ~< 0, using (2.6), we get 

J0 ~ exp(2F(t) )  dt 
- C  >>. C exp( -2B)  " ( ) 

1 

exp (2 r ( s ) )  A 

an d 
lim Cexp(_2B)exp , -As , [  ~ - 1 = + o o ,  

so that 

lim ¢ ( s ) = - ~ ,  
8 - - ~ - -  O0 

which is again contradictory. We are left with the case A = 0: in this case F E L°°(I~) 
and if C # 0, we get that 

g" lim C exp (2F( t ) )d t=  +co, 
$ ~--+ 31- OO 

showing again that 4) were not bounded. [] 

Now we may apply the previous lemma to the function ¢(s) = g(Z,X)~(s),  noting 
that 4) is bounded since the function g ( Z , X )  is continuous on M, which is compact.  
This concludes the proof of the theerem. [] 
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C o r o l l a r y  2.4. Suppose Z is a Killing vector field which is transverse to the foliation 
at some point p. Then the foliation ~ is parallel and M is reducible. 

P r o o f .  We note that our assumption implies that the orbit of the connected group 
I ° ( M , g )  through the point p contains an open set, hence (M ,g )  is homogeneous. Now 
if Y is any Killing vector field, Y preserves the foliation ~, hence the function f is 
constant along the flow of Y. It follows from homogeneity, that f is constant on the 
whole M.  We now observe that 

div ~ = - ( n -  1) f  

and, by Stokes theorem, 

/M(div  ~)~vg = - - / M ( n - - 1 ) f ~ v g  = 0 ,  

and since f is a constant,  we get f = 0 everywhere on M. This means that the foliation 
is parallel. [] 

R e m a r k  1. The same proof also applies in the case of a compact cohomogeneity one 
Riemannian manifold, whose singular points are all exceptional. Indeed in this case 
we may  still define a rank one vector bundle L whose fibre over a point x • M is 
Lx = T ( G ( x ) )  ±. Now this bundle is never trivial, since each exceptional orbit is not 
orientable. But we may consider the manifold M given by 

UL = {(x,v) • L Igx ( v , v )  = 1}, 

which turns out to be a compact, connected (since L is not trivial) two-fold covering 
manifold of M,  with projection map ~(x, v) = x. Moreover each element h E G acts on 

in a natural  way by putting 

h(x,  v) = (h(x) ,  dhx(v)),  (x, v) e ]~I, h e G 

It is then clear that /~/, endowed with the lifted Riemannian metric g, is a cohomo- 
geneity one Riemannian manifold under the action of the group G with orbit space 
]l~//G = $1: indeed, any orbit of a point ~ E M is a covering of the orbit G(~r(~)), 
hence, if there are singular orbits in ]l~/, they must be exceptional; but the pulled back 
vector bundle :r*(L) is trivial on 2~/, so that there are no exceptional orbits and the 
orbit space is S 1. So we may apply our main theorem or Corollary 2.4 to 2~/. 

C o r o l l a r y  2.5. Let  (M,g )  be a compact, homogeneous Riemannian manifold which is 
of  cohomogeneity one under the action of  a connected Lie group G. Suppose moreover 
that a principal orbit G / K is an isotropy irreducible homogeneous space. Then one of  
the following is true: 

1) ( M , g )  is isometric to a sphere or to a real projective space; 
2) the universal covering manifold (M,~)  splits isometrically as the R iemannian  

product ~ × L, where L is the universal covering of  a principal orbit G / K .  
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P r o o f .  First of all, we note that the existence of a Killing vector field which is not 
tangent to the foliation ~ induced by G is equivMent to the homogeneity of (M,g ) .  
Moreover we observe that,  if we denote by A the shape operator of the foliation ~, 
then A is G-invariant, hence, by isotropy irreducibility, A is a multiple of the identity 
operator; by Proposition 1.5, this is equivalent to saying that the open subset of regular 
points of M has a warped product structure. 

We now distinguish two cases, according to the nature of the orbit space 9t = M/G~ 
which can be diffeomorphic to S 1 or to [0, ~r]. If f / =  S 1, then assertion 2) follows from 
Corollary 2.2 by s tandard arguments. 

We may therefore suppose that ~ ~ [0, 7r]. If all singular points in M are except ional  
then Corollary 2.2 applies to the two-fold covering M of M and we get again asser- 
tion 2). So we may suppose that there is at least one non-exceptional singular point 
p E M.  We denote by H the stability subgroup of G at p, with K c H C G; but isotropy 
irreducibility implies that the Lie algebra ~j of H coincides with the Lie algebra ~5 of 
(i; or with the Lie algebra Pc of K. Now, the dimension of the singular orbit G(p) is 
dim O -  dim.~ and this is strictly less than the dimension of a regular orbit G/K since 
p is not exceptional; we conclude that O = .~, hence G = H,  since G is supposed to 
be connected. This implies that the singular orbit G(p) reduces to the point {p} and 
that each regular orbit G/K = H/K is isometric to a sphere. Moreover, we note that 
the linear isotropy representation of G = H into O(TMp) acts transitively on the uni~ 
sphere in TMp. From this it follows that the Ricci tensor at p is a multiple of the metric 
tensor, say Ri% = Agp. Now, from homogeneity, we deduce that (M,g) is an Einstein 
space: it is moreover clear that the scalar curvature r of (M,g) cannot be negative, 
since otherwise there would exist no nonzero Killing vector fields by Bochner's theorem 
(see e.g. [8]). We first show that r cannot be zero. 

Indeed if the Ricci tensor vanishes identically, then (M,g) ,  being homogeneous, is 
fiat by Alekseevsky-Kimelfeld theorem (see e.g. [5, p.191]). But a flat homogeneous 
Riemannian manifold is isometric to a flat torus T'~: we shall show that this case can 
not occur, by examining the possible singular orbits. 

We know that we have at least one singular orbit consisting of one point {p}: if also 
the other singular orbit reduces to a point {q}, then the fibration ~ : T n -  {p, q} ---. (0, ~r) 
is trivial and we would have that T n - {p, q} is diffeomorphic to (0, 7r) × S n-l, since 
we know that the regular orbits are diffeomorphic to spheres. But a simple argument 
involving the first fundamental  group excludes this possibility. Then the other singular 
orbit must be exceptional: in this case the G-manifold N = T ~ -  {p} is of cohomogeneity 
one and G acts also on the two-fold covering N with orbit space N/G = ~. Moreover 
a G-orbit  in N is a finite covering of a regular orbit in T n, which is diffeomorphic 
1;o a sphere, hence it is a sphere itself. So we would have that N is diffeomorphic 
to I~ × S n-1. This would imply that the fundamental group ~h(T '~ - {p}) contains a 
subgroup of index 2 isomorphic to 7h(ii~ × S n - l )  and this is easily seen to be impossible. 

So we have shown that the scalar curvature r must be positive. Again we recall that 
the open dense subset of regular points Mreg is isometric to (0, 7r) × S n - l ,  endowed 
with a metric dt ~ +¢(t)2go for some C ~ function ¢ on (0, 7r). Our conclusion will follow 
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f rom a resul t  quo ted  in [5], which we reformula te  here for the sake of  comple teness  

L e m m a  2 .4 .  Le t  (M,  g) be a complete E ins te in  mani fold  with posit ive scalar curva- 

ture, con ta in ing  an open dense subset U which is a warped product  on an one dimen-  

s ional  basis with complete fibre. Then  ( M , g )  is isometric  to S n or to RP'~. 

For  the  p r o o f  of  this l emma,  we refer to  [5], where it can be deduced  f rom T h e o r e m  
113, p. 269, by  a case by case checking of all spaces coming up in the  classification 

list. [] 

P r o o f  o f  T h e o r e m  I I .  It  follows immedia te ly  from Corol lary 2.5 and f rom irreducibil-  

i ty  of  ( M , g ) .  [] 
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