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We study the theory of scattering for a class of Hartree type equations with long
range interactions in arbitrary space dimension n \ 1, including the case of Hartree
equations with time dependent potential V(t, x)=otm− c |x|−m with 0 < c [ 1 and
0 < m < n. This includes the case of potential V(x)=o |x|−c and can be extended to
the limiting case of nonlinear Schrödinger equations with cubic nonlinearity
otn− c |u|2 u. Using Gevrey spaces of asymptotic states and solutions, we prove the
existence of modified local wave operators at infinity with no size restriction on the
data and we determine the asymptotic behaviour in time of solutions in the range of
the wave operators, thereby extending the results of previous papers which covered
the range 0 < c [ 1 but only 0 < m [ n−2 and were therefore restricted to space
dimension n \ 3. © 2001 Academic Press
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1. INTRODUCTION

This is the third paper where we study the theory of scattering and more
precisely the existence of modified wave operators for a class of long range
Hartree type equations

i“tu+1
2 Du=g̃(|u|2) u, (1.1)
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where u is a complex function defined in space time Rn+1, D is the Lapla-
cian in Rn, and

g̃(|u|2)=otm− c |N|m−n |u|2 (1.2)

with |N|=(−D)1/2, o ¥ R, 0 < c [ 1 and 0 < m [ n. For m < n, the operator
|N|m−n can be represented by the convolution in Rn

|N|m−n f=Cn, m |x|−m f f (1.3)

so that (1.2) is a Hartree type interaction with potential V(x)=C |x|−m. The
more standard Hartree equation corresponds to the case c=m. In that
case, the nonlinearity g̃(|u|2) becomes

g̃(|u|2)=V f |u|2=o |x|−c f |u|2 (1.4)

with a suitable redefinition of o.
A large amount of work has been devoted to the theory of scattering for

the Hartree equation (1.1) with nonlinearity (1.4) as well as with similar
nonlinearities with more general potentials. As in the case of the linear
Schrödinger equation, one must distinguish the short range case, corre-
sponding to c > 1, from the long range case corresponding to c [ 1. In the
short range case, it is known that the (ordinary) wave operators exist in
suitable function spaces for c > 1 [14]. Furthermore for repulsive interac-
tions, namely for o \ 0, it is known that all solutions in suitable spaces
admit asymptotic states in L2 for c > 1, and that asymptotic completeness
holds for c > 4/3 [12]. In the long range case c [ 1, the ordinary wave
operators are known not to exist in any reasonable sense [12], and should
be replaced by modified wave operators including a suitable phase in their
definition, as is the case for the linear Schrödinger equation. A well devel-
oped theory of long range scattering exists for the latter. See for instance
[1] for a recent treatment and for an extensive bibliography. In contrast
with that situation, only partial results are available for the Hartree equa-
tion. For small solutions (or equivalently small asymptotic states) the exis-
tence of modified wave operators has been proved in the critical case c=1
[2]. On the other hand, it has been shown, first in the critical case c=1
and then in the whole range 0 < c [ 1 [6, 7, 9, 10] that the global solutions
of the Hartree equation (1.1) with nonlinearity (1.4) and with small initial
data exhibit an asymptotic behaviour as t Q ±. of the expected scattering
type characterized by scattering states u± and including suitable phase
factors that are typical of long range scattering.

In the previous two papers of this series [4, 5] (hereafter referred to as I
and II) we proved the existence of modified wave operators in suitable
spaces for the equation (1.1) with nonlinearity (1.2), and we gave a
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description of the asymptotic behaviour in time of solutions in the ranges
of those operators, with no size restriction on the data, first for 1/2 < c < 1
in I and then in the whole range 0 < c [ 1 in II. The method is an extension
of the energy method used in [6, 9, 10], and uses in particular an auxiliary
system of equations introduced in [9] to study the asymptotic behaviour of
small solutions. The spaces of initial data, namely in the present case of
asymptotic states, are Sobolev spaces of finite order. However there occurs
a loss of derivatives in the auxiliary system, which has to be compensated
for by the smoothing effect of the operator |N|m−n in (1.2). This is done in
the framework of Sobolev spaces at the expense of assuming m [ n−2,
which in particular restricts the space dimension to n \ 3. In the present
paper, we overcome that difficulty by treating the problem in Gevrey
spaces [13], following and extending the method used in [7] to treat the
case of small solutions. This makes it possible to cover the whole range
0 < m [ n, and in particular the case of dimensions 1 and 2 and the case of
cubic nonlinear Schrödinger (NLS) equations (with time dependent nonli-
nearity). More precisely we use Gevrey classes G1/n of order 1/n with
0 < n [ 1, and the method applies under the condition m [ n−2+2n. In
particular for cubic NLS equations we need n=1, namely spaces of analy-
tic functions. The previous restriction on m and n can still be weakened and
has been weakened in [7] at the expense of introducing parabolic terms in
the auxiliary system of equations. However those terms introduce a pri-
viledged orientation of time, which is inconvenient for the study of scatter-
ing theory, where we like to go back and forth from finite to infinite time,
and we shall not make use of that extension here. The origin of the deriva-
tive loss and the mechanism by which that loss is overcome in Gevrey
spaces, which is the same as in [7], will be described in Section 3 after suf-
ficient technical material has been introduced, namely after Lemma 3.4.

The construction of the modified wave operators is in its principle the
same as in II and will be recalled in Section 2 below, which is mostly a
summary of Section 2 of II. It involves the study of the same auxiliary
system of equations as in II for an amplitude w and a phase j which
replace the original function u, and the definition of the same modified
asymptotic dynamics for that system as in II.

We now give a brief outline of the contents of this paper. A more tech-
nical description will be given at the end of Section 2. In Section 3 we
define the relevant Gevrey spaces and derive the basic estimates in those
spaces that are needed to study the auxiliary system. In Section 4 we prove
the existence of the large time dynamics associated with that system and
some preliminary asymptotic properties of that dynamics. In Section 5 we
study the asymptotic dynamics and we prove the existence of asymptotic
states for the previously constructed solutions of the auxiliary system. In
Section 6 we construct the local wave operators at infinity for the auxiliary
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system by solving the Cauchy problem for that system with infinite initial
time. We then come back from the auxiliary system to the original equation
(1.1) for u and construct the (local) wave operators (at infinity) for u in
Section 7, where the main result is stated as Proposition 7.5.

We have tried to make this paper self-contained and at the same time to
keep duplication with I and II to a minimum. Duplication occurs in
Section 2, as already mentioned, and in part of Section 7. The more tech-
nical sections 3 to 6 follow the same pattern as in II, but there is almost no
duplication because the functional framework is significantly different.

We conclude this section by giving some general notation which will be
used freely throughout this paper. We shall work mostly in Fourier space.
We denote by f the convolution in Rn, by F the Fourier transform, and by
û=Fu the Fourier transform of u. We denote by || · ||r the norm in
L r — L r(Rn) and by O · , ·P the scalar product in L2. For any interval I and
any Banach space X, we denote by C(I, X) the space of strongly continu-
ous functions from I to X, by L.(I, X) (resp. L.loc(I, X)) the space of
measurable essentially bounded (resp. locally essentially bounded) func-
tions from I to X, and by L2(I, X) (resp. L2

loc(I, X), resp. L2
r(I, X)) the

space of measurable functions u from I to X such that ||u( · ); X|| belongs to
L2(I) (resp. L2

loc(I), resp. L2
r(I)), where L2

r(I) is the weighted space
L2(I, r(t) dt) for some positive function r. For real numbers a and b, we
use the notation aKb=Max(a, b) and aNb=Min(a, b). In the estimates
of solutions of the relevant equations, we shall use the letter C to denote
constants, possibly different from an estimate to the next, depending on
various parameters such as c, but not on the solutions themselves or on
their initial data. Those constants will be bounded in c for c away from
zero. We shall use the notation A(a1, a2, ...) for estimating functions, also
possibly different from an estimate to the next, depending in addition on
suitable norms a1, a2, ... of the solutions or of their initial data. If (p.q) is a
double inequality, we denote by (p.qa) and (p.qb) the first and second
inequality in (p.q). Finally, Item (p.q) of I or II will be referred to as Item
(I.p.q.) or (II.p.q). Additional notation will be given when needed.

In all this paper, we assume that 0 < m [ n and 0 < c [ 1.

2. HEURISTICS

In this section, we describe in heuristic terms the construction of the
modified wave operators for the equation (1.1). That construction is the
same as that performed in II, and this section is mostly a summary of
Section II.2, which we include in order to make this paper self-contained.

The problem that we address is that of classifying the possible asympto-
tic behaviours of the solutions of (1.1) by relating them to a set of model

418 GINIBRE AND VELO



functions V={v=v(u+)} parametrized by some data u+ and with suitably
chosen and preferably simple asymptotic behaviour in time. For each
v ¥V, one tries to construct a solution u of (1.1) such that u(t) behaves as
v(t) when t Q. in a suitable sense. The map W: u+ Q u thereby obtained
classifies the asymptotic behaviours of solutions of (1.1) and is a prelimi-
nary version of the wave operator for positive time. A similar question can
be asked for t Q −.. From now on we restrict our attention to positive
time.

In the short range case corresponding to c > 1 in (1.2), the previous
scheme can be implemented by taking for V the set V={v=U(t) u+} of
solutions of the equation

i“tv+1
2 Dv=0, (2.1)

with U(t) being the unitary group

U(t)=exp(i(t/2) D). (2.2)

The initial data u+ for v is called the asymptotic state for u.
In the long range case corresponding to c [ 1 in (1.2), the previous set is

known to be inadequate and has to be replaced by a better set of model
functions obtained by modifying the previous ones by a suitable phase. The
modification that we use requires additional structure of U(t). In fact U(t)
can be written as

U(t)=M(t) D(t) FM(t) (2.3)

where M(t) is the operator of multiplication by the function

M(t)=exp(ix2/2t), (2.4)

and D(t) is the dilation operator defined by

(D(t) f)(x)=(it)−n/2 f(x/t). (2.5)

Let now j (0)=j (0)(x, t) be a real function of space time and let
z (0)(x, t)=exp(−ij (0)(x, t)). We replace v(t)=U(t) u+ by the modified free
evolution [16, 17]

v(t)=M(t) D(t) z (0)(t) w+, (2.6)

where w+=Fu+. In order to allow for easy comparison of u with v, it is
then convenient to represent u in terms of a phase factor z(t)=exp(−ij(t))
and of an amplitude w(t) in such a way that asymptotically j(t) behaves as
j (0)(t) and w(t) tends to w+. This is done by writing u in the form [8, 9]

u(t)=M(t) D(t) z(t) w(t) — (L(w, j))(t). (2.7)
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The construction of the wave operators for u proceeds by first construct-
ing the wave operators for the pair (w, j) and then recovering the wave
operators for u therefrom by the use of (2.7). The evolution equation for
(w, j) is obtained by substituting (2.7) into the equation (1.1). One obtains
the equation

(i“t+(2t2)−1 D −Dgg̃D) zw=0 (2.8)

for zw, with

g̃ — g̃(|u|2)=g̃(|Dw|2), (2.9)

or equivalently, by expanding the derivatives in (2.8),

{i“t+(2t2)−1 D −i(2t2)−1 (2Nj ·N+(Dj))} w

+{“tj −(2t2)−1 |Nj|2−Dgg̃D} w=0. (2.10)

We are now in the situation of a gauge theory. The equation (2.8) or
(2.10) is invariant under the gauge transformation (w, j) Q (w exp(iw),
j+w), where w is an arbitrary function of space time, and the original
gauge invariant equation is not sufficient to provide evolution equations
for the two gauge dependent quantities w and j. At this point we arbi-
trarily add the Hamilton–Jacobi equation as a gauge condition. This yields
a system of evolution equations for (w, j), namely

“tw=i(2t2)−1 Dw+(2t2)−1 (2Nj ·N+(Dj)) w (2.11)

“tj=(2t2)−1 |Nj|2+t−cg0(w, w), (2.12)

where we have defined

g0(w1, w2)=o Re |N|m−n w1w̄2 (2.13)

and rewritten the nonlinear interaction term in (2.10) as

Dgg̃(|Dw|2) D=t−cg0(w, w).

The gauge freedom in (2.11)–(2.12) is now reduced to that given by an
arbitrary function of space only. It will be shown in Section 4 that the
Cauchy problem for the system (2.11)–(2.12) is locally well-posed in a
neighborhood of infinity in time. The solutions thereby obtained behave
asymptotically as w(t)=O(1) and j(t) 5 O(t1− c) as t Q., a behaviour
that is immediately seen to be compatible with (2.11)–(2.12).

We next study the asymptotic behaviour of the solutions of the auxiliary
system (2.11)–(2.12) in more detail and try to construct wave operators for
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that system. For that purpose, we need to choose a set of model functions
playing the role of v, in the spirit of (2.6). We proceed as follows. Let p \ 0
be an integer. We write

w= C
0 [ m [ p

wm+qp+1 — Wp+qp+1 (2.14)

j= C
0 [ m [ p

jm+kp+1 — fp+kp+1 (2.15)

with the understanding that asymptotically in t

wm(t)=O(t−mc), qp+1(t)=o(t−pc), (2.16)

jm(t)=O(t1−(m+1) c), kp+1(t)=o(t1−(p+1) c). (2.17)

Substituting (2.14)–(2.15) into (2.11)–(2.12) and identifying the various
powers of t−c yields the following system of equations for (wm, jm):

“twm+1=(2t2)−1 C
0 [ j [ m

(2Njj ·N+(Djj)) wm−j (2.18)

“tjm+1=(2t2)−1 C
0 [ j [ m

Njj ·Njm−j+t−c C
0 [ j [ m+1

g0(wj, wm+1−j) (2.19)

for m+1 \ 0. Here it is understood that wj=0 and jj=0 for j < 0. We
supplement that system with the initial conditions

3w0(.)=w+, wm(.)=0 for m \ 1 (2.20)
jm(1)=0 for 0 [ m [ p. (2.21)

The system (2.18)–(2.19) with the initial conditions (2.20)–(2.21) can be
solved by successive integrations: knowing (wj, jj) for 0 [ j [ m, one
constructs successively wm+1 by integrating (2.18) between t and ., and
then jm+1 by integrating (2.19) between 1 and t.

If (p+1) c < 1, that method of resolution reproduces the asymptotic
behaviour in time (2.16) (2.17) which was used in the first place to provide
a heuristic derivation of the system (2.18)–(2.19). For sufficiently large p,
fp is a sufficiently good approximation for j to ensure that kp+1 has a limit
as t Q.. In fact by comparing the system (2.18)–(2.19) with (2.11)–(2.12),
one finds that “tkp+1 is essentially of the same order in t as “tjp+1, namely
“tkp+1 5 O(t−(p+2) c), which is integrable at infinity for (p+2) c > 1. In
this way every solution (w, j) of the system (2.11)–(2.12) as obtained
previously has asymptotic states consisting of w+=limtQ. w(t) and
k+=limtQ. kp+1(t).
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Conversely, under the condition (p+2) c > 1, we shall be able to solve
the system (2.11)–(2.12) by looking for solutions in the form (2.14)–(2.15)
with the additional initial condition kp+1(.)=k+, thereby getting a solu-
tion which is asymptotic to (Wp, fp+k+) with

w−Wp 5 O(t−(p+1) c), j − fp − k+ 5 O(t1−(p+2) c). (2.22)

This allows to define a map W0: (w+, k+) Q (w, j) which is essentially
the wave operator for (w, j).

We next discuss the gauge covariance properties of W0. Two solutions
(w, j) and (wŒ, jŒ) of the system (2.11)–(2.12) will be said to be gauge
equivalent if they give rise to the same u through (2.7), namely if
w exp(−ij)=wŒ exp(−ijŒ). If (w, j) and (wŒ, jŒ) are two gauge equivalent
solutions, one can show easily that the difference j−=jŒ− j has a limit w

when t Q. and that w −+=w+ exp(iw). Under that condition, it turns out
that the phases {jj} and fp (but not the amplitudes) obtained by solving
(2.18)–(2.19) are gauge invariant, namely jm=j −m for 0 [ m [ p and
therefore fp=f −p , so that k −+=k++w. It is then natural to define gauge
equivalence of asymptotic states (w+, k+) and (w −+, k −+) by the condition
w+exp(−ik+)=w −+ exp(−ik −+) and the previous result can be rephrased as
the statement that gauge equivalent solutions of (2.11)–(2.12) in R(W0)
have gauge equivalent asymptotic states. Conversely, we shall show that
gauge equivalent asymptotic states have gauge equivalent images under W0.
Here however we meet with a technical problem coming from the con-
struction of W0 itself. For given (w+, k+) we construct (w, j) in practice as
follows. We take a (large) finite time t0 and we define a solution (wt0 , jt0 )
of the system (2.11)–(2.12) by imposing a suitable initial condition at t0,
depending on (w+, k+), and solving the Cauchy problem with finite initial
time. We then let t0 tend to infinity and obtain (w, j) as the limit of
(wt0 , jt0 ). The simplest way to prove the gauge equivalence of two solutions
(w, j) and (wŒ, jŒ) obtained in this way from gauge equivalent (w+, k+)
and (w −+, k −+) consists in using an initial condition at t0 which already
ensures that (wt0 , jt0 ) and (w −t0 , j −t0 ) are gauge equivalent. However the
natural choice (wt0 (t0), jt0 (t0))=(Wp(t0), fp(t0)+k+) does not satisfy that
requirement as soon as p \ 1 because fp(t0) is gauge invariant while
Wp(t0) exp(−k+) is not. In order to overcome that difficulty, we introduce
a new amplitude V and a new phase q defined by solving the transport
equations

“tV=(2t2)−1 (2Nfp−1 ·N+(Dfp−1)) V (2.23)

“tq=t−2Nfp−1 ·Nq (2.24)

with initial condition

V(.)=w+, q(.)=k+. (2.25)
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It follows from (2.23) (2.24) that V exp(−iq) satisfies the same transport
equation as V, now with gauge invariant initial condition (V exp(−iq))(.)
=w+ exp(−ik+), and is therefore gauge invariant. Furthermore, (V, q) is a
sufficiently good approximation of (Wp, k+) in the sense that

V(t)−Wp(t) 5 O(t−(p+1) c), q(t)− k+ 5 O(t−c). (2.26)

One then takes (wt0 (t0), jt0 (t0))=(V(t0), fp(t0)+q(t0)) as an initial condi-
tion at time t0, thereby ensuring that (wt0 , jt0 ) and (w −t0 , j −t0 ) are gauge
equivalent. That equivalence is easily seen to be preserved in the limit
t0 Q.. Furthermore, the estimates (2.26) ensure that the asymptotic
properties (2.22) are preserved by the modified construction. As a conse-
quence of the previous discussion, the map W0 is gauge covariant, namely
induces an injective map of gauge equivalence classes of asymptotic states
(w+, k+) to gauge equivalence classes of solutions (w, j) of the system
(2.11)–(2.12).

The wave operator for u is obtained from W0 just defined and from L

defined by (2.7). From the previous discussion it follows that the map
L p W0: (w+, k+) Q u is injective from gauge equivalence classes of asymp-
totic states (w+, k+) to solutions of (1.1). In order to define a wave opera-
tor for u involving only the asymptotic state u+ but not an arbitrary phase
k+, we choose a representative in each equivalence class (w+, k+), namely
we define the wave operator for u as the map W: u+ Q u=(L p W0)(Fu+, 0).
Since each equivalence class of asymptotic states contains at most one
element with k+=0, the map W is again injective.

The previous heuristic discussion was based in part on a number of time
decay estimates in terms of negative powers of t. In practice however two
complications occur, namely (i) for integer c−1, some of the estimates
involve logarithmic factors in time, and (ii) the use of Gevrey spaces
requires that of norms defined by integrals over time involving a conver-
gence factor which eventually produces a small loss in the time decays.
Both difficulties are handled by introducing suitable estimating functions of
time, some of which are defined by integral representations and generalize
in a natural way a similar family of functions defined in II.

In the same way as in I, the system (2.11)–(2.12) can be rewritten as a
system of equations for w and for s=Nj, from which j can then be
recovered by (2.12), thereby leading to a slightly more general theory since
the system for (w, s) can be studied without even assuming that s is a gra-
dient. For simplicity, and in the same way as in II, we shall not follow that
track. However, we shall use systematically the notation s=Nj, and for
the purposes of estimation, we shall supplement the system (2.11)–(2.12)
with the equation satisfied by s, which is simply the gradient of (2.12),
namely

“ts=t−2s ·Ns+t−cNg0(w, w). (2.27)
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We are now in a position to describe in more detail the contents of the
technical sections 3–7 of this paper. In Section 3, we introduce the relevant
Gevrey spaces and derive the basic estimates in those spaces that are
needed to study the system (2.11)–(2.12) (Lemmas 3.4–3.7), we explain in
passing the mechanism by which those spaces make it possible to overcome
the derivative loss in (2.11)–(2.12) for m > n−2 (after Lemma 3.4) and
finally we introduce the estimating functions of time mentioned above and
obtain some estimates for them. In Section 4, we prove that the Cauchy
problem for the system (2.11)–(2.12) is well-posed for large time, with large
but finite initial time (Proposition 4.1), we prove the existence of a limit for
w(t) as t Q. for the solutions thereby obtained (Proposition 4.2) and we
derive a uniqueness result of solutions with prescribed asymptotic beha-
viour (Proposition 4.3). In Section 5, we study the asymptotic behaviour in
time of the solutions obtained in Section 4. We derive a number of proper-
ties and estimates for the solutions of the asymptotic system (2.18)–(2.19),
defined inductively (Proposition 5.2). We then obtain asymptotic estimates
on the approximation of the solutions of the system (2.11)–(2.12) by the
asymptotic functions (Wm, fm) defined by (2.14)–(2.15), and in particular
we complete the proof of the existence of asymptotic states for those solu-
tions (Proposition 5.3). In Section 6, we study the Cauchy problem with
infinite initial time, first for the transport equations (2.23) (Proposition 6.1)
and (2.24) (Proposition 6.2), and then for the system (2.11)–(2.12). For a
given solution (V, q) of the system (2.23)–(2.24) and a given (large) t0, we
construct a solution (wt0 , jt0 ) of the system (2.11)–(2.12) which coincides
with (V, fp+q) at t0 and we estimate it uniformly in t0 (Proposition 6.4).
We then prove that when t0 Q., (wt0 , jt0 ) has a limit (w, j) which is
asymptotic both to (V, fp+q) and to (Wp, fp+k+) (Proposition 6.5). In
Section 7, we exploit the results of Section 6 to construct the wave opera-
tors for the equation (1.1) and to describe the asymptotic behaviour of
solutions in their range. We first prove that the local wave operator at
infinity for the system (2.11)–(2.12) defined through Proposition 6.5 in
Definition 7.1 is gauge covariant in the sense of Definitions 7.2 and 7.3 in
the best form that can be expected with the available regularity (Proposi-
tions 7.2 and 7.3). With the help of some information on the Cauchy
problem for (1.1) at finite time (Proposition 7.1), we then define the wave
operator W: u+ Q u (Definition 7.4), and we prove that it is injective. We
then collect all the available information on W and on solutions of (1.1) in
its range in Proposition 7.5, which contains the main results of this paper.
Finally some side results relevant for the definition and properties of the
Gevrey spaces used here are collected in two Appendices.

424 GINIBRE AND VELO



3. GEVREY SPACES AND PRELIMINARY ESTIMATES

In this section, we define the Gevrey spaces where we shall study the
auxiliary system (2.11)–(2.12) and we derive a number of energy type esti-
mates which hold in those spaces and play an essential role in that study.
We then introduce some estimating functions of time generalizing those of
II and we derive a number of estimates for them.

The relevant spaces will be defined with the help of the functions

f0(t)=exp(r |t|n), f(t)=exp(r(|t|nK1)), (3.1)

where 0 < n [ 1, r is a positive parameter to be specified later, and t ¥ Rn.
The dependence of f on r will always be omitted in the notation.

In all this paper, one could use instead of f0 the function

f̃(t)=C
j \ 0

(j!)−1/n r j/n |t| j (3.2)

which satisfies the same basic estimates and would yield essentially the
same results. The function f̃ is also convenient in order to relate the defi-
nition of the Gevrey spaces Kk

r and Yar (see (3.8) (3.9) below) to more
standard definitions. Those points are discussed in Appendix A.

The functions f0 and f satisfy the following estimates.

Lemma 3.1. Let t, g ¥ Rn. Then f satisfies the estimates:

f(t) [ f(t − g) f(g) for all t, g, (3.3)

f(t) [ f(t − g) f0(g)n for |t|N |g| [ |t − g|, (3.4)

|f(t)−f(g)| |g|1− n [ |t − g|1− n f(t − g) f(g) for all t, g, (3.5)

|f(t)−f(g)| |g|1− n [ C |t − g|1− n f0(t − g)n f(g) for |t|N |t − g| [ |g|,
(3.6)

|f(t)−f(g)| |g|1− n [ C |t − g|1− n f(t − g) f0(g)n for |t|N |g| [ |t − g|.
(3.7)

In (3.6) and (3.7), one can take C=1, except in the region |t| [
|t − g| [ |g| where C=21− n.
The function f0 satisfies the same estimates as f.

Proof. We first prove the estimates for f0.
(3.3) follows from the fact that |t|n [ |t − g|n+|g|n.
(3.4) is obvious for |t| [ |t − g|. For |g| [ |t − g| [ |t|, we estimate

|t|n [ |t − g|n+n |t − g|n−1 |g| [ |t − g|n+n |g|n.
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(3.5) follows from (3.3) for |g| [ |t − g| and from (3.6) with C=1 for
|t − g| [ |t|N |g|. For |t| [ |t − g| [ |g|, we estimate

(f0(g)−f0(t)) |g|1− n [ f0(g) |g|1− n (1− exp(−r |g|n)) [ f0(g) r |g|

[ f0(g)(|g|/|t − g|) |t − g|1− n r |t − g|n

and the result follows from the fact that |g| [ 2 |t − g| and r |t − g|n [
e−1f0(t − g).

(3.6) is obvious for |t| [ |g| [ |t − g|, with C=1.
For |t| [ |t − g| [ |g|, we estimate

(f0(g)−f0(t)) |g|1− n [ 21− n |t − g|1− n f0(g)

which yields (3.6) with C=21− n since |g| [ 2 |t − g|.
The really crucial case is the case |t − g| [ |t|N |g|.
For |t − g| [ |t| [ |g|, we estimate

(f0(g)−f0(t)) |g|1− n [ f0(g) |g|1− n (1− exp(−rn |t − g| |t|n−1)),

where we have used

|g|n−|t|n [ n |t|n−1 |t − g|,

· · · [ f0(g)(|g|/|t|)1− n rn |t − g|

[ f0(g) |t − g|1− n 21− ne−1f0(t − g)n

since |g| [ 2 |t| and rn |t − g|n [ e−1f0(t − g)n. This proves (3.6) with C=1
in that case.

For |t − g| [ |g| [ |t|, we estimate similarly

(f0(t)−f0(g)) |g|1− n [ f0(g){|g|1− n (exp(rn |t − g| |g|n−1)−1)}.

Now for fixed |t − g|, the last bracket is a decreasing function of |g|, and is
therefore bounded by its value for |g|=|t − g|, so that

· · · [ f0(g) |t − g|1− n (f0(t − g)n−1)

which proves (3.6) with C=1 in that case.
(3.7) is obvious for |t| [ |g| [ |t − g| and follows from (3.4) with C=1

for |g| [ |t|N |t − g|. For |t| [ |t − g| [ |g|, we estimate

(f0(g)−f0(t)) |g|1− n [ 21− n |t − g|1− n f0(g)

and (3.7) with C=21− n follows from

|g|n [ n |g|n+(1− n) 2n |t − g|n [ n |g|n+|t − g|n.
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The estimates for f follow from those for f0. This is obvious for (3.3)
(3.4). For (3.5) (3.6) (3.7), it follows from the fact that for all t, g and all
a > 0

|f0(t)Ka−f0(g)Ka| [ |f0(t)−f0(g)|. L

We now turn to the definition of the spaces where we shall solve the
system (2.11)–(2.12). For any tempered distribution u in Rn with û ¥

L1
loc(R

n), we define u Z by û> (t)=û(t) for |t| > 1, û> (t)=0 for |t| [ 1,
û<(t)=0 for |t| > 1, û<(t)=û(t) for |t| [ 1. Similarly, for t ¥ Rn and
m ¥ R, we define |t|m> and |t|m< to be equal to |t|m for |t| > 1 and |t| [ 1
respectively, and zero otherwise. Occasionally we shall make the separation
between low and high |t| at some value a ] 1. In that case we shall denote
by u< a and u> a the corresponding components of u.

Let now r > 0, k ¥ R, a ¥ R and 0 [ a< < n/2. Starting from Lemma 3.4
below (but not until then), we shall assume in addition that a< > n/2− m.
We define

Kk
r={w : |w|2k — ||w; Kk

r ||
2 — || |t|k f(t) ŵ> (t)||22+||f(t) ŵ<(t)||22 <.}, (3.8)

Yar={j : ĵ ¥ L1
loc(R

n) and |j|2a — ||j; Yar ||
2 — || |t|a+2 f(t) ĵ> (t)||22

+|||t|a < f(t) ĵ<(t)||22 <.}. (3.9)

The apparent ambiguity in the notation | · |b will be lifted by the fact that
the symbol b will always contain the letter k when referring to Kk

r spaces
and the letter a when referring to Yar spaces. The spaces Kk

r and Yar are
Hilbert spaces and satisfy the embeddings Kk

r … KkŒ
r for k \ kŒ and Yar … YaŒr

for a \ aŒ, Kk
r … Kk

rŒ and Yar … YarŒ, for r \ rŒ.
Remark 3.1. The norms in the spaces Kk

r and Yar are both of the form
||f1fû||2 with

f1=|t|k >
> +|t|k <

< (3.10)

where (k> , k<)=(k, 0) for Kk
r and (k> , k<)=(a+2, a<) for Yar. In par-

ticular this implies that

||w; Kk
r ||=||F−1(fŵ); Kk

0 ||

||j; Yar ||=||F−1(fĵ); Ya0 ||.
(3.11)

If k> \ k< , namely if k \ 0 for Kk
r and if a+2 \ a< for Yar (which will

always be the case in the applications), one can omit either or both of the
upper and lower restrictions in the definition of Kk

r or Yar , thereby obtain-
ing equivalent norms uniformly in r. In fact, in that case

|t|2k >
> +|t|2k <

< [ |t|2k > +|t|2k < [ 2(|t|2k >
> +|t|2k <

< ).

Furthermore, the relations (3.11) are preserved under thoses changes.
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We shall use the spaces Kk
r and Yar with a time dependent parameter

r ¥ C1(R+, R+). The form (3.8)–(3.9) of the norms has been chosen so as to
ensure that for fixed (time independent) w and j, the following relations
hold

d
dt

|w|2k=2rŒ |w|2k+n/2 ,

d
dt

|j|2a=2rŒ |j|2a+n/2 ,

(3.12)

where rŒ=dr/dt.
We shall look for w as complex Kk

r valued functions of time and for j as
real Yar valued functions of time. More precisely, we shall look for (w, j)
such that for some interval I … [1,.)

(w, j) ¥Xk, a
r, loc(I) — C(I, Kk

r À Yar) 5 L2
loc(I, Kk+n/2

r À Ya+n/2r ) (3.13)

by which is meant, especially as regards continuity, that

(F−1fŵ, F−1fĵ) ¥Xk, a
0, loc(I) — C(I, Kk

0 À Ya0) 5 L2
loc(I, Kk+n/2

0 À Ya+n/20 )

in the usual sense. In particular, when taking norms such as |w(t)|k or
|j(t)|a with time dependent r, it will always be understood that r in the
definition of the relevant space is taken at the same value of the time as w
or j.

We shall also need global versions of the previous spaces, especially
when the interval I is unbounded. The definition of those global versions
will require assumptions on r that are irrelevant for the considerations of
this section and will be postponed until the beginning of Section 4.

We shall need the following elementary estimates.

Lemma 3.2. Let m ¥ R. The following estimates hold:

|| |t|m (u1u2)5 > ||2 [ C ||OtPk1 û1 ||2 ||OtPk2 û2 ||2 (3.14)

for k1, k2 \ mK0 and k1+k2 > m+n/2, where O ·P=(1+| · |2)1/2,

|| |t|m (u1u2)5 < ||2 [ C ||u1 ||2 ||u2 ||2 (3.15)

for m > −n/2.

Proof. (3.14) for m \ 0 follows from (3.14) (3.15) for m=0 and from

|| |t|m (u1u2)5 ||2 [ C(||(|t|m |û1 |) f |û2 | ||2+|||û1 | f (|t|m |û2 |)||2).
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For m < 0, we estimate by the Hölder and Young inequalities

|| |t|m (u1u2)5 > ||2 [ C || |t|m> ||s ||û1 ||r̄1 ||û2 ||r̄2

with 1/s+1/r̄1+1/r̄2=3/2, n/s < |m| and 1 [ r̄1, r̄2 [ 2. The last two
norms are estimated by ||OtPki ûi ||2 provided ki > n/r̄i −n/2. One can find
r̄1, r̄2 satisfying all previous conditions under the assumptions made on ki.

For m=0, we apply the same argument with s=..
For the proof of (3.15) we estimate by the Schwarz and Young inequali-

ties

|| |t|m (u1u2)5 < ||2 [ || |t|m< ||2 ||u1 ||2 ||u2 ||2

for m > −n/2. L

For future reference, we also state the following elementary inequalities

|| |t|m ĵ< ||1 [ C || |t|a < ĵ< ||2 for all m \ 0, (3.16)

|| |t|m ĵ> ||1 [ C || |t|a+2 ĵ> ||2 for a+2 > m+n/2. (3.17)

In what follows, we shall repeatedly estimate norms such as || |t|m fu1u25 ||2
with m \ 0. For that purpose, using (3.3), we shall write

|t|m f |u1u25 | [ |t|m F dgf(t) |û1(t − g)| |û2(g)|

[ 2m F dg(|t − g|m+|g|m) f(t − g) f(g) |û1(t − g)| |û2(g)|

=2m{(| · |m f |û1 |) f (f |û2 |)+(1 Y 2)}. (3.18)

That inequality will be often combined with restrictions to low or high
values of |t|, either in the product (u1u2) or in u1 or u2 separately.

The next lemma states that under suitable assumptions on k and a, Yar is
an algebra under ordinary multiplication and acts boundedly on Kk

r by
multiplication.

Lemma 3.3. Let a+2 > n/2 and 0 [ k [ a+2. Then there exist constants
C1 and C2, independent of r, such that

|jk|a [ C1 |j|a |k|a for all j, k ¥ Yar , (3.19)

|jw|k [ C2 |j|a |w|k for all j ¥ Yar , w ¥ Kk
r . (3.20)

In particular

|(exp(−ij)−1) w|k [ C2C
−1
1 (exp(C1 |j|a)−1) |w|k (3.21)

for all j ¥ Yar , w ¥ Kk
r .
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Proof. From the definitions (3.8) (3.9) of the norms and in particular
from (3.11), and from (3.3), it follows that (3.19) (3.20) for r=0 imply the
same estimates for arbitrary r > 0 with the same constants. We therefore
restrict our attention to the case r=0. In that case (3.19) (3.20) are almost
standard properties of Sobolev spaces, except for the presence of |t|a << with
possibly a< > 0 in (3.9). We give a proof for completeness.

(3.19) From the definition (3.9) with r=0, it follows that it is suffi-
cient to estimate || |t|a+2 (jk5 )> 2 ||2 and || |t|a < jk5 ||2. We estimate

|| |t|a+2 (jk5 )> 2 ||2 [ C{||(|t|a+2 |ĵ> |) f |k̂| ||2

+|||ĵ< | f |k̂> | ||2+(j Y k)}

[ C{|| |t|a+2 ĵ> ||2 ||k̂||1+||ĵ< ||1 ||k̂> ||2+(j Y k)}

[ C |j|a |k|a

by (3.3), by the Young inequality and by (3.16) (3.17). The lower restriction
|t| > 2 in jk implies that there is no j<k< contribution.

On the other hand

|| |t|a < jk5 ||2 [ C{|| |t|a < ĵ||2 ||k̂||1+(j Y k)} [ C |j|a |k|a

by the Young inequality and (3.16) (3.17).
(3.20) We estimate similarly by (3.3) and the Young inequality

||OtPk jw5 ||2 [ C{||ĵ||1 ||OtPk ŵ||2+||ĵ< ||1 ||ŵ||2

+||(|t|k |ĵ> |) f |ŵ| ||2}

and the result follows from (3.16) (3.17) and from Lemma 3.2 with m=0,
k1=a+2−k and k2=k.

(3.21) follows immediately from a repeated application of (3.19)
(3.20). L

Remark 3.2. In Lemma 3.3 we have used only (3.3) from Lemma 3.1.
For n < 1, by using (3.4), one can obtain more general results. In particular
Kk
r and Yar are algebras under multiplication for any k and a in R+ (see

Appendix B). Similarly in what follows, we shall use only (3.3) and (3.5).
For n < 1, by using in addition (3.4) and (3.6), one could generalize some of
the results by weakening the assumptions made on k and a. That extension
however would not hold uniformly in n for n Q 1, and we shall therefore
refrain from following that track.

We now turn to the derivation of the basic estimates needed to study the
auxiliary system (2.11)–(2.12). For that purpose, we shall use a regulariza-
tion. Let j ¥ C1(Rn, R) with 0 [ j [ 1 and j(0)=1. We denote by je both
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the function je(t)=j(et) and the operator of multiplication by that func-
tion in Fourier space variables, and by Je the operator FgjeF.

We recall that g0 is defined by (2.13). We shall use systematically the
notation s=Nj and whenever convenient, start from the equation (2.27)
satisfied by s instead of the equation (2.12) satisfied by j.

We first state the basic estimates.

Lemma 3.4. Let m \ 0. The following estimates hold:

|ReOje |t|k fŵ, je |t|k f(s ·Nw5 )P|+|ReOjefŵ, jef(s ·Nw5 )P| [ C |w|2k+n/2 |j|a
(3.22)

uniformly in e, for a > n/2− n, k \ n/2, a+1 \ k− n/2.

|| |t|m f(s ·Nw5 )||2 [ C |j|a |w|k (3.23)

for k+a > m+n/2, k \ m+1, a+1 \ m.

|| |t|m f((N · s) w5 )||2 [ C |j|a |w|k (3.24)

for k+a > m+n/2, k \ m, a \ m.

|ReOje |t|aŒ+1 fŝ −> , je |t|aŒ+1 f(s ·NsŒ5 )> P| [ C |jŒ|2aŒ+n/2 |j|a (3.25)

uniformly in e, for a > n/2− n, aŒ+1 \ n/2, a \ aŒ− n/2.

|| |t|m f(s ·NsŒ5 )> ||2 [ C |j|a |jŒ|aŒ (3.26)

for a+aŒ > m−1+n/2, a+1 \ m, aŒ \ m.

|| |t|a < f(s · sŒ5)||2 [ C |j|a |jŒ|aŒ (3.27)

for a, aŒ > n/2−2.

|| |t|m fg0(w1w2)5 > ||2 [ C{|w1 |k1 |w2 |k2 +|w1 |kŒ1 |w2 |kŒ2 } (3.28)

for (k1+k2)N (k −1+k −2) > b+n/2, k1 Nk −2 \ bK0, k2 Nk −1 \ 0, where
b=m+m −n.

|| |t|a < g0(w1w2)5 < ||2 [ C ||w1 ||2 ||w2 ||2 (3.29)

for a< > n/2− m.
The constants C in (3.22)–(3.29) can be taken independent of r.

Proof. (3.22) We have to estimate

Im F dt dg je(t) |t|k f(t) w̄̂(t) je(t) |t|k f(t) ŝ(t − g) · gŵ(g) (3.30)

SCATTERING FOR HARTREE EQUATIONS 431



and a similar expression with k=0. We consider only the former one. The
proof for the latter is similar and simpler. We split the domain of integra-
tion into three regions, namely

|t − g| [ |t|N |g|, |t| [ |t − g|N |g| and |g| [ |t|N |t − g|

and correspondingly the integral (3.30) is written as the sum I1+I2+I3 of
three terms which we estimate successively.

Region |t − g| [ |t|N |g|, estimate of I1. In this region we decompose the
integrand according to the identity

je(t) |t|k f(t) g=je(t) |t|k (f(t)−f(g)) g

+(je(t) |t|k−je(g) |g|k) f(g) g+je(g) |g|k f(g) g (3.31)

and correspondingly I1 is written as the sum I1, 1+I1, 2+I1, 3 of three terms
which we estimate successively.

Estimate of I1, 1. From (3.5) of Lemma 3.1, we obtain

|je(t) |t|2k (f(t)−f(g)) g| [ C |t|k+n/2 |t − g|1− n |g|k+n/2 f(t − g) f(g)

and therefore by the Schwarz and Young inequalities

|I1, 1 | [ C |w|2k+n/2 || |t|1− n fŝ||1

so that by (3.16) (3.17)

|I1, 1 | [ C |w|2k+n/2 |j|a. (3.32)

Estimate of I1, 2. We rewrite

(je(t) |t|k−je(g) |g|k) g=je(t)(|t|k−|g|k) g+|g|k (je(t)−je(g)) g. (3.33)

We estimate

| |t|k−|g|k| |g| [ k2 |k−1| |t − g| |g|k (3.34)

and we rewrite

(je(t)−je(g)) g=je(t) t −je(g) g −je(t)(t − g)

=F
1

0
dh{(t − g) ·Nje(th) th+(je(th)−je(t))(t − g)} (3.35)

with th=ht+(1− h) g, so that

|je(t)−je(g)| |g| [ (|| | · | Nj||.+2) |t − g|. (3.36)
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Comparing (3.33) (3.34) (3.36), we obtain

|je(t) |t|k−je(g) |g|k| |g| [ C |t − g| |g|k [ C |t|n/2 |t − g|1− n |g|k+n/2 (3.37)

from which we obtain as previously

|I1, 2 | [ C |w|2k+n/2 |j|a. (3.38)

Estimate of I1, 3. By reality and symmetry, which is the Fourier space
version of integration by parts, I1, 3 can be rewritten as

I1, 3=(i/2) F
|t−g| [ |t|N |g|

dt dg je(t) |t|k f(t) w̄̂(t)(t − g)

· ŝ(t − g) je(g) |g|k f(g) ŵ(g).

Using the second inequality in (3.37) we obtain as previously

|I1, 3 | [ C |w|2k+n/2 |s|a. (3.39)

We now turn to the contribution of the region |t| [ |t − g|N |g|.

Estimate of I2. Using (3.3) and

|t|2k |g| [ C |t|k+n/2 |t − g|1− n |g|k+n/2 (3.40)

we obtain as previously

|I2 | [ C |w|2k+n/2 |j|a. (3.41)

We finally consider the region |g| [ |t|N |t − g|.

Estimate of I3. Using (3.3) and

|t|2k |g| [ C |t|k+n/2 |t − g|k− n/2+1−h |g|h

with 0 [ h [ 1 and decomposing s=s> +s< , we estimate

|I3 | [ C |w|k+n/2{||(|t|k− n/2+1 f |ŝ< |) f (f |ŵ|)||2

+||(|t|k− n/2+1−h f |ŝ> |) f (|t|h f |ŵ|)||2}. (3.42)

Using the Young inequality for the term in s< and Lemma 3.2 for the term
in s> , we obtain

|I3 | [ C |w|k+n/2{|| |t|k− n/2+1 fŝ< ||1 ||fŵ||2+|||t|a+1 fŝ> ||2 || |t|k+n/2 fŵ||2}
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with a > n/2− n, k+n/2 \ h and a \ k− n/2− h. We choose h=1N (k+n/2)
and the last two conditions reduce to a+1 \ k− n/2. Using (3.16), we
obtain

|I3 | [ C |w|2k+n/2 |j|a. (3.43)

Collecting (3.32) (3.38) (3.39) (3.41) (3.43) yields (3.22).
The constants C appearing in the proof of (3.22) are independent of r.

This can be checked explicitly on each case. More generally, it is a
consequence of the following facts. We treat f only through the in-
equalities (3.3) and (3.5) of Lemma 3.1, until we end up with integrals of
the type (3.30) with however f appearing only through the product
f(t) f(t − g) f(g) (possibly after adding one missing f and using the fact
that f \ 1). It then follows from (3.11) that an estimate of the type (3.22)
of such a quantity for r=0 implies the same estimate for any r > 0 with
the same constant. The same argument applies to all subsequent estimates
of Lemma 3.4 that contain f. Therefore from now on and in the same way
as in the proof of Lemma 3.3, we omit f in the proofs.

(3.23) We estimate

|| |t|m (s ·Nw5 )||2 [ C{|| |ŝ| f (|t|m+1 |ŵ|)||2+||(|t|m |ŝ|) f (|t| |ŵ|)||2}.

We decompose s=s<+s> , we estimate the contribution of s< by the
Young inequality and the contribution of s> by Lemma 3.2, thereby
obtaining

· · · [ C{||ŝ< ||1 (|| |t|m+1 ŵ||2+|||t| ŵ||2)+|| |t|a+1 ŝ> ||2 || |t|k ŵ||2}

under the condition stated on k, a, m. (3.23) then follows by (3.16).
(3.24) We estimate

|| |t|m ((N · s) w5 )||2 [ C{||(|t|m+1 |ŝ|) f |ŵ| ||2+||(|t| |ŝ|) f (|t|m |ŵ|)||2}.

Proceeding as above, we obtain

· · · [ C{||ŝ< ||1 (|| |t|m ŵ||2+||ŵ||2)+|| |t|a+1 ŝ> ||2 || |t|k ŵ||2}

from which (3.24) follows by the same argument as above.
(3.25) and (3.26) We decompose sŒ=s −>+s −< . The contribution of s −>

to (3.25) and (3.26) is estimated by (3.22) and (3.24) respectively, by
replacing w by s −> and k by aŒ+1. In order to complete the proof it remains
to estimate || |t|m> (s ·NsŒ<5)||2 with m=aŒ+1− n/2 for (3.25) and with
general m for (3.26), namely to estimate the L2 norm in t of the integral

J=|t|m> f(t) F dg ŝ(t − g) · gŝ −<(g).
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For that purpose, we decompose s=s> 1/2+s< 1/2 and correspondingly
J=J> +J< . In J> we have |g| [ 1 [ 2 |t − g| and therefore |t| [ 3 |t − g|, so
that

||J> ||2 [ C ||(|t|m |ŝ> 1/2 |) f (|g| |ŝ −< |)||2

[ C |s|a ||ŝ −< ||1
(3.44)

by the Young inequality, provided m [ a+1, a condition which appears
explicitly in (3.25) and which reduces to a \ aŒ− n/2 in (3.26) for
m=aŒ+1− n/2.

In J< , we have |t − g| [ 1/2, |t| \ 1 and |g| [ 1, and therefore 1/2 [

|g| [ 1 and |t| [ 3/2, so that

||J< ||2 [ C ||ŝ< 1/2 ||1 ||s −>1/2 ||2. (3.45)

(3.25) and (3.26) now follow from (3.22) (3.24), (3.44) (3.16) and (3.45).
(3.27) follows immediately from

|| |t|a < ( s · sŒ5)||2 [ C{||(|t|a < |ŝ|) f |ŝŒ| ||2+(s Y sŒ)}

[ C{|| |t|a < ŝ||2 ||ŝŒ||1+(s Y sŒ)}

and from (3.16) (3.17).

(3.28) follows from (3.14) either directly for b [ 0, or through the
inequality

|| |t|m g0(w1w2)5 > ||2 [ C{||(|t|b |ŵ1 |) f (|ŵ2 |)||2+(1 Y 2)}

for b \ 0.
(3.29) follows from (3.15) with m=b. L

We now explain the origin of the derivative loss in the system
(2.11)–(2.12) for l — m −n+2 > 0 and the mechanism by which that loss is
overcome through the use of the spaces Xk, a

r, loc defined by (3.13). If we try to
solve the system (2.11)–(2.12) by the energy method in a space like
C(I, Hk À Ḣa+2), we have to estimate in particular

“t ||“kw||22=2 ReO“kw, “k“twP

“t ||“a+2j||22=2O“a+2j, “a+2
“tjP.

(3.46)

The term with Df from “tw forces us to apply k+2 derivatives to j and
requires therefore a \ k, while the term with g0 from “tj forces us to apply
a+2 derivatives to g0 or equivalently a+l derivatives to |w|2 and requires
therefore k \ a+l. The terms with Nj ·Nw from “tw and with |Nj|2 from
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“tj can be handled essentially under the same assumptions, possibly after
an integration by parts. The method therefore applies only if l [ 0, namely
m [ n−2, which is the case treated in I and II.

If we try instead to solve the same problem in the space Xk, a
r, loc with time

dependent r, we have by (3.12)

“t |w|2k=2rŒ |w|2k+n/2+2 ReOw, “twPk

“t |j|2a=2rŒ |j|2a+n/2+2Oj, “tjPa,
(3.47)

where O · , ·Pk and O · , ·Pa denote the scalar products in Kk
r and Yar . If rŒ

has a favourable sign, namely if r decreases away from the initial time, the
terms containing rŒ provide a control of the norm in L2(Kk+n/2

r À Ya+n/2r ),
and it suffices to control the scalar products at most quadratically in terms
of the norms in Kk+n/2

r and Ya+n/2r . In the term with Df from “tw, after dis-
tributing the function f with the help of (3.3) and shifting n/2 derivatives
on the first vector of the scalar product, it suffices to apply k− n/2 deriva-
tives on Df while one is allowed to use the norm |j|a+n/2. This requires only
a \ k− n. Similarly in the term with g0 from “tj, it suffices to apply
a+2− n/2 derivatives to g0 or equivalently a+l − n/2 derivatives to |w|2,
while one is allowed to use |w|k+n/2. This requires only k \ a+l − n. The
two conditions on (k, a) are compatible provided l [ 2n, which allows for
m [ n under that condition. It remains to estimate the terms Nj ·Nw from
“tw and |Nj|2 from “tj, which in the Sobolev case requires the integration
by part of one derivative. Here however, by the same argument as above, it
suffices to integrate by parts 1− n derivative. Now it turns out that
integration by parts of 1− n derivative is exactly what is allowed by the
inequality (3.5), which is exploited through (3.31) to derive the estimates
(3.22) (3.25) where that integration by parts occurs. Actually the inequality
(3.5) is optimal in the dangerous part |t − g| ° |t| ’ |g| of the region where
it is used, and more precisely when |g| Q. for fixed |t − g|. The conditions
a \ k− n and k \ a+l − n and therefore their consequence l [ 2n will
appear from the next lemma onward as the most important part of the
condition (3.48) and will propagate throughout this paper (except in
Section 5) up to the main and final results of Propositions 6.5 and 7.5.

We now exploit Lemma 3.4 to derive energy like estimates for the solu-
tions of the auxiliary system (2.11)–(2.12). In the following three lemmas, I
is an interval contained in [1,.), r is a nonnegative continuous and
piecewise C1 function defined in I. We shall be interested in solutions
(w, j) in spaces of the type Xk, a

r, loc(I) for suitable values of k and a. The
estimates will hold in integrated form in any compact subinterval of I
under the available regularity, but will be stated in differential form for
brevity.
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Lemma 3.5. Let k, a satisfy

a > n/2− n, k \ n/2, a \ k− n,

k \ a+l − n, 2k > a+l − n+n/2,
(3.48)

where l=m −n+2.
Let (w, j) ¥Xk, a

r, loc(I) be a solution of the system (2.11)–(2.12). Then the
following estimates hold:

|“t |w|2k −2rŒ |w|2k+n/2 | [ Ct−2{|w|2k+n/2 |j|a+|w|k+n/2 |j|a+n/2 |w|k}, (3.49)

|“t |j|2a −2rŒ |j|2a+n/2 | [ Ct−2 |j|2a+n/2 |j|a+Ct−c |j|a+n/2 |w|k+n/2 |w|k. (3.50)

Proof. We use the same regularization as in the proof of Lemma 3.4.
From (3.12) we obtain

“t |Jew|2k −2rŒ |Jew|2k+n/2=2 Re(Oje |t|k fŵ> , je |t|k f“tŵ> P

+Ojefŵ< , jef“tŵ<P). (3.51)

We substitute “tw from (2.11) and we estimate the various terms successi-
vely. The term with Dw does not contribute. The term s ·Nw is estimated by
(3.22) under the conditions

a > n/2− n, k \ n/2, a+1 \ k− n/2.

The term (N · s) w is estimated by (3.24) with m=k− n/2 or m=0, and a
replaced by a+n/2, under the conditions

a > n/2− n, a \ k− n.

Substituting those two estimates into (3.51), integrating over time and
taking the limit e Q 0 yields the integrated form of (3.49). The required
conditions on k, a are implied by (3.48).

Similarly, we obtain from (3.12)

“t |Jej|2a −2rŒ |Jej|2a+n/2=2Oje |t|a+1 fŝ> , je |t|a+1 f“t ŝ> P

+2Oje |t|a < fĵ< , je |t|a < f“tĵ<P. (3.52)

We substitute “ts and “tj from (2.27) (2.12) into (3.52) and we estimate the
various terms successively. The term s ·Ns from “ts is estimated by (3.25)
with sŒ=s, aŒ=a under the conditions

a > n/2− n, a+1 \ n/2.
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The term Ng0 from “ts is estimated by (3.28) with m=a+2− n/2, w1=
w2=w, k1(=k −2)=k+n/2, k2(=k −1)=k, under the conditions

2k > a+l − n+n/2, k \ a+l − n.

The terms |s|2 and g0 from “tj< are estimated by (3.27) and (3.29) respec-
tively. Using those estimates yields (3.50) in the same way as above. The
required conditions on k, a are implied by (3.48). In particular the condi-
tion a+1 \ n/2 follows from a > n/2− n. L

The next lemma is a regularity result.

Lemma 3.6. Let k, a satisfy (3.48) and let k̄, ā satisfy

k̄−k=ā− a \ 0. (3.53)

Let (w, j) ¥X k̄, ā
r, loc(I) be a solution of the system (2.11)–(2.12). Then the

following estimates hold:

|“t |w|2k̄ −2rŒ |w|2k̄+n/2 | [ Ct−2{|w|2k̄+n/2 |j|a+|w|k̄+n/2 |j|ā+n/2 |w|k}, (3.54)

|“t |j|2
ā
−2rŒ |j|2

ā+n/2 | [ Ct−2 |j|2
ā+n/2 |j|a+Ct−c |j|ā+n/2 |w|k̄+n/2 |w|k. (3.55)

Proof. The proof follows the same pattern as that of Lemma 3.5 and
we concentrate on the differences, which bear on the estimates connected
with Lemma 3.4, omitting the regularization for brevity. We estimate only
the contribution of the high |t| region, since that of the low |t| region is
already estimated by Lemma 3.5.

We first estimate “t |w| 2
k , starting from (3.51) with k replaced by k̄ and

with Je omitted and we estimate successively the contribution of the various
terms from (2.11).

The contribution of s ·Nw, namely

2 ReO|t| k̄ fŵ, |t| k̄ f(s ·Nw5 )P

is estimated in the same way as in the proof of (3.22). The contributions I1
and I2 of the regions |t − g| [ |t|N |g| and |t| [ |t − g|N |g| are estimated as
in the latter with k replaced by k̄ under the conditions k̄ \ n/2, a > n/2− n.

The contribution of the region |g| [ |t|N |t − g| is estimated by (3.42) with
k replaced by k̄ and with h=0, or equivalently

|I3 | [ C |w|k̄+n/2{||fŝ< ||1 ||fŵ||2+||(|t| k̄− n/2+1 f |ŝ> |) f (f |ŵ|)||2}.

The last norm is then estimated by Lemma 3.2, thereby yielding

|I3 | [ C |w|k̄+n/2 |j|ā+n/2 |w|k

438 GINIBRE AND VELO



under the conditions

k+ā > k̄+n/2− n, ā \ k̄− n

which for k̄−k=ā− a reduce to

a > n/2− n, a \ k− n.

The contribution of (N · s) w is estimated by

|w|k̄+n/2 || |t| k̄− n/2 f((N · s) w5)||2

and subsequently in a way similar to the proof of (3.24) with m=k̄− n/2.
Using the elementary inequality

|t|m |t − g| [ 2m(|t − g|m+1+|g|m+h |t − g|1−h) (3.56)

valid for m \ 0 and 0 [ h [ 1, we estimate the last norm by

· · ·C{||(|t|m+1 f |ŝ|) f (f |ŵ|)||2+||(|t|1−h f |ŝ|) f (|t|m+h f |ŵ|)||2}.

We then estimate the first term by Lemma 3.2 and the second term with
h=n by the Young inequality and (3.16) (3.17), thereby obtaining

· · · [ C(|j|ā+n/2 |w|k+|j|a |w|k̄+n/2)

under the same conditions as before, namely

k+ā > k̄+n/2− n, ā \ k̄− n.

This completes the proof of (3.54).
We next estimate “t |j|2

ā
by substituting similarly the various terms from

(2.12) (2.27) into the right-hand side of (3.52) with a replaced by ā and Je
omitted. The contribution of s ·Ns to the high |t| part of the norm, namely

O|t| ā+1 fŝ> , |t| ā+1 f(s ·Ns5 )> P

is estimated by modifying the proof of (3.25) along the same lines as that of
(3.22) above.

The contribution of g0(w, w)> is estimated by

|j|ā+n/2 || |t| ā+1− n/2 fNg0(w, w)5 > ||2

followed by (3.28) with m=ā+2− n/2, k1(=k −2)=k̄+n/2, k2(=k −1)=k
under the conditions

k+k̄ > ā+l − n+n/2, k̄ \ ā+l − n
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which reduce to the same conditions with (k̄, ā) replaced by (k, a) under the
condition k̄−k=ā− a.

This completes the proof of (3.55). L

We next estimate the difference between two solutions of the system
(2.11)–(2.12).

Lemma 3.7. Let k, a satisfy (3.48) and let kŒ, aŒ satisfy

kŒ \ n/2, k−kŒ=a− aŒ \ 1− n. (3.57)

Let (w1, j1) and (w2, j2) ¥Xk, a
r, loc(I) be two solutions of the system

(2.11)–(2.12) and let w± =w1 ±w2, j± =j1 ± j2. Then the following esti-
mates hold:

|“t |w− |2kŒ−2rŒ |w− |2kŒ+n/2 | [ Ct−2{|w− |2kŒ+n/2 |j+|a

+|w− |kŒ+n/2 (|w+|k+n/2 |j− |aŒ+|j+|a+n/2 |w− |kŒ+|j− |aŒ+n/2 |w+|k)}, (3.58)

|“t |j− |2aŒ−2rŒ |j− |2aŒ+n/2 | [ Ct−2{|j− |2aŒ+n/2 |j+|a+|j− |aŒ+n/2 |j− |aŒ |j+|a+n/2}

+Ct−c |j− |aŒ+n/2 {|w+|k+n/2 |w− |kŒ+|w− |kŒ+n/2 |w+|k}. (3.59)

Proof. The proof follows the same pattern as that of Lemma 3.5, using
the estimates of Lemma 3.4. We omit again the regularization for brevity.
The equations satisfied by (w− , j−) are

“tw−=i(2t2)−1 Dw−+(2t)−2 {2s+ ·Nw−+2s− ·Nw++(N · s+) w−

+(N · s−) w+}, (3.60)

“tj−=(2t2)−1 (s+ · s−)+t−cg0(w+, w−), (3.61)

and in the same way as in the proof of Lemma 3.5, we shall also use the
equation for s− obtained by taking the gradient of (3.61), namely

“ts−=(2t2)−1 (s+ ·Ns−+s− ·Ns+)+t−cNg0(w+, w−). (3.62)

From (3.12), we obtain

|“t |w− |2kŒ−2rŒ |w− |2kŒ+n/2 |=2 Re(O|t|kŒ fŵ− > , |t|kŒ f“tŵ− > P

+Ofŵ− < , f“tŵ− < P). (3.63)

We substitute “tw− from (3.60) into (3.63) and we estimate the various
terms successively. The term Dw− does not contribute. We consider only
the contribution of the high |t| region. The low |t| region is treated in a
similar and simpler way.
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Term with s+ ·Nw− . We apply (3.22) with k replaced by kŒ, thereby
obtaining a contribution

|w− |2kŒ+n/2 |j+|a

under conditions which follow from (3.48) and from n/2 [ kŒ [ k.

Term with s− ·Nw+. We apply (3.23) with m=kŒ− n/2, a replaced by aŒ
and k replaced by k+n/2, thereby obtaining a contribution

|w− |kŒ+n/2 |w+|k+n/2 |j− |aŒ

under the conditions

k+aŒ > kŒ+n/2− n, k+n \ kŒ+1, a+1 \ kŒ− n/2,

which follow from (3.48) (3.57).

Term with (N · s+) w− . We apply (3.24) with m=kŒ− n/2, k replaced by
kŒ and a replaced by a+n/2, thereby obtaining a contribution

|w− |kŒ+n/2 |j+|a+n/2 |w− |kŒ

under the conditions

a > n/2− n, a \ kŒ− n,

which follow from (3.48) and from kŒ [ k.

Term with (N · s−) w+. We apply (3.24) with m=kŒ− n/2, and a
replaced by aŒ+n/2, thereby obtaining a contribution

|w− |kŒ+n/2 |j− |aŒ+n/2 |w+|k

under the conditions

k+aŒ > kŒ+n/2− n, aŒ \ kŒ− n, k \ kŒ− n/2,

which follow from (3.48) (3.57).
Collecting the previous four estimates together with the contribution of

the low |t| region, yields (3.58).
We now turn to the estimate of j− . From (3.12) we obtain

“t |j− |2aŒ−2rŒ |j− |2aŒ+n/2=2O|t|aŒ+1 fŝ− > , |t|aŒ+1 f“t ŝ− > P

+2O|t|a < fĵ− < , |t|a < fĵ− < P. (3.64)

We substitute “ts− and “tj− from (3.62) and (3.61) into (3.64) and we
estimate the various terms successively.
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Term with s+ ·Ns− . We apply (3.25) with sŒ=s− and obtain a contribu-
tion

|j− |2aŒ+n/2 |j+|a

under the conditions

a > n/2− n, aŒ+1 \ n/2, a \ aŒ− n/2,

which follow from (3.48), from aŒ+1 \ kŒ+1− n \ 1− n/2 \ n/2 and from
a \ aŒ.

Term with s− ·Ns+. We apply (3.26) with m=aŒ+1− n/2, a replaced by
aŒ and aŒ replaced by a+n/2, thereby obtaining a contribution

|j− |aŒ+n/2 |j− |aŒ |j+|a+n/2

under the conditions

a > n/2− n, a \ aŒ+1− n,

which follow from (3.48) (3.57).

TermwithNg0(w+, w−)> . We apply (3.28) with m=aŒ+1− n/2, w1=w+,
w2=w− , k1=k+n/2, k2=kŒ, k −1=k, k −2=kŒ+n/2, thereby obtaining a
contribution

|j− |aŒ+n/2 {|w+|k+n/2 |w− |kŒ+|w− |kŒ+n/2 |w+|k}

under the conditions

k+kŒ+n > aŒ+m −n+2+n/2, kŒ+n \ aŒ+m −n+2

which follow from (3.48) (3.57).
The terms with (s+, s−)< and g0(w+w−)< are treated by the use of (3.27)

and (3.29) as in the proof of Lemma 3.5.
Collecting the previous estimates yields (3.59). L

We conclude this section by introducing a number of estimating func-
tions of time generalizing those introduced in Section II.3 and by deriving a
number of estimates for them. Those functions will be defined in terms of
the derivative h −0 of a given function h0 on which we make the following
assumptions

h0 ¥ C1([1,.), R+), h −0 \ 0, t−2h0(t) ¥ L1([1,.)),

t−1h −0(t) ¥ L1([1,.)). (3.65)
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From the relation

t−1
2 h0(t2)−t−1

1 h0(t1)=F
t2

t1
dt t−1h −0(t)−F

t2

t1
dt t−2h0(t) (3.66)

it follows that the last condition on h0 in (3.65) can be replaced by the
condition that t−1h0(t) tends to zero when t Q.. A typical example for h −0
is that considered in Section II.3, namely h −0(t)=t−c.

The first and basic estimating function h is defined by

h(t)=F
.

1
dt1(tK t1)−1 h −0(t1) (3.67)

from which it follows that h(t) is decreasing in t and tends to zero when
t Q., while th(t) is increasing in t. We next define for any m \ 0

Nm(t)=F
t

1
dt1 h −0(t1) hm(t1), (3.68)

Qm(t)=F
.

1
dt1(tK t1)−1 h −0(t1) hm(t1), (3.69)

where the integral in (3.69) is convergent since t−1h −0(t) ¥ L1([1,.)) and
since h(t) is decreasing in t. It follows from (3.68) that Nm(t) is increasing
in t and from (3.69) that Qm(t) is decreasing in t and tends to zero when
t Q., while tQm(t) is increasing in t, so that Qm(t) \ t−1Qm(1). Moreover,
for any nonnegative integers i and j

Ni+j(t) [ h(1) i Nj(t) [ h(1) i+j N0(t), (3.70)

Qi+j(t) [ h(1) i Qj(t) [ h(1) i+j h(t) [ h(1) i+j+1. (3.71)

Clearly N0(t)=h0(t)−h0(1) and Q0=h. It will be convenient to introduce
the notation Q−1=1.

Finally we set

Pm(t)=F
.

1
dt1 h(tK t1) h −0(t1) hm(t1) (3.72)

which is well defined provided

Pm(1)=F
.

1
dt1 h −0(t1) hm+1(t1) <.. (3.73)
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It follows from (3.72) that Pm(t) is decreasing in t and tends to zero when
t Q. while h(t)−1Pm(t) is increasing in t, so that

Pm(1) h(t) [ h(1) Pm(t) [ h(1) Pm(1). (3.74)

We now collect a number of identities and inequalities satisfied by the
previous estimating functions.

Lemma 3.8. Let i, j and m be nonnegative integers, let 1 [ a [ b and
t \ 1. Then the following identities and inequalities hold:

F
.

t
dt1 t−2

1 Nm(t1)=Qm(t1) (3.75)

F
t

1
dt1 t−2

1 N0(t1) Nm(t1)=Nm+1(t)−h(t) Nm(t) [ Nm+1(t) (3.76)

F
.

t
dt1 t−2

1 N0(t1) Nm(t1)=Pm(t) if (3.73) holds (3.77)

Ni(t) Nj(t) [ N0(t) Ni+j(t) (3.78)

Ni(t) Qj(t) [ h(t) Ni+j(t) [ Ni+j+1(t) (3.79)

Qi(t) Qj(t) [ h(t) Qi+j(t) [ 2Qi+j+1(t) (3.80)

F
.

t
dt1 h −0(t1) h(t1) Qm−1(t1) [ F

.

t
dt1 h −0(t1) Qm(t1) (3.81)

F
.

t
dt1 h −0(t1) Qm(t1) [ Pm(t1) if (3.73) holds (3.82)

F
t

1
dt1 h −0(t1) h(t1) Qm−1(t1) [ Nm+1(t1) (3.83)

F
t

1
dt1 h −0(t1) Qm(t1) [ Nm+1(t) (3.84)

F
b

a
dt h −0(t) Qm(t) [ Qm(a)(h0(b)−h0(a)) (3.85)

F
b

a
dt h −0(t) h(t) Qm−1(t) [ 2Qm(a)(h0(b)−h0(a)). (3.86)

Proof. This lemma is a generalization of Lemma II.3.6 and most of the
proofs are obtained by manipulations of integrals similar to those of the
corresponding integrals in Lemma II.3.6, after the replacement of t−c by
h −0(t). This applies to (3.75) (3.76) (3.77) (3.81) (3.82) (3.83) (3.84) and
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(3.80b). (The latter is the generalization of (II.3.49)). The estimates (3.78)
and (3.80a) follow from the Hölder inequality. The estimate (3.79a) is the
pointwise counterpart of (II.3.39) and is proved in the same way. The
estimate (3.79b) follows from the decrease of h, (3.85) follows from the
decrease of Qm, and (3.86) follows from (3.80b) and from (3.85). L

4. CAUCHY PROBLEM AND PRELIMINARY ASYMPTOTICS
FOR THE AUXILIARY SYSTEM

In this section, we study the existence of solutions in a neighborhood of
infinity in time for the auxiliary system (2.11)–(2.12) and we derive some
preliminary results on the asymptotic behaviour in time of the solutions
thereby obtained. We first introduce some notation.

We choose once for all a strictly positive C1 function defined in [1,.),
which we call |rŒ| for reasons that will soon become obvious. We assume
that |rŒ| satisfies the following properties

(i) |rŒ| ¥ L1([1,.)),
(ii) the function t−c |rŒ|−1 is nondecreasing (and therefore |rŒ| is

nonincreasing), and the function t−2 |rŒ|−1 is nonincreasing and tends to
zero at infinity.

Typical examples of suitable functions |rŒ| are t−1− e for e sufficiently
small, depending on c, or t−1(a+ant)−a for a > 1. It will be useful to keep
those examples in mind in order to understand the time decay implied by
the subsequent estimates.

Let now I … [1,.) be an interval, possibly unbounded, and let t0 ¥ I (or
t0=. if I is unbounded). We define a function r in I by

r(t)=r(t0)− :F t

t0
dt1 |rŒ(t1)| : (4.1)

so that r is increasing (resp. decreasing) for t [ t0 (resp. t \ t0) and has |rŒ|
as the absolute value of its derivative, which justifies the notation. We take
r(t0) sufficiently large so that r is nonnegative in I. All subsequent estima-
tes will be independent of r(t0) (they will however depend on |rŒ|). The
previous choice of r will be used in this section without further comment
unless otherwise stated. We now define the global version of the funda-
mental spaces, corresponding to the local version (3.13). We define

Xk, a
r (I) — (C 5 L.)(I, Kk

r À Yar) 5 L2
|rŒ|(I, Kk+n/2

r À Ya+n/2r ), (4.2)
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where L2
|rŒ| denotes weighted L2 in time with weight |rŒ|. More precisely,

especially as regards continuity, (w, j) ¥Xk, a
r (I) is understood to mean

that

(F−1fŵ, F−1fĵ) ¥Xk, a
0 (I) — (C 5 L.)(I, Kk

0 À Ya0)

5 L2
|rŒ|(I, Kk+n/2

0 À Ya+n/20 ). (4.3)

Note that in (4.3) we keep the weight |rŒ| in the L2 part.
The norm of (w, j) in Xk, a

r is made up of several pieces for which we
introduce additional notation which will be most helpful in the derivation
of the estimates. Let H be a continuous strictly positive function defined in
I. We define

y(w; I, H, k)=Sup
t ¥ I

H−1(t) |w(t)|k, (4.4)

y1(w; I, H, k)=3F
I

dt |rŒ(t)| H−2(t) |w(t)|2k+n/2 4
1/2

, (4.5)

Y(w; I, H, k)=(yKy1)(w; I, H, k), (4.6)

z(j; I, H, a)=Sup
t ¥ I

H−1(t) |j(t)|a, (4.7)

z1(w; I, H, a)=3F
I

dt |rŒ(t)| H−2(t) |j(t)|2a+n/2 4
1/2

, (4.8)

Z(j; I, H, a)=(zK z1)(j; I, H, a). (4.9)

We then take

||(w, j); Xk, a
r (I)||=Y(w; I, 1, k)+Z(j; I, 1, a). (4.10)

In order to study the Cauchy problem for the auxiliary system
(2.11)–(2.12) we need additional a priori estimates of solutions of that
system, which are a continuation of those of Lemmas 3.5, 3.6 and 3.7 in
which we now take into account the dependence on time in the framework
of the spaces Xk, a

r just defined.

Lemma 4.1. Let k, a satisfy (3.48). Let 1 [ T [ t0 <. and let
(w, j) ¥Xk, a

r, loc([T,.)) be a solution of the system (2.11)–(2.12). Let h0 and
h1 be C1 positive functions defined in [T,.), with h0 nondecreasing, h1

nonincreasing, h0 \ t−c |rŒ|−1 and h1 \ t−2 |rŒ|−1 h0. Let a0=|w(t0)|k and b0=
h0(t0)−1 |j(t0)|a.

(1) There exist constants c and C such that if

(b0+a2
0) h1(t0) [ c, (4.11)

446 GINIBRE AND VELO



then (w, h−1
0 j) ¥Xk, a

r ([t0,.)) and (w, j) satisfies the estimates

Y(w; [t0,.), 1, k) [ Ca0,

Z(j; [t0,.], h0, a) [ C(b0+a2
0).

(4.12)

(2) There exist constants c and C such that if

(b0+a2
0) T−2 |rŒ(T)|−1 h0(t0) [ c, (4.13)

then (w, j) satisfies the estimates

Y(w; [T, t0], 1, k) [ Ca0,

Z(j; [T, t0], 1, a) [ C(b0+a2
0) h0(t0).

(4.14)

Proof. The proof requires the same regularization procedure as that of
(the integrated form of) the estimates of Lemma 3.5, but we omit it for
brevity. We begin the proof by treating simultaneously the cases t \ t0 and
t [ t0. Let H be a C1 positive function of time, increasing for t \ t0 and
decreasing for t [ t0 and let j̃=H−1j. From Lemma 3.5 we obtain

“t |w|2k Y 2rŒ |w|2k+n/2 ±Ct−2{|w|2k+n/2 |j|a+|w|k+n/2 |j|a+n/2 |w|k} (4.15)

“t |j̃|2a Y 2rŒ |j̃|2a+n/2 ±Ct−2 |j̃|2a+n/2 |j|a±Ct−cH−1 |j̃|a+n/2 |w|k+n/2 |w|k (4.16)

for t Z t0. In (4.16), we have dropped the term −2HŒH−1 |j̃|2a coming from
the derivative of H. Let now y(1)=y(1)(w; I, 1, k) and z(1)=z(1)(j; I, H, a)
where I=[t0, t] for t \ t0 and I=[t, t0] for t [ t0. Integrating (4.15) (4.16)
over time and using the Schwarz inequality, we obtain

|w(t)|2k+y2
1 [ y2

0+C{Sup
t ¥ I

t−2 |rŒ|−1 H}(y2
1z+y1z1y) (4.17)

|j̃(t)|2a+z2
1 [ z2

0+C{Sup
t ¥ I

(t−2 |rŒ|−1 H)} z2
1z+C{Sup

t ¥ I
t−c |rŒ|−1 H−1} z1y1y

(4.18)

where y0=|w(t0)|k=a0 and z0=|j̃(t0)|a, and since the RHS of (4.17) (4.18)
is increasing in |t− t0 |,

y2Ky2
1 [ RHS of (4.17)

z2K z2
1 [ RHS of (4.18)

so that Y=yKy1 and Z=zK z1 satisfy

Y2 [ y2
0+m1Y2Z

Z2 [ z2
0+m1Z3+m2ZY2
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with

m1=C Sup
t ¥ I

t−2 |rŒ|−1 H, m2=C Sup
t ¥ I

(t−c |rŒ|−1 H−1).

If we can arrange that m1Z [ 1/2, then we obtain

Y2 [ 2y2
0

Z2 [ 2z2
0+2m2ZY2 [ 2z2

0+4m2y
2
0Z

so that

Y [ 2a0

Z [ 2z0+4m2a
2
0

(4.19)

which will yield the final estimates, while the condition m1Z [ 1/2 is
implied by

4m1(z0+2m2a
2
0) [ 1. (4.20)

We now consider separately the cases t \ t0 and t [ t0.
For t \ t0, we choose H=h0, so that m2 [ 1 and m1 [ h1(t0). Further-

more z0=b0. Then (4.19) reduces to (4.12) and (4.20) reduces to (4.11).
For t [ t0, we choose H=1, so that m2=t−c0 |rŒ(t0)|−1 [ h0(t0), z0=

b0h0(t0) and m1=t−2 |rŒ(t)|−1. Then (4.19) reduces to (4.14) and (4.20)
reduces to (4.13) with t replaced by T. L

Remark 4.1. The optimal time decay results in Lemma 4.1 are obtained
by saturating the conditions on h0 and h1, namely by taking h0=t−c |rŒ|−1,
which we have already assumed to be nondecreasing, and h1=t−2 |rŒ|−1 h0

=t−2− c |rŒ|−2, in so far as that function is nonincreasing, a property that
we could have (but have not) assumed. We have stated Lemma 4.1 with
inequalities instead of the previous special choices, in order not to hide the
flexibility allowed by the proof, and we shall proceed in the same way in all
subsequent similar estimates. In the special case |rŒ|=t−1− e, the optimal
decays obtained with the previous special choices are h0=t1− c+e and
h1=t−c+2e.

We now turn to the extension of the regularity result of Lemma 3.6.

Lemma 4.2. Let k, a satisfy (3.48) and let k̄, ā satisfy k̄−k=ā− a \ 0.
Let 1 [ T [ t0 <. and let (w, j) ¥X k̄, ā

r, loc([T,.)) be a solution of the
system (2.11)–(2.12). Let h0 and h1 be as in Lemma 4.1 and assume that
(w, j) satisfies

|w(t)|k [ a, |j(t)|a [ bh0(t) or |j(t)|a [ bh0(tK t0). (4.21)

448 GINIBRE AND VELO



(1) There exist constants c and C such that if

(b+a2) h1(t0) [ c, (4.22)

then (w, h−1
0 j) ¥X k̄, ā

r ([t0,.)) and (w, j) satisfies the estimates

Y(w; [t0,.), 1, k̄) [ C{|w(t0)|k̄+ah1(t0) h0(t0)−1 |j(t0)|ā},

Z(j; [t0,.), h0, ā) [ C{h0(t0)−1 |j(t0)|ā+a |w(t0)|k̄}.
(4.23)

(2) In the case where |j(t)|a [ bh0(tK t0), there exist constants c and C
such that if

(b+a2) T−2 |rŒ(T)|−1 h0(t0) [ c, (4.24)

then (w, j) satisfies the estimates

Y(w; [t, t0], 1, k̄) [ C{|w(t0)|k̄+at−2 |rŒ|−1 |j(t0)|ā}

for all t ¥ [T, t0],

Z(j; [T, t0], 1, ā) [ C{|j(t0)|ā+ah0(t0) |w(t0)|k̄}.

(4.25)

(3) In the case where |j(t)|a [ bh0(t), there exist constants c and C
such that if

(b+a2) h1(T) [ c, (4.26)

then (w, j) satisfies the estimates

Y(w; [t, t0], h−1
0 , k̄) [ C{h0(t0) |w(t0)|k̄+ah1(t) |j(t0)|ā}

for all t ¥ [T, t0],

Z(j; [T, t0], 1, ā) [ C{|j(t0)|ā+ah0(t0) |w(t0)|k̄}.

(4.27)

Proof. The proof follows closely that of Lemma 4.1. Let h2 and h3 be
C1 positive functions of time, increasing for t \ t0 and decreasing for t [ t0,
and let w̃=h−1

2 w, j̃=h−1
3 j. From Lemma 3.6 we obtain for t Z t0

“t |w̃|2k̄ Y 2rŒ |w̃|2k̄+n/2
±Ct−2{|w̃|2k̄+n/2 |j|a+h3h

−1
2 |w̃|k̄+n/2 |j̃|ā+n/2 |w|k}, (4.28)

“t |j̃|2
ā
Y 2rŒ |j̃|2

ā+n/2

±Ct−2 |j̃|2
ā+n/2 |j|a±Ct−ch−1

3 h2 |j̃|ā+n/2 |w̃|k̄+n/2 |w|k (4.29)

where we have omitted the terms containing h −2 and h −3. We define
y(1)=y(1)(w; I, h2, k̄) and z(1)=z(1)(j; I, h3, ā) where I=[t0, t] for t \ t0
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and I=[t, t0] for t [ t0. Proceeding as in the proof of Lemma 4.1, we
obtain from (4.28) (4.29)

y2Ky2
1 [ y2

0+m0y
2
1+m1ay1z1

z2K z2
1 [ z2

0+m0z
2
1+m2ay1z1,

(4.30)

where y0=|w̃(t0)|k̄, z0=|j̃(t0)|ā,

m0=C Sup
t ¥ I

t−2 |rŒ|−1 |j(t)|a,

m1=C Sup
t ¥ I

t−2 |rŒ|−1 h3h
−1
2 , m2=C Sup

t ¥ I
t−c |rŒ|−1 h2h

−1
3 . (4.31)

If we can arrange that m0 [ 1/2, then Y=yKy1 and Z=zK z1 satisfy

Y2 [ 2y2
0+2m1aYZ

Z2 [ 2z2
0+2m2aYZ.

(4.32)

By an elementary computation, one obtains from (4.32) the estimates

Y [ 4(y0+2am1z0)

Z [ 4(z0+2am2y0)
(4.33)

under the condition

8a2m1m2 [ 1. (4.34)

We now consider separately the various cases at hand.
For t \ t0, we take h2=1 and h3=h0, so that

y0=|w(t0)|k̄, z0=h0(t0)−1 |j(t0)|ā,

m0 [ Cbh1(t0), m1 [ Ch1(t0), m2 [ C.

The estimate (4.33) then reduces to (4.23), while the conditions m0 [ 1/2
and (4.34) recombine to yield (4.22).

For t [ t0, in the case where |j(t)|a [ bh0(t0), we take h2=h3=1, so that

y0=|w(t0)|k̄, z0=|j(t0)|ā,

m0 [ Cbt−2rŒ−1h0(t0), m1 [ Ct−2rŒ−1 and m2 [ Ch0(t0),

thereby obtaining (4.25) under the condition (4.24).
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For t [ t0, in the case where |j(t)|a [ bh0(t), we take h2=h−1
0 , h3=1, so

that

y0=h0(t0) |w(t0)|k̄, z0=|j(t0)|ā,

m0 [ Cbh1(t), m1 [ Ch1(t) and m2 [ C,

thereby obtaining (4.27) under the condition (4.26). L

We now turn to the estimate of the difference of two solutions of the
system (2.11)–(2.12).

Lemma 4.3. Let k, a satisfy (3.48) and let kŒ, aŒ satisfy (3.57). Let
1 [ T [ t0 <.. Let h0 and h1 be as in Lemma 4.1 and let (wi, ji), i=1, 2,
be two solutions of the system (2.11)–(2.12) such that (wi, h−1

0 ji) ¥
Xk, a
r ([T,.)) and such that (wi, ji) satisfy the estimates

Y(wi; [T,.), 1, k) [ a, (4.35)

Z(ji; [t0,.), h0, a) [ b, (4.36)

and either

Z(ji; [T, t0), 1, a) [ bh0(t0) (4.37)

or

Z(ji; [T, t0), h0, a) [ b. (4.38)

Let w± =w1 ±w2 and j± =j1 ± j2.

(1) There exist constants c and C such that under the condition (4.22),
(w− , j−) satisfies the estimates

Y(w− ; [t0,.), 1, kŒ) [ C{|w−(t0)|kŒ+ah1(t0) h0(t0)−1 |j−(t0)|aŒ},

Z(j− ; [t0,.), h0, aŒ) [ C{h0(t0)−1 |j−(t0)|aŒ+a |w−(t0)|kŒ}.
(4.39)

(2) In the case where ji satisfy (4.37), there exist constants c and C
such that under the condition (4.24), (w− , j−) satisfies the estimates

Y(w− ; [t, t0, ], 1, kŒ) [ C{|w−(t0)|kŒ+at−2 |rŒ|−1 |j−(t0)|aŒ}

for all t ¥ [T, t0],

Z(j− ; [T, t0], 1, aŒ) [ C{|j−(t0)|aŒ+ah0(t0) |w−(t0)|kŒ}.

(4.40)
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(3) In the case where ji satisfy (4.38), there exist constants c and C
such that under the condition (4.26) (w− , j−) satisfies the estimates

Y(w− ; [t, t0, ], h−1
0 , kŒ) [ C{h0(t0) |w−(t0)|kŒ+ah1(t) |j−(t0)|aŒ}

for all t ¥ [T, t0],

Z(j− ; [T, t0], 1, aŒ) [ C{|j−(t0)|aŒ+ah0(t0) |w−(t0)|kŒ}.

(4.41)

(The estimates (4.39) (4.40) and (4.41) are obtained from (4.23) (4.25)
and (4.27) by replacing (w, j) by (w− , j−) and (k̄, ā) by (kŒ, aŒ).

Proof. The proof follows closely that of Lemma 4.2. Let h2 and h3 be
C1 positive functions of time, increasing for t \ t0 and decreasing for t [ t0
and let w̃−=h−1

2 w− , j̃−=h−1
3 j− . Let H(t)=h0(t) in cases where (4.36)

(4.38) are relevant, H(t)=h0(t0) in the case where (4.37) is relevant. From
Lemma 3.7 we obtain for t Z t0

“t |w̃− |2kŒ Y 2rŒ |w̃− |2kŒ+n/2 ±Ct−2{|w̃− |2kŒ+n/2 |j+|a+|w̃− |kŒ+n/2 |w̃− |kŒ |j+|a+n/2}

±Ct−2h3h
−1
2 |w̃− |kŒ+n/2 {|j̃− |aŒ |w+|k+n/2+|j̃− |aŒ+n/2 |w+|k},(4.42)

“t |j̃− |2aŒ Y 2rŒ |j̃− |2aŒ+n/2 ±Ct−2{|j̃− |2aŒ+n/2 |j+|a+|j̃− |aŒ+n/2 |j̃− |aŒ |j+|a+n/2}

+Ct−ch2h
−1
3 |j̃− |aŒ+n/2 {|w̃− |kŒ |w+|k+n/2+|w̃− |kŒ+n/2 |w+|k},(4.43)

where we have omitted the terms containing h −2 and h −3. We define
y(1)=y(1)(w− ; I, h2, kŒ) and z(1)=z(1)(j− ; I, h3, aŒ) where I=[t0, t] for
t \ t0 and I=[t, t0] for t [ t0. Proceeding as in the proof of Lemmas 4.1
and 4.2, we obtain from (4.42) (4.43) supplemented by (4.35)–(4.38) applied
to (w+, j+)

y2Ky2
1 [ y2

0+m0by1(y+y1)+m1ay1(z+z1)

z2K z2
1 [ z2

0+m0bz1(z+z1)+m2az1(y+y1),
(4.44)

where

y0=|w̃−(t0)|kŒ, z0=|j̃−(t0)|aŒ,

m0=C Sup
t ¥ I

(t−2 |rŒ|−1 H(t))

and m1, m2 are defined by (4.31). From there on, the proof is identical with
that of Lemma 4.2, with (4.30) replaced by (4.44). L

Remark 4.2. It is an unfortunate feature of Lemmas 4.2 and 4.3 that
the derivation of regularity and of difference estimates requires a large time
restriction (see (4.22) (4.24) (4.26)) whereas one would expect those estima-
tes to hold for all times where the solution is a priori defined, since those
estimates are linear in the higher or difference norm and are expected to
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follow from some kind of Gronwall’s inequality. The reason for that fact is
the occurrence of integral norms in the definition of the spaces, for which
we obtain algebraic inequalities which require some kind of smallness con-
dition in order to enable us to conclude.

In practice, the conditions (4.22) (4.24) (4.26) required for those esti-
mates to hold have the same form and the same dependence on basic
parameters such as a0, b0 as the conditions that will be needed anyway in
order to derive the a priori estimates on one single solution that are needed
to solve the Cauchy problem. We shall impose all such conditions together,
without any significant limitation on the range of validity of the results (see
the proof of Proposition 4.1 below).

We now turn to the Cauchy problem for large time for the system
(2.11)–(2.12).

Proposition 4.1. Let (k, a) satisfy (3.48) and in addition k \ 1− n/2.
Let h0 and h1 be C1 positive functions defined in [1,.) with h0 nondecreas-
ing, h1 nonincreasing and tending to zero at infinity, h0 \ t−c |rŒ|−1 and
h1 \ t−2 |rŒ|−1 h0. Let a0 > 0, b0 > 0.

(1) There exists T0 <., depending on a0, b0, such that for all t0 \ T0,
there exists T [ t0, depending on a0, b0 and t0, such that for any
(w0, j0) ¥ Kk

r0
À Yar0 , where r0=r(t0), satisfying |w0 |k [ a0, |j0 |a [ h0(t0) b0,

the system (2.11)–(2.12) has a unique solution in the interval [T,.) with
w(t0)=w0, j(t0)=j0, such that (w, h−1

0 j) ¥Xk, a
r ([T,.)). One can define

T0 and T by

(b0+a2
0) h1(T0)=c (4.45)

T−2 |rŒ(T)|−1 h0(t0) h1(T0)−1=1 (4.46)

and the solution (w, j) satisfies the estimates

Y(w; [T,.), 1, k) [ Ca0, (4.47)

Z(j; [t0,.), h0, a) [ C(b0+a2
0), (4.48)

Z(j; [T, t0], 1, a) [ C(b0+a2
0) h0(t0). (4.49)

(2) If (w0, j0) ¥ K k̄
r0
À Y ār0 for some k̄, ā with k̄−k=ā− a > 0, then

(w, h−1
0 j) ¥X k̄, ā

r ([T,.)), possibly after changing the constant c in (4.45)
(see Remark 4.2).

(3) The map (w0, j0) Q (w, j) is norm continuous on the bounded sets
of Kk

r0
À Yar0 from the norm of (w0, j0) in KkŒ

r0
À YaŒr0 to the norm of (w, h−1

0 j)
in Xkœ, aœ

r [T,.)) for kŒ \ n/2, k−kŒ=a− aŒ \ 1− n, k−kœ=a− aœ > 0.
Furthermore the same map is continuous from the same topology on (w0, j0)
to the weak-f topology of (w, h−1

0 j) in Xk, a
r ([T,.)).
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Proof. Part (1). The proof proceeds in several steps using a parabolic
regularization and a limiting procedure. We consider first the case t \ t0.
We shall then indicate briefly the modifications needed in the case t [ t0.
We shall need the function w̃ defined by w̃(t)=U(1/t) w(t). Since the
operator U(1/t) is unitary in Kk

r for all k and r, all subsequent norm
estimates for w̃ in Kk

r are identical with the same estimates for w.

Step 1: Parabolic regularization and local resolution. We rewrite the
system (2.11)–(2.12) in the equivalent form

“tw̃=(2t2)−1 U(1/t)(2s ·N+(N · s)) U(1/t)g w̃ — G1(w̃, s),

“tj=(2t2)−1 |s|2+t−cg0(U(1/t)g w̃) — G2(w̃, s).
(4.50)

We introduce a parabolic regularization and consider the regularized
system

“tw̃=hDw̃+G1(w̃, s)

“tj=hDj+G2(w̃, s)
(4.51)

with h > 0. We also regularize the initial data (w̃0, j0) at time t0 to
(w̄̃0, j̄0) ¥ X k̄, ā

r0
— K k̄

r0
À Y ār0 with r0=r(t0), k̄ \ kK (1+n/2), ā− a=k̄−k.

For the purpose of proving Part (1), one can take equality in the previous
condition, namely k̄=kK (1+n/2) and in particular that second regular-
ization is unnecessary if k \ 1+n/2. We continue the argument with
general (k̄, ā) because it will be useful for the proof of Part (2).

We rewrite the Cauchy problem for the system (4.51) in the integral form

1 w̃
j
2 (t)=Vh(t− t0) 1

w̄̃0

j̄0

2+F
t

t0
dtŒVh(t− tŒ) 1G1(w̃, s)

G2(w̃, s)
2 (tŒ), (4.52)

where Vh(t) — exp(htD) is a contraction in X k̄, ā
r0

and satisfies the bound

||NVh(t); L(X k̄, ā
r0

)|| [ C(ht)−1/2. (4.53)

By (3.23) (3.24) (3.26) (3.27) (3.28) (3.29) of Lemma 3.4, we estimate

|G1(w̃, s)|k̄−1 [ Ct−2(|w̃|k̄ |j|ā−1+|w̃|k̄−1 |j|ā)

|G2(w̃, s)|ā−1 [ Ct−2 |j|ā |j|ā−1+Ct−c |w̃|k̄ |w̃|k̄−1

(4.54)

under the conditions (which follow from (3.48))

ā > n/2, ā \ k̄−1 \ 0, k̄ \ ā+l −1, 2k̄ > ā+l+n/2,
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where l=m −n+2. In (4.54) the various norms are taken with constant
r(t) — r0. By a standard contraction argument, the system (4.52) has a
unique solution

(w̃, j) ¥ C([t0, t0+y)], X k̄, ā
r0

), (4.55)

where one can take

y=Ch(t−2
0 h0(t0)+t−c0 h0(t0)−1)−2 (ā0+b̄0)−2 (4.56)

with

ā0=|w̄̃0 |k̄, b̄0=h0(t0)−1 |j̄0 |ā.

Furthermore, from the estimates

“t |w̃|2k̄+2h |Nw̃|2k̄=2 ReO|t| k̄+1 fŵ̃, |t| k̄−1 fG11(w̃, j)P+lower order terms

[ |w̃|k̄+1 A1(t, |w̃|k̄, |j|ā), (4.57)

“t |j|2
ā
+2h |Nj|2

ā
=2O|t| ā+3 fĵ, |t| ā+1 fG12(w̃, j)P+lower order terms

[ |j|ā+1 A2(t, |w̃|k̄, |j|ā) (4.58)

for some estimating functions A1 and A2, it follows that

(w̃, j) ¥ L2([t0, t0+y], X k̄+1, ā+1
r0

). (4.59)

The estimates (4.57) (4.58) are derived with the help of a regularization je,
which we have omitted for brevity, and of the estimate (4.54).

Step 2: Uniform estimates and globalisation. From the regularity con-
ditions (4.55) (4.59), from the fact that r is decreasing and from Lemmas
4.1 and 4.2, especially (4.12) and (4.23), it follows that (w̃, j) ¥
X k̄, ā
r ([t0, t0+y]) and that (w̃, j) satisfies the estimates

Y(w̃; I, 1, k) [ Ca0

Z(j; I, h0, a) [ C(b0+a2
0),

(4.60)

Y(w̃; I, 1, k̄) [ C(ā0+h1(t0) a0 b̄0)

Z(j; I, h0, ā) [ C(b̄0+a0 ā0),
(4.61)

for I=[t0, t0+y] and t0 \ T0, under the condition (4.45) which ensures
(4.11) (4.22). The estimates (4.60) (4.61) are uniform in h. From (4.56),
from (4.60) (4.61) for general I and from the fact that r is decreasing, it
follows by a minor modification of a standard globalisation argument that
(w̃, j) can be continued to a solution of the system (4.51) such that
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(w̃, h−1
0 j) belongs to X k̄, ā

r ([t0,.)) and that (w̃, j) satisfies (4.60) (4.61)
with I=[t0,.).

Step 3: Limiting procedure. We now take the limits h Q 0 and
(w̄̃0, j̄0) Q (w̃0, j0) in that order. We first keep (w̄̃0, j̄0) fixed and consider
two solutions (w̃1, j1) and (w̃2, j2) with (w̃i, h−1

0 ji) ¥X k̄, ā
r0

([t0,.)) as
obtained in Step 2, corresponding to two values h1 and h2. We estimate the
difference (w̃− , j−)=(w̃1 −w̃2, j1 − j2) by a minor variation of Lemma 4.3
with (k, a) replaced by (k̄, ā) and (kŒ, aŒ)=(k̄−1, ā−1), under the condi-
tion (4.22) which follows from t0 \ T0 and from (4.45) (4.60), possibly after
changing the constant c. More precisely in the proof of (4.39), we take the
initial condition w̃−(t0)=0, j−(t0)=0, but we have an additional term
coming from the parabolic regularization in the analogue of (4.42) (4.43),
namely

“t |w̃− |2k̄−1 [ 2 |w̃− |k̄ {h1 |w̃1 |k̄+h2 |w̃2 |k̄)+previous terms,

“t |j− |2
ā−1 [ 2|j− |ā (h1 |j1 |ā+h2 |j2 |ā)+previous terms.

(4.62)

(The tildas in (4.62) and in (4.42) (4.43) have different meanings, but this
has no implication on the argument). From (4.61) and (4.62), for any t1
with t0 < t1 <., we obtain estimates of the type (4.44) for the quantities
y(1)=y(1)(w− ; [t0, t1], 1, k̄−1) and z(1)=z(1)(j− ; [t0, t1], h0, ā−1) where
now

y2
0 K z2

0 [ |t1 −t0 | (h1+h2) A(t0, ā0, b̄0). (4.63)

Therefore, by the same argument as in the proof of (4.39)

Y(w̃− ; [t0, t1], 1, k̄−1) [ C(y0+a0h1(t0) z0)

Z(j− ; [t0, t1], h0, ā−1) [ C(z0+a0y0),
(4.64)

which implies that the solution (w̃h, jh) associated with h converges in
norm in X k̄−1, ā−1

r ([t0, t1]) when h Q 0 for all t1 \ t0. Furthermore, the limit
(w̃, j) is such that (w̃, h−1

0 j) ¥X k̄, ā
r ([t0,.)) and (w̃, j) satisfies (4.47)

(4.48). This follows from the bound (4.61) with I=[t0,.), which is
uniform in h, and from the previous convergence by standard compactness
arguments, except for the strong continuity in time. The latter follows from
the weak continuity, which also follows from a compactness argument, and
from the fact that the K k̄

r À Y ār norm of (w̃, j) is (absolutely) continuous in
t by Lemma 3.5 with k, a replaced by k̄, ā. The limit obviously satisfies the
system (4.50).

We let now (w̄̃0, j̄0) tend to (w̃0, j0) in Kk
r0
À Yar0 (that step is not

needed if k̄=k \ 1+n/2). Let (w̄̃0i, j̄0i) ¥ K k̄
r0
À Y ār0 , i=1, 2, be two sets of
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regularized initial conditions and let (w̃i, ji) be the solutions of the system
(4.50) obtained previously. The difference (w̃− , j−)=(w̃1 −w̃2, j1 − j2) is
then estimated by (4.39) with a replaced by a0 as follows from (4.60), under
the condition t0 \ T0 and (4.45) as previously. One can (but need not) take
kŒ=k−1+n, aŒ=a−1+n. This implies that the solution (w̄̃, j̄) associated
with (w̄̃0, j̄0) converges in the norm of (w̄̃, h−1

0 j̄) in XkŒ, aŒ
r ([t0,.)) when

(w̄̃0, j̄0) converges to (w̃0, j0) in the norm of KkŒ
r0
À YaŒr0 on the bounded

sets of Kk
r0
À Yar0 (and a fortiori in the norm of Kk

r0
À Yar0 ). Let (w̃, j) be

the limit. By the same arguments as above, (w̃, h−1
0 j) ¥Xk, a

r ([t0,.)) and
(w̃, j) satisfies the system (4.50) and the estimates (4.47) (4.48).

Step 4: Uniqueness follows immediately from Lemma 4.3, part (1).
We now turn to the case t [ t0. The proof proceeds exactly in the same

way, with Parts 1 of Lemmas 4.1, 4.2 and 4.3 replaced by Parts 2 of the
same Lemmas. In the same way as before, (4.14) implies that (4.24) follows
from (4.13), possibly after a change of constant c. With T0 defined by (4.45)
and possibly with another change of constant c, the condition (4.13)
follows from (4.46).

Part (2). If k̄ \ 1+n/2, the result follows from the proof of Part (1)
with the second limiting procedure omitted. If k̄ < 1+n/2, the result
follows from the proof of Part (1) with k̄ replaced by 1+n/2 and with the
second limiting procedure going down from 1+n/2 to k̄ instead of going
down from 1+n/2 to k.

Note that in the previous proof, the constant c in (4.45) comes from a
successive application of Lemma 4.1, especially from (4.11) (4.13), and of
Lemmas 4.2 and 4.3, especially from (4.22) (4.24). In particular that con-
stant depends on (k, a) and on (k̄, ā) (the pair (kŒ, aŒ) in the applications of
Lemma 4.3 is chosen as a function of (k, a) or (k̄, ā)). In the proof of Part
(1), one can in addition choose k̄=kK (1+n/2), k̄−k=ā− a, and the
constant c therefore depends only on (k, a). In contrast with that, in the
proof of Part (2), the pairs (k, a) and (k̄, ā) are independent, and the con-
stant c in (4.45) needed for Part (2) to hold may (and is expected to)
depend on both (k, a) and (k̄, ā). The crucial information contained in Part
(2) is the fact that (4.45) does not involve |w0 |k̄, |j0 |ā, but only |w0 |k and
|j0 |a.

Part (3). Continuity with respect to initial data follows from Lemma
4.3 parts 1 and 2, and from the a priori estimates (4.47) (4.48) (4.49) by
interpolation and compactness arguments. L

We conclude this section with two properties of the behaviour at infinity
of solutions of the system (2.11)–(2.12) in spaces Xk, a

r . There is no initial
time involved in those properties and r is only required to satisfy a suitable
monotony condition at infinity. The first property is the existence of a limit
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for w(t) as t Q.. It applies in particular to the solutions constructed in
Proposition 4.1. There is a large flexibility on the assumptions under which
such a limit exist. We shall give another example in the next section in a
different context.

Proposition 4.2. Let T \ 1, r. \ 0 and

r(t)=r.+F
.

t
dt1 |rŒ(t1)|

for t \ T. Let k, a satisfy

a > n/2−1, 1− n/2 [ k [ a+1. (4.65)

Let h0 and h1 be as in Proposition 4.1. Let (w, j) be a solution of the system
(2.11)–(2.12) such that (w, h−1

0 j) ¥Xk, a
r ([T,.)). Let

a=Y(w; [T,.), 1, k), b=Z(j; [T,.), h0, a).

Then there exists w+ ¥ Kk
r.

such that w(t) tends to w+ strongly in KkŒ
r.

for
kŒ < k and weakly in Kk

r.
when t Q.. Furthermore, the following estimates

hold:

|w+|k — ||w+; Kk
r.

|| [ a, (4.66)

Y(w̃−w̃(t1); [t1,.), 1, kŒ) [ C a b h1(t1), (4.67)

||w̃(t)−w+; KkŒ
r.

|| [ C a b h1(t), (4.68)

for kŒ=k−1+n, for all t, t1 \ T, and with w̃(t)=U(1/t) w(t).

Proof. We first prove (4.67). Let t \ t1 and w1(t)=w̃(t)−w̃(t1) so that
by (4.50)

“tw1=(2t2)−1 U(1/t)(2s ·N+(N · s)) U(1/t)g w̃.

Using (3.12) and (3.23) (3.24) from Lemma 3.4 with kŒ=k−1+n,
m=kŒ− n/2, we obtain

“t |w1 |
2
kŒ−2rŒ |w1 |

2
kŒ+n/2 [ Ct−2 |w1 |kŒ+n/2 {|w|k+n/2 |j|a+|j|a+n/2 |w|k} (4.69)

under the conditions kŒ \ n/2, a > n/2−1, a \ k−1, which reduce to (4.65).
Let y(1)=y(1)(w1; [t1, t], 1, kŒ). Integrating (4.69) over time in the same
way as in Lemma 4.1, we obtain

y2Ky2
1 [ C ab y1{ Sup

tŒ ¥ [t1, t]
tŒ−2 |rŒ(tŒ)|−1 h0(tŒ)} [ C ab y1h1(t1)
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from which (4.67) follows. From (4.67) and from the fact that r is decreas-
ing, it follows that w(t) has a strong limit w+ ¥ KkŒ

r.
and that (4.68) holds.

By standardcompactnessand interpolationarguments,w+ ¥ Kk
r.

, w+ satisfies
(4.66) and w(t) converges to w+ weakly in Kk

r.
and strongly in KkŒ

r.
for

kŒ < k. L

The second property is a uniqueness property for solutions with suitable
restrictions on the behaviour at infinity. It will be used in Section 6. Since it
corresponds to a situation with infinite initial time, it requires r to be
increasing.

Proposition 4.3. Let T \ 1, r. > 0 and

r(t)=r.−F
.

t
dt1 |rŒ(t1)|

with r(t) \ 0 for t \ T. Let (k, a) satisfy (3.48) and k \ 1− n/2. Let h0 and
h1 be as in Proposition 4.1. Let (wi, ji), i=1, 2 be two solutions of the
system (2.11)–(2.12) such that (wi, h−1

0 ji) ¥Xk, a
r ([T,.)) and such that

|w1(t)−w2(t)|kŒ h0(t) Q 0, |j1(t)− j2(t)|aŒ Q 0

when t Q., for some (kŒ, aŒ) such that n/2 [ kŒ [ k−1+n, a− aŒ=k−kŒ.
Let

a=Max
i

Y(wi; [T,.), 1, k), b=Max
i

Z(ji; [T,.), h0, a).

Then there exists a constant c such that if (4.26) holds, then (w1, j1)=
(w2, j2).

Proof. The result follows immediately from Lemma 4.3, part (3) by
taking the limit t0 Q. in (4.41). L

5. ASYMPTOTICS OF SOLUTIONS OF THE AUXILIARY SYSTEM

In this section, we continue the study of the asymptotic properties of the
solutions of the auxiliary system (2.11)–(2.12) obtained in Proposition 4.1.
We have already proved the existence of a limit w+ for w(t) as t Q. for
such solutions. Under suitable additional regularity assumptions in the
form of stronger lower bounds on (k, a), we shall obtain estimates on
the asymptotic behaviour in time of the asymptotic functions (wm, jm)
and (Wm, fm) defined by (2.14)–(2.15) and estimates on the remainders
(qp+1, kp+1)=(w−Wp, j − fp), also defined by (2.14)–(2.15), eventually
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leading to the existence of an asymptotic state for the phase j in the form
of a limit k+ for kp+1 as t Q. for sufficiently large t.

At a technical level however, the situation here differs significantly from
that in Section 4. We are no longer trying to solve the system (2.11)–(2.12),
but instead we assume a solution of that system to be given, and we esti-
mate successively the asymptotic functions (wm, jm) and the remainders
(qm, km), which are defined by triangular systems of equations. As a con-
sequence, there is no need to control the loss of derivatives as in
(2.11)–(2.12), and we can simply let that loss accumulate in the solution of
the triangular system. Therefore we no longer need a time dependent r (see
(3.12)), integral norms in Xk, a

r , and integration by parts (see (3.22) (3.25)).
We do not even need Gevrey spaces, and we could use instead ordinary
Sobolev spaces, in the same way as in II. We shall of course nevertheless
keep Gevrey spaces in order to make contact with Section 4, but in all this
section we shall take r to be constant. Instead of the spaces Xk, a

r defined by
(4.2), we shall use the simpler spaces

Yk, a
r (I)=(C 5 L.)(I, Kk

r À Yar). (5.1)

The contact with Section 4, in particular the applicability of the results
of this section to the solutions obtained in Proposition 4.1, will be achieved
through the fact that if r is defined in [t0,.) by (4.1) or equivalently by

r(t)=r.+F
.

t
dt1 |rŒ(t1)|, (5.2)

then

Xk, a
r ([t0,.)) +Yk, a

r.
([t0,.)). (5.3)

In all the estimates of this section, the function f occurring in the defini-
tion (3.8) (3.9) of the spaces plays no role whatsoever, and is consistently
eliminated from the proofs by using the submultiplicativity property (3.3).
As a consequence all the estimates are uniform in (actually independent of)
r and n, and no assumption is made connecting n to other parameters such
as m or (k, a): we only assume 0 [ n [ 1 and r \ 0.

As a preliminary result, we give an existence result of the limit w+ of w(t)
as t Q. for a solution of the system (2.11)–(2.12). That result is a
simplified version of Proposition 4.2 appropriate to the present context.

Proposition 5.1. Let (k, a) satisfy

k \ 1, a \ 0, k+a > n/2. (5.4)

Let 1 [ T <. and let h0 be a C1 positive nondecreasing function defined in
[T,.) with t−2h0 ¥ L1([T,.)). Let (w, j) be a solution of the system
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(2.11)–(2.12) such that (w, h−1
0 j) ¥Yk, a

r ([T,.)). Then there exists w+ ¥ Kk
r

such that w(t) tends to w+ strongly in KkŒ
r for kŒ < k and weakly in Kk

r .
Furthermore, the following estimate holds:

|w̃(t)−w+|kŒ [ C a b h(t) (5.5)

for 0 [ kŒ [ k−1, kŒ [ a, kŒ < k+a−n/2, where

a=Sup
t

|w(t)|k, b=Sup
t

h−1
0 (t) |j(t)|a, (5.6)

h(t)=>.t dt1 t−2
1 h0(t1) and w̃(t)=U(1/t) w(t).

Proof. By (3.23) (3.24), we estimate

|“t(w̃(t)− w̃(t1))|kŒ [ Ct−2 |w(t)|k |j(t)|a [ Ct−2h0(t) a b

under the conditions stated on kŒ, and therefore by integration

|w̃(t)− w̃(t1)|kŒ [ C a b h(tN t1)

which implies the existence of w+ ¥ KkŒ
r satisfying the estimate (5.5). By

standard compactness arguments, w+ ¥ Kk
r, |w+|k [ a and w(t) tends weakly

to w+ in Kk
r when t Q.. The other convergences follow by interpola-

tion. L

We now estimate the asymptotic functions (wm, jm) defined by succes-
sive integrations from the system (2.18)–(2.19) with initial condition
(2.20)–(2.21). For that purpose, we need the function

h̄0(t)=F
t

1
dt1 t−c1 (5.7)

and the associated estimating functions defined by (3.68) (3.69) (3.72),
which we denote by N̄m, Q̄m and P̄m for that special choice of h0. (Those
functions appeared already in II where they were called h0, Nm, Qm and Pm,
see (II.3.19) (II.3.25) (II.3.26) (II.3.31)). We recall that l=m −n+2 and we
define l̄=lK1. The following proposition is the extension to the present
context of Proposition II.5.1.

Proposition 5.2. Let p \ 0 be an integer, let k satisfy

k > n/2, k \ (p+2) l̄ −1,

and let

km=k−ml̄, am=k−ml̄ − l, 0 [ m [ p+1. (5.8)
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Let w+ ¥ Kk
r and let a=|w+|k. Let {w0=w+, wm+1} and {jm}, 0 [ m [ p be

the solution of the system (2.18)–(2.19) with initial conditions (2.20)–(2.21).
Then

(1) wm+1 ¥ C([1,.), Kkm+1
r ), jm ¥ C([1,.), Yamr ) and the following

estimates hold for all t \ 1:

|wm+1(t)|km+1
[ A(a) Q̄m(t), (5.9)

|jm(t)|am [ A(a) N̄m(t), (5.10)

for some estimating function A(a).
If in addition (p+2) c > 1 and if we define jp+1 by (2.19) with initial

condition jp+1(.)=0, then jp+1 ¥ C([1,.), Yap+1) and the following
estimate holds:

|jp+1(t)|ap+1
[ A(a) P̄p(t). (5.11)

(2) The functions {jm} are gauge invariant, namely if w −+=
w+ exp(iw) for some real valued function w and if w −+ gives rise to {j −m},
then j −m=jm for 0 [ m [ p+1.

(3) The map w+ Q {wm+1, jm} is uniformly Lipschitz continuous on
the bounded sets from the norm topology of w+ in Kk

r to the norms
||Q̄−1

m wm+1; L.([1,.), Kkm+1
r )|| and ||N̄−1

m jm; L.([1,.), Yamr )||, 0 [ m [ p.
A similar continuity holds for jp+1.

Proof. The proof is essentially the same as that of Proposition II.5.1.

Part (1). We proceed by induction on m, starting from the assumption
on w+. We assume the results to hold for (wj, jj) for j [ m and we prove
them for wm+1 and jm+1. We first consider wm+1. Letting the exponents
(km, am) be undefined for the moment except for being nonincreasing in m,
we obtain from (2.18) and from (3.23) (3.24)

|“twm+1 |km+1
[ A(a) t−2 3 C

0 [ j [ m−1
N̄j(t) Q̄m−j−1(t)+N̄m(t)4 (5.12)

under the conditions

km+1 \ 0, km+1 [ (km −1)N am,

km+1+n/2 < kj+am−j, 0 [ j [ m.
(5.13)

Integrating (5.12) between t and . with wm+1(.)=0 and using (3.79)
(3.75) yields the result for wm+1.
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We next consider jm+1. From (2.19) and from (3.26) (3.27) (3.28) (3.29)
we obtain

|“tjm+1 |am+1
[ A(a) 3 t−2 C

0 [ j [ m
N̄j(t) N̄m−j(t)

+t−c 1 C
0 [ j [ m−1

Q̄j(t) Q̄m−1−j(t)+Q̄m(t)24 (5.14)

under the conditions

am+1+1 \ 0, am+1 [ (am −1)N (km+1 − l),

am+1+n/2 < aj+am−j, am+1+l+n/2 < kj+km+1−j, 0 [ j [ m,
(5.15)

and for j0

a0+l [ k, a0+l+n/2 < 2k. (5.16)

Integrating (5.14) between 1 and t with jm(1)=0 and using (3.78) (3.76)
and (3.80) (3.84) yields the result for jm+1 (and similarly for j0).

We saturate the nonstrict part of (5.13) (5.15) (5.16) by the choice (5.8),
where in addition we optimize (maximize) {am} for given k. The strict con-
ditions then reduce to k > n/2, while the condition k \ (p+2) l̄ −1 is
simply the condition kp+1 N (ap+1+1) \ 0.

Finally, if (p+2) c > 1, we integrate (5.14) with m=p between t and .
and use (3.77) (3.78) and (3.80) (3.82) with m=p.

Part (2). The proof is identical with that of Proposition II.5.1 and will
be omitted.

Part (3). From the fact that the RHS of (2.18)–(2.19) are bilinear, it
follows by induction of m that the difference between two solutions
{wm, jm} and {w −m , j −m} associated with w+ and w −+ is estimated by

|wm+1 −w −m+1 |km+1
[ A(a) |w+ −w −+|k Q̄m(t), (5.17)

|jm − j −m |am [ A(a) |w+ −w −+|k N̄m(t) (5.18)

for 0 [ m [ p, and if (p+2) c > 1,

|jp+1 − j −p+1 |ap+1
[ A(a) |w+ −w −+|k P̄p(t), (5.19)

where a=|w+|k K |w −+|k. The continuity stated in Part (3) follows from those
estimates. L
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We now turn to the main result of this section, namely to the proof of
existence of asymptotic states (w+, k+) for solutions of the auxiliary system
(2.11)–(2.12). That result relies heavily on suitable estimates of the
remainders

qm+1(t)=w(t)−Wm(t) (5.20)

km+1(t)=j(t)− fm(t) (5.21)

where Wm and fm are defined (see (2.14) (2.15)) by

Wm= C
0 [ j [ m

wj, fm= C
0 [ j [ m

jj. (5.22)

In view of Proposition 4.1, we shall consider solutions (w, j) of the system
(2.11)–(2.12) such that (w, h−1

0 j) ¥Yk, a
r ([T,.)), where h0 is a suitable C1

positive increasing function of time. We shall assume in addition that
t−c [ ch −0 , a property which occurs naturally in the interesting examples
relevant for Section 4. In addition to the estimating functions N̄m, Q̄m and
P̄m associated with h̄0, we shall also need the estimating functions Nm, Qm

and Pm associated with h0, defined by (3.68) (3.69) (3.72). From the relation
t−c [ ch −0 , it follows that N̄m, Q̄m and P̄m are estimated by Nm, Qm, and Pm,
and more precisely

N̄m [ cm+1Nm, Q̄m [ cm+1Qm, P̄m [ cm+2Pm. (5.23)

We can now state the main result of this section, which is the extension
of Proposition II.6.1 to the present context.

Proposition 5.3. Let p \ 0 be an integer. Let (k, a, k0) satisfy

k > n/2+(p−2) l̄+lK0, k \ k0 − l̄+2, a \ k0 − l, (5.24)

k0 > n/2, k0 \ (p+2) l̄ −1, (5.25)

and let

km=k0 −ml̄, am=k0 − l −ml̄, 0 [ m [ p+1. (5.26)

Let h0 be a C1 positive increasing function defined in [1,.), such that t−2h0,
t−1h −0 ¥ L1([1,.)) and t−c [ ch −0 . Let T \ 2, let (w, j) be a solution of the
system (2.11)–(2.12) such that (w, h−1

0 j) ¥Yk, a
r ([T,.)) and define a, b by

(5.6). Let w+=limtQ. w(t) ¥ Kk
r be defined by Proposition 5.1, so that in

particular

|w(t)−w+|k1 Q 0 when t Q.. (5.27)
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Let (wm+1, jm), 0 [ m [ p be defined by Proposition 5.2 and let (Wm, fm),
0 [ m [ p, be defined by (5.22). Then the following estimates hold for all
t ¥ [T,.):

|w(t)−Wm(t)|km+1
[ A(a, b) Qm(t), (5.28)

|j(t)− fm(t)|am+1
[ A(a, b) Nm+1(t) (5.29)

for 0 [ m [ p, and for some estimating function A(a, b).
If in addition (p+2) c > 1 and if Pp(1) <., then the following limit exists

lim
tQ.

(j(t)− fp(t))=k+ (5.30)

as a strong limit in Yap+1
r , and the following estimate holds

|j(t)− fp(t)− k+|ap+1
[ A(a, b) Pp(t). (5.31)

Remark 5.1. When applied to solutions (w, j) of the system (2.11)–
(2.12) obtained in Proposition 4.1, the time decay estimates of Proposition
5.3 will take the following typical form. Take |rŒ|=t−1− e and h0=t1− c+e,
which is adequate for Propostion 4.1. Then for (p+1) c < 1 and suffi-
ciently small e

Nm(t) ’ t1−(m+1)(c− e), Qm ’ t−(m+1)(c− e), Pp(t) ’ t1−(p+2)(c− e)

and the condition Pp(1) <. reduces to (p+2)(c − e) > 1. For (p+1)
(c − e) > 1, the time decay saturates at Np(t) ’ 1, Qp(t) ’ t−1 and Pp(t) ’ t−c,
as explained in Section II.3.

Remark 5.2. We have kept the parameter k0 in the statement of
Proposition 5.3 because it plays a central role in the proof. For a given
solution (w, j), namely for given (k, a), we can optimize the results
by maximizing k0 as allowed by (5.24), namely by taking k0=
(k+l̄ −2)K (a+l). The condition (5.25) then reduces to lower bounds
on (k, a). Those bounds are stronger than (5.4) and therefore allow for the
application of Proposition 5.1. Note also that the regularity obtained for
the remainders (qm, km) for m \ 1 is weaker than that of the estimating
functions of the same level (wm, jm) since (km, am) in (5.26) contain only
k0 [ k whereas (km, am) in (5.8) contain k and w+ ¥ Kk

r in both cases.

Proof of Proposition 5.3. The proof is essentially the same as that of
Proposition II.6.1 and proceeds by an induction on m, the starting point of
which is the estimate for q1. We assume the estimates (5.28) (5.29) to hold
for (qj, kj), 0 [ j [ m, and we derive them for (qm+1, km+1), with (qm, km)
defined by (5.20) (5.21) and (q0, k0)=(w, j).
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We substitute the decompositions w=Wm+qm+1 and j=fm+km+1 in
the LHS of (2.11)–(2.12) and the decompositions w=Wm−1+qm and
j=fm−1+km in the RHS of the same, thereby obtaining

“tqm+1=(2t2)−1 3 iDw+(2Nj ·N+(Dj)) qm+(2Nkm ·N+(Dkm)) Wm−1

+ C
0 [ i, j [ m−1

i+j \ m

(2Nji ·N+(Dji)) wj
4 (5.32)

“tkm+1=(2t2)−1 3(Nj+Nfm−1) ·Nkm+ C
0 [ i, j [ m−1

i+j \ m

Nji ·Njj
4

+t−c3g0(qm, q1)+g0(qm, Wm−1 −w0)+2g0(qm+1, w0)

+ C
0 [ i, j [ m−1
i+j \ m+1

g0(wi, wj)4 (5.33)

for m \ 1 and

“tq1=(2t2)−1 {iDw+2Nj ·Nw+(Dj) w}

“tk1=(2t2)−1 |Nj|2+t−cg0(q1, w+w+)
(5.34)

for m=0. We let the exponents (km, am) be undefined for the moment,
except for the property of being decreasing in m and of being not larger
than the corresponding exponents of Proposition 5.2, which we denote
momentarily by (k̄m, ām) inside this proof, namely

km [ k̄m=k−ml̄, am [ ām=k− l −ml̄.

We estimate (5.32) by (3.23) (3.24), by (5.9) (5.10) (5.23) and by the induc-
tion assumption, and we estimate similarly (5.33) by (3.26) (3.27) (3.28)
(3.29) and the same other ingredients, thereby obtaining

|“tqm+1 |km+1
[ A(a, b) t−2 31+h0Qm−1+Nm+ C

m [ i+j [ 2(m−1)
NiQj−1
4 (5.35)

|“tkm+1 |am+1
[ A(a, b) 3 t−2 1h0Nm+ C

m [ i+j [ 2(m−1)
NiNj
2

+t−c 1Q0Qm−1+Qm+ C
m+1 [ i+j [ 2(m−1)

Qi−1Qj−1
24 (5.36)
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for m \ 1, under the conditions

km+1 [ (km −1)N am, am+1 [ (am −1)N (km+1 − l), (5.37)

km+1+n/2 < (a+km)N (am+k̄m−1)

am+1+n/2 < (a+am)N (am+ām−1)

am+1+n/2+l < (km+k1)N (km+k̄m−1)N (km+1+k),

(5.38)

and

|“tq1 |k1 [ Ct−2(a+h0 ab) (5.39)

|“tk1 |a1 [ Ct−2h2
0 b2+Ct−cA(a, b) Q0 (5.40)

under the conditions

k1 [ (k−2)N a, a1 [ (a−1)N (k1 − l), (5.41)

k1+n/2 < k+a, a1+n/2 < 2aN (k1+k− l) (5.42)

for m=0.
As in the proof of Proposition 5.2, we saturate (5.37) and maximize am

with respect to km by the choice (5.26). Then (5.41) reduces to the last two
conditions of (5.24), while (5.38) is easily seen to reduce to k0 > n/2 and to
the first condition of (5.24), and (5.42) follows from (5.24) and (5.25). The
conditions km [ k̄m and am [ ām follow from the fact that k \ k0, implied by
(5.24).

Integrating (5.39) between t and . with initial condition (5.27) yields

|q1(t)|k1 [ C(a+h0(1)) t−1+C ab Q0(t), (5.43)

namely the estimate (5.28) for m=0 (since Q0(t) \ t−1Q0(1)) which is the
starting point of the induction procedure. Integrating (5.35) between t and
. with the initial condition qm+1(.)=0 for m \ 1 and using (3.79) (3.75)
yields (5.28). Similarly, integrating (5.40) and (5.36) between T and t and
using (3.78) (3.76) and (3.80) (3.84) yields (5.29). Finally, if (p+2) c > 1
and Pp(1) <., the RHS of (5.36) with m=p is integrable at infinity in
time, which proves the existence of the limit (5.30). Integrating (5.36)
between t and . and using (3.78) (3.77) and (3.80) (3.82) yields (5.31). L

6. CAUCHY PROBLEM AT INFINITY AND WAVE OPERATORS
FOR THE AUXILIARY SYSTEM

In this section we derive the main technical result of this paper, which is
in some sense the converse of Proposition 5.3, namely we prove that
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sufficiently regular asymptotic states (w+, k+) generate solutions (w, j) of
the system (2.11)–(2.12) in the sense described in Section 2, thereby allow-
ing for the definition of the local wave operator at infinity W0: (w+, k+) Q
(w, j). As a preliminary, and in order to allow for an easy proof of the
gauge invariance of the construction, we first solve the linear transport
equations (2.23) (2.24) with initial condition (2.25) and derive some
asymptotic properties of their solutions.

In all this section, as in Proposition 4.1 and in contrast with Section 5,
we are again solving the system (2.11)–(2.12) and we have to solve the
simpler equations (2.23) (2.24) in the same framework. As a consequence,
we again need the full machinery of Gevrey spaces with time dependent r

so as to be able to use (3.12), we need the integral norms in Xk, a
r and the

integration by parts (3.22) and (3.25). We therefore begin by choosing |rŒ|
exactly as in Section 4. Now however in contrast with Proposition 4.1
where we kept t0 finite, we want to take t0=., and therefore we must take
r to be increasing. Therefore, in all this section, we take

r(t)=r.−F
.

t
dt1 |rŒ(t1)|, (6.1)

taking r. sufficiently large for r(t) to be nonnegative in the (asymptotic)
region of interest, a sufficient condition for which being that r. \

|| |rŒ|; L1([1,.))||. Except for that condition, r. will be arbitrary (but
fixed), and all subsequent estimates will be independent of r., for the same
reasons as in the previous sections.

Solving the Cauchy problem either for the system (2.11)–(2.12) or for the
transport equations (2.23) (2.24) with infinite initial time will be done as in
II by first solving that system (or equation) with large but finite initial time
t0 and then letting t0 tend to infinity. In order not to make this paper too
cumbersome, we shall restrict our attention to solving that problem only
for t [ t0 when t0 is finite. The solutions could easily be extended to [t0,.)
with a modified r of the type (4.1), but that extension would be useless in
the limit t0 Q., and we shall refrain from performing it.

By analogy with the spaces Xk, a
r (I) defined by (4.2) (4.3), we extend the

definition (5.1) of the spaces Yk, a
r (I) from the case of constant r to the case

of variable r considered in this section by

Yk, a
r (I)={(w, j): (F−1fŵ, F−1fĵ) ¥Yk, a

0 (I)} (6.2)

with f defined by (3.1), r defined by (6.1) and Yk, a
0 (I) defined by (5.1).

Occasionally, we shall have to state that a single function w or j belongs
to the w-subspace or to the j-subspace of some space Xk, a

r or Yk, a
r . In

order to avoid introducing additional notation, we shall then write
(w, 0) ¥Xk, 0

r (I) or (0, j) ¥X0, a
r (I), and similarly with X replaced by Y.
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We shall have to consider norms of the type |w− |k or |j− |a for w− or j−

that are differences of functions taken at different times, possibly leaving in
doubt the value of t appearing in r(t) in the definition of the norm. In such
cases it will be understood that the value of t appearing in r(t) should be
the smaller of the times appearing in w− or j− , thereby yielding the smaller
of the corresponding values of r.

We begin with the study of the transport equation (2.23). As compared
with the treatment of that problem given in II, however, a new difficulty
arises. In order to compare V with the asymptotic approximation Wp to the
anticipated solution of (2.11)–(2.12), it is no longer sufficient to take for V
the initial condition V(t0)=w+ when solving (2.23) with finite initial time
t0, and we have to use instead the better initial condition V(t0)=Wp(t0).
On the other hand, the results on the Cauchy problem for (2.23) (2.24) do
not depend on detailed properties of fp−1 and Wp. They are therefore stated
in Propositions 6.1 and 6.2 in terms of general functions f and W, to be
taken as fp−1 and Wp from Proposition 6.3 on.

In all this section, we use systematically the notation y(1), Y, z(1), Z
defined by (4.4)–(4.9).

We begin with the study of the transport equation (2.23) which we
rewrite with general f as

“tV=(2t2)−1 (2Nf ·N+(Df)) V. (6.3)

Proposition 6.1. Let (k̃, ã, k̄, k) satisfy

ã > n/2− n, k̃N (ã+n/2) \ k̄ \ k+1− n, k \ n/2. (6.4)

Let 1 [ T <.. Let h0 and h1 be C1 positive functions defined in [T,.) with
h0 nondecreasing, h1 nonincreasing and tending to zero at infinity, and
h1 \ t−2rŒ−1h0. Let w+ ¥ K k̃

r.
. Let (W, f) be such that (W, h−1

0 f) ¥
Y k̃, ã
r ([T,.)) and that W(t) tends to w+ as t Q., with an estimate

|W(t)−w+|k [ c1h1(t) (6.5)

for some constant c1. Let

a=Sup
t

|W(t)|k̃, b=Sup
t

h−1
0 (t) |f(t)|ã . (6.6)

Then

(1) There exist constants c and C such that if

b h1(T) [ c, (6.7)
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there exists a unique solution V of the equation (6.3) such that (V, 0) ¥
X k̄, 0
r ([T,.)) and such that the following estimates hold:

Y(V; [T,.), 1, k̄) [ C a, (6.8)

Y(V−w+; [T,.), h1, k) [ C a b. (6.9)

(2) V is the limit as t0 Q. of solutions Vt0 of (6.3) such that
Vt0 (t0)=W(t0) and (Vt0 , 0) ¥X k̄, 0

r ([T, t0]). The convergence is in the strong
sense in XkŒ, 0

r ([T, T1]) for kŒ < k̄ and in the weak-f sense in X k̄, 0
r ([T, T1]) for

every T1, T < T1 <. and the following estimate holds for all t0 > T

Y(V−Vt0 ; [T, t0], 1, k) [ C(ab+c1) h1(t0). (6.10)

(3) The solution V is unique in L.([T,.), L2) under the condition
that ||V(t)−w+||2 tends to zero when t Q..

Remark 6.1. From the uniqueness statement of Proposition 6.1, Part
(3), it follows that for given f and w+, V is independent of W. Actually
Parts (1) and (3) make no reference to W and could be proved by taking
W(t) — w+. W appears only in the limiting process of Part (2), which
however will be esssential to derive the more accurate estimates of Propo-
sition 6.3.

Proof. We prove Parts (1) and (2) together.
We first solve (6.3) with initial data Vt0 (t0)=W(t0) at finite t0. This is a

linear transport equation with C. vector field Nf and C. initial data and
the existence and uniqueness of a solution, for instance with value in HN, is
a standard result. We concentrate on the Gevrey estimates and on the
subsequent limit t0 Q..

In the same way as in the proof of Lemma 3.5, from (3.22) (3.24) we
obtain for t [ t0

“t |Vt0 |
2
k̄ \ 2rŒ |Vt0 |

2
k̄+n/2 −Ct−2 |Vt0 |

2
k̄+n/2 |f|ã (6.11)

under the conditions

ã > n/2− n, k̄ \ n/2, ã+1 \ k̄− n/2

and

k̄+ã+n/2 > k̄− n/2+n/2, ã \ k̄− n/2

which follow from (6.4). Integrating (6.11) over time and using (6.6), we
obtain as in the proof of Lemma 4.1

y2Ky2
1 [ y2

0+C b y2
1 h1(t), (6.12)
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where y(1)=y(1)(Vt0 ; [t, t0], 1, k̄) and y0=|W(t0)|k̄, which under the condi-
tion (6.7) yields

Y(Vt0 ; [T, t0], 1, k̄) [ C a. (6.13)

We next estimate the difference v1(t) — Vt0 (t)−Vt0 (t0) — Vt0 (t)−W(t0),
which satisfies the equation

“tv1=(2t2)−1 (2Nf ·N+(Df)) Vt0 (6.14)

with initial condition v1(t0)=0. Let ṽ1=h−1
1 v1. From (3.23) (3.24) with

m=k− n/2, k Q k̄+n/2 and a=ã, we obtain

“t |ṽ1 |
2
k \ 2rŒ|ṽ1 |

2
k+n/2 −Ct−2h−1

1 |ṽ1 |k+n/2 |Vt0 |k̄+n/2 |f|ã (6.15)

under the conditions

k̄+ã > k+n/2− n, ã \ k− n/2 \ 0, k̄+n/2 \ k+1− n/2,

which follow from (6.4).
Defining y(1)=y(1)(v1; [T, t0], h1, k), integrating over time and using

(6.6) (6.13) and the Schwarz inequality we obtain in the same way as before

y2Ky2
1 [ C a b y1{Sup

t
t−2rŒ−1h0h

−1
1 }=C a b y1

and therefore

Y(Vt0 −W(t0); [T, t0], h1, k) [ C a b. (6.16)

We now take the limit t0 Q., and for that purpose we estimate the
difference Vt1 −Vt0 of two solutions corresponding to t0 and t1, with
T < t0 [ t1. Since the equation (6.3) is linear in V, the difference of two
solutions is estimated in the same way as a single solution. In the same way
as in the proof of (6.13), we obtain

Y(Vt1 −Vt0 ; [T, t0], 1, k) [ C |Vt1 (t0)−Vt0 (t0)|k

[ C{|Vt1 (t0)−W(t1)|k+|W(t1)−W(t0)|k}. (6.17)

We estimate the first norm in the last member of (6.17) by (6.16) with t1
replacing t0, and where we use the pointwise estimate taken at t=t0, and
we estimate the second norm by (6.5) used both for t=t0 and t=t1,
thereby obtaining

Y(Vt1 −Vt0 ; [T, t0], 1, k) [ C(ab+c1) h1(t0). (6.18)
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From (6.18) it follows that when t0 Q., Vt0 converges to some V such that
(V, 0) ¥Xk, 0

r ([T,.)) strongly in Xk, 0
r ([T, T1]) for all T1, T < T1 <.. By

standard compactness arguments and by (6.13) (V, 0) ¥X k̄, 0
r ([T,.)), V

satisfies (6.8) and the convergence holds in the sense of Part (2) of the
proposition. Furthermore, taking the limit t1 Q. in (6.18) yields (6.10).

It remains only to prove (6.9). For that purpose, we take again
T < t0 < t1 and we estimate

Y(V−w+; [T, t0], h1, k) [ Y(Vt1 −W(t1); [T, t0], h1, k)

+h1(t0)−1 {Y(V−Vt1 ; [T, t0], 1, k)

+Y(W(t1)−w+; [T, t0], 1, k)}

[ C a b+h1(t0)−1 {C(ab+c1) h1(t1)

+Cc1h1(t1)(r(t1)− r(t0))−1/2}

by (6.16) and (6.10) with t1 replacing t0, and by (6.5) and the fact that r(t)
is strictly increasing, so that

F
t0

T
dt rŒ |W(t1)−w+|2r(t), k+n/2 [ C |W(t1)−w+|2r(t1), k |r(t1)− r(t0)|−1 ||rŒ||1

where | · |r, k denotes the norm in Kk
r . Taking the limits t1 Q. and t0 Q.

in that order yields (6.9), with the same constant as in (6.16).
Part (3) follows from an elementary energy estimate for the L2 norm of

the difference of two solutions, namely

||V1(t)−V2(t)||2 [ ||V1(tŒ)−V2(tŒ)||2 exp(Cb |h(t)−h(tŒ)|)

where h(t)=>.t dt1 t−2
1 h0(t1). L

We now turn to the transport equation (2.24), which we rewrite with
general f as

“tq=t−2Nf ·Nq. (6.19)

Proposition 6.2. Let (ã, ā, a) satisfy

ã > n/2− n, ã+n/2 \ ā+1, ā \ a+1− n, a+1 \ n/2. (6.20)

Let 1 [ T <. and let h0, h1 be as in Proposition 6.1. Let k+ ¥ Y ār. and let
b=|k+|ā . Let f be such that (0, h−1

0 f) ¥ Y0, ã
r ([T,.)) with

b=Sup
t

h0(t)−1 |f(t)|ã. (6.21)
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Then

(1) There exist constants c and C such that if (6.7) holds, there exists
a unique solution q of the equation (6.19) such that (0, q) ¥X0, ā

r ([T,.)) and
such that the following estimates hold

Z(q; [T,.), 1, ā) [ C b, (6.22)

Z(q − k+; [T,.), h1, a) [ C b b. (6.23)

(2) q is the limit as t0 Q. of solutions qt0 of (6.19) such that
qt0 (t0)=k+ and (0, qt0 ) ¥X0, ā

r ([T, t0)). The convergence is in the strong
sense in X0, aŒ

r ([T, T1]) for aŒ [ ā and in the weak-f sense in X0, ā
r ([T, T1]) for

every T1, T < T1 <., and the following estimate holds

Z(q − qt0 ; [T, t0], 1, a) [ C b b h1(t0). (6.24)

(3) The solution q is unique in L.(I, L.) under the condition that
||q(t)− k+||. tends to zero as t Q..

(4) Let in addition (k̃, k̄, k) satisfy (6.4), let w+ ¥ K k̃
r.

and let V be
defined by Proposition 6.1 for some W (for instance W(t) — w+). Then for
fixed f, V exp(−iq) is gauge invariant in the following sense. If (V, q) and
(VŒ, qŒ) are the solutions obtained from (w+, k+) and (w −+, k −+) with
w+exp(−ik+)=w −+ exp(−ik −+), then V(t) exp(−iq(t))=VŒ(t) exp(−iqŒ(t))
for all t ¥ I.

Proof. Parts (1) and (2). The proof is very similar to that of Proposi-
tion 6.1 and we concentrate again on the Gevrey estimates and on the limit
t0 Q.. Let qt0 be the solution of (6.19) with initial data qt0 (t0)=k+. In
addition to (6.19), it is convenient to use also the equation

“ty=t−2(S ·Ny+y ·NS) (6.25)

satisfies by y=Nq, with S=Nf.
We estimate “t |qt0 |

2
ā

in the same way as in the proof of Lemma 3.5. We
estimate the contribution of S ·Nyt0 from (6.25) by (3.25) with (s, sŒ, a, aŒ)
replaced by (S, yt0 , ã, ā) and the contribution of yt0 ·NS by (3.26) with
(s, sŒ, a, aŒ, m) replaced by (yt0 , S, ā+n/2, ã, ā− n/2), thereby obtaining

“t |qt0 |
2
ā
\ 2rŒ |qt0 |

2
ā+n/2 −Ct−2 |qt0 |

2
ā+n/2 |f|ã (6.26)

under the conditions

ã > n/2− n, ā+1 \ n/2, ã \ ā+1− n/2
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which follow from (6.20). Introducing z(1)=z(1)(qt0 ; [T, t0], 1, ā) and
integrating (6.26) over time, we obtain in the same way as before

z2K z2
1 [ z2

0+C b h1(T) z2
1

with z0=b, which under the conditions (6.7) implies

Z(qt0 ; [T, t0], 1, ā) [ C b. (6.27)

We next estimate the difference q1(t) — qt0 (t)− qt0 (t0) — qt0 (t)− k+ which
satisfies the equations

“tq1=t−2Nf ·Nqt0

“ty1=t−2(S ·Nyt0 +yt0 ·NS).

Let q̃1=h−1
1 q1. Using again (3.26) with (s, sŒ)=(S, yt0 ) or (yt0 , S), with

m=a− n/2 and with (a, aŒ)=(ã, ā+n/2) or (ā+n/2, ã), we obtain

“t |q̃1 |
2
a \ 2rŒ |q̃1 |

2
a+n/2 −Ct−2h−1

1 |q̃1 |a+n/2 |qt0 |ā+n/2 |f|ã (6.28)

under the conditions

ã+ā > a+n/2− n, ã \ a+1− n/2, ā \ a+1− n, a+1 \ n/2

which also follow from (6.20). Defining now z(1)=z(1)(q1; [T, t0], h1, a),
integrating over time and using (6.21) (6.27), we obtain in the same way as
before

z2K z2
1 [ C b b z1 Sup

t
{t−2rŒ−1h0h

−1
1 }=C b b z1

and therefore

Z(qt0 − k+; [T, t0], h1, a) [ C b b. (6.29)

Starting from the basic estimates (6.27) and (6.29), the end of the proof is
the same as that of Proposition 6.1 based on (6.13) (6.16), with the simpli-
fication that the initial condition at t0 is given by a fixed k+ instead of a
time dependent W. The difference between two solutions qt1 and qt0 with
T < t0 < t1 is estimated with the help of the extension of (6.27) to that dif-
ference and of the pointwise part of (6.29) with t0 replaced by t1 taken at
time t=t0 as

Z(qt1 − qt0 ; [T, t0], 1, a) [ C |qt1 (t0)− k+|a [ C b b h1(t0) (6.30)

from which the existence of q with the properties and convergences stated
in Part (2) follow. Taking the limit t1 Q. in (6.30) yields (6.24), while
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taking the limit t0 Q. in (6.27) (6.29) yields (6.22) (6.23) in the same way
as in the proof of Proposition 6.1.

Part (3) follows from elementary estimates together with the estimate on
f expressed by (6.21).

Part (4). It follows from (6.3) and (6.19) that V exp(−iq) also satis-
fies (6.3), with gauge invariant initial condition V(.) exp(−iq(.))=
w+ exp(−ik+). The result then follows from the uniqueness statement of
Proposition 6.1, part (3). L

Remark 6.2. Because of the linearity of the equations (6.3) (6.19), the
solutions V and q constructed in Propositions 6.1 and 6.2 have obvious
continuity properties with respect to w+ and k+ respectively. The conti-
nuity with respect to f is more delicate and will not be considered here.

We shall use the results of Propositions 6.1 and 6.2 in the special case
where f=fp−1 and W=Wp as defined by (5.22). In that case, V satisfies an
asymptotic estimate which is much more accurate than (6.9) and which
shows that V is a good approximation to Wp. In order to state that result,
we need the results of Proposition 5.2. We need in particular the special
function h̄0 defined by (5.7) and the associated functions N̄m and Q̄m asso-
ciated with it according to (3.68) (3.69). The result can be stated as follows.

Proposition 6.3. Let p \ 1 be an integer. Let (k+, k̄, k) satisfy

k+ > n/2, ã > n/2− n, k̃ \ k+1− n/2,

k̃ \ k̄ \ k+1− n, k \ n/2 (6.31)

where ã( — ap−1)=k+ − l −(p−1) l̄ and k̃( — kp)=k+ −pl̄. Let w+ ¥ Kk+
r.

and let a+=|w+|k+ . Let h̄1 and h2 be C1 positive nonincreasing functions
defined in [1,.) and tending to zero at infinity, with h̄1 \ t−2rŒ−1h̄0 and
h2 \ t−2rŒ−1N̄p. Let f=fp−1 and W=Wp be defined by (5.22), and let

b=Sup
t

h̄0(t)−1 |f|ã — Sup
t

h̄0(t)−1 |fp−1(t)|ap−1
. (6.32)

Let T, 1 < T <. satisfy

bh̄1(T) [ c (6.33)

for a suitable constant c (see (6.7)) and let V be the solution of the equation
(6.3) constructed in Proposition 6.1, and such that (V, 0) ¥X k̄, 0

r ([T,.)).
Then V satisfies the following estimate

Y(V−Wp; [T,.), h2, k) [ A(a+). (6.34)
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Proof. One checks easily that the assumptions of Proposition 6.3 imply
the relevant assumptions of Propositions 5.2 and 6.1. In particular (6.31)
implies (6.4) and the exponents k̃ and ã are those given by Proposition 5.2.
Let now Vt0 be defined in Proposition 6.1, part (2), let r=Vt0 −Wp so that
in particular r(t0)=0, and r satisfies the equation

“tr=(2t2)−1 3(2Nfp−1 ·N+(Dfp−1)) r+ C
i [ p−1, j [ p

i+j \ p

(2Nji ·N+(Dji)) wj
4

(6.35)

obtained by taking the difference between (6.3) and the appropriate sum of
(2.18). Let r̃=h−1

2 r. We now estimate “t |r̃ |2k . The contribution of the terms
containing r in the RHS is estimated exactly as in the proof of Proposition
6.1. The remaining terms are estimated by (3.23) (3.24) with m=k− n/2,
k Q k̃ and aQ ã under the conditions ã > n/2− n, 0 [ k− n/2 [ k̃−1, which
follow from (6.31). We obtain

“t |r̃ |2k \ 2rŒ |r̃ |2k+n/2 −Ct−2 |r̃ |2k+n/2 |f|ã−Ct−2h−1
2 |r̃ |k+n/2 C |ji |ã |wj |k̃

\ 2rŒ |r̃ |2k+n/2 −Cbt−2h̄0(t) |r̃ |2k+n/2 −A(a+) t−2h−1
2 N̄p |r̃ |k+n/2(6.36)

by (6.32) (5.9) (5.10) (3.70) and (3.79). Defining y(1)=y(1)(r; [T, t0], h2, k)
and integrating (6.36) over time with the initial condition r(t0)=0, we
obtain in the same way as before

y2Ky2
1 [ C b h̄1(t) y2

1+A(a+) y1

by using the properties of h̄1 and h2, and therefore, under the condition
(6.33)

Y(r; [T, t0], h2, k) [ A(a+). (6.37)

We now take T < t0 < t1, and take the limit t1 Q., t0 Q. in that order in
the estimate

Y(Vt1 −W; [T, t0], h2, k) [ A(a+)

which follows from (6.37). The estimate (6.34) then follows from the
convergence (6.10). L

Remark 6.2. In order to appreciate the improvement of the asymptotic
accuracy of Proposition 6.3, especially (6.34) over Proposition 6.1,
especially (6.9), it is useful to consider again the special case rŒ=t−1− e.
Proposition 6.1 with f=fp−1 is now applied with h0=h̄0 ’ t1− c and
therefore h1=h̄1 ’ t−c+e, so that the pointwise part of (6.9) states that

|V(t)−w+|k M C ab t−c+e.
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On the other hand N̄p ’ t1−(p+1) c for (p+1) c < 1 thereby allowing for
h2 ’ t−2rŒ−1N̄p ’ t−(p+1) c+e in Proposition 6.3, so that the pointwise part of
(6.34) states that

|V(t)−Wp(t)|k M A(a+) t−(p+1) c+e.

That improvement will play an essential role in the estimates of Proposi-
tion 6.4 below.

We now turn to the construction of solutions (w, j) of the system
(2.11)–(2.12) with given asymptotic states (w+, k+). For that purpose, we
first take a large positive t0 and we construct a solution (wt0 , jt0 ) of
(2.11)–(2.12) with initial data (V(t0), fp(t0)+q(t0)) at t0. The solution
(w, j) will be obtained therefrom by taking the limit t0 Q., as explained
in Section 2.

Proposition 6.4. Let (k, a) satisfy (3.48) and k \ 1− n/2, let p be an
integer such that (p+2) c > 1 and let k+ and a+ satisfy

k+ > n/2, k+ \ (k+2− n)K (a+l+1)+pl̄, a+ \ a+1, (6.38)

where l=m −n+2 and l̄=lK1. Let h̄0 be defined by (5.7) and let N̄m , Q̄m

be the associated estimating functions defined by (3.68) (3.69). Let h̄1, h1, h2

and h3 be positive nonincreasing C1 functions defined in [1,.), tending to
zero at infinity, and satisfying

h̄1 \ t−2rŒ−1h̄0, h2 \ t−2rŒ−1N̄p, h2 \ Q̄p if p \ 1, (6.39)

h3 \ t−crŒ−1h2, h1 \ t−2rŒ−1h3h
−1
2 , h3 \ Ch̄1. (6.40)

Let w+ ¥ Kk+
r.

and let (Wm, fm), 0 [ m [ p, be defined by (5.22) so that
(Wm, h̄−1

0 fm) ¥Ykm , am
r.

([1,.)) by Proposition 5.2. Let V be defined by Prop-
osition 6.1 with (W, f)=(Wp, fp−1) and (k̃, ã)=(kp, ap−1). Let k+ ¥ Ya+r.
and let q be defined by Proposition 6.2 with the same (W, f). Let

a+=|w+|r. , k+ , b+=|k+|r. , a+ .

Then there exists T, 1 [ T <., depending only on (c, p, a+, b+) such that
for all t0 \ T, the system (2.11)–(2.12) with initial data w(t0)=V(t0),
j(t0)=fp(t0)+q(t0) has a unique solution (wt0 , jt0 ) ¥Xk, a

r ([T, t0]). One
can define T by a condition of the type

A(a+, b+)(h1(T)K h̄1(T)Kh2(T))=1 (6.41)
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and the solution satifies the estimates

Y(wt0 −V; [T, t0], h2, k)KY(wt0 −Wp; [T, t0], h2, k) [ A(a+, b+) (6.42)

Z(jt0 − fp − q; [T, t0], h3, a)KZ(jt0 − fp − k+; [T, t0], h3, a) [ A(a+, b+)
(6.43)

Y(wt0 ; [T, t0], 1, k) [ A(a+, b+), (6.44)

Z(jt0 ; [T, t0], h̄0, a) [ A(a+, b+). (6.45)

Remark 6.3. As mentioned previously, in the same way as in Proposi-
tions 6.1 and 6.2, we could easily (but we shall not) extend the solution
(wt0 , jt0 ) to the interval [T,.).

Remark 6.4. In order to understand the time decay estimates implied
by (6.42) (6.43), it is useful to consider again the special case rŒ=t−1− e.
Saturating as far as possible the inequalities in (6.39) (6.40), we obtain

h̄1 ’ t−c+e, h2 ’ t−(p+1) c+e, h3 ’ t1−(p+2) c+2e, h1=t−c+2e

for (p+1) c < 1, and the assumptions are satisfied for e sufficiently small,
namely 2e < (p+2) c −1. In particular the condition that h3 be decreasing
in t essentially imposes the condition (p+2) c > 1.

Note also that in the condition (6.41) h2 yields only a marginal restriction
as soon as p \ 1, while for p=0 it is natural to take h2=h̄1 (see (6.39) with
N̄0=h̄0). Finally, the condition h3 \ Ch̄1 will in general be automatically
satisfied for any reasonable choice of the estimating functions h̄1 and h3.

Proof. The proof follows the same pattern as that of Proposition 4.1,
involving a parabolic regularization, possibly a regularization of the initial
data, the local resolution of the regularized system by a fixed point method,
the derivation of a priori estimates uniform in the regularization, and a
limiting procedure. The only difference lies in the a priori estimates of the
solutions in Xk, a

r ([T, t0]). Those estimates are much more elaborate than
previously and will ensure in particular that T can be taken independent of
t0, contrary to what happened in Lemma 4.1 (see especially (4.13)). We
concentrate on the proof of those estimates, omitting the parabolic regu-
larization terms for brevity. Their contribution will be briefly discussed at
the end of that proof.

Let (wt0 , jt0 ) ¥Xk, a
r ([T, t0]) be a solution of the system (2.11)–(2.12)

with initial condition (wt0 (t0), jt0 (t0))=(V(t0), fp(t0)+q(t0)) where V and
q are defined by Propositions 6.1 and 6.2. Instead of estimating (wt0 , jt0 )
directly, we estimate the differences q=wt0 −V and k=jt0 − fp − q. For
convenience we also introduce the gradients s=Nk, st0 =Njt0 , y=Nq, as
well as sm=Njm, Sm=Nfm for 0 [ m [ p. Comparing the equations
(2.11)–(2.12) and (6.3) (6.19) with f=fp−1, we obtain
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“tq=(2t2)−1 {iDwt0 +2st0 ·Nq+2(s+sp+y) ·NV+(N · s) wt0

+(N · (Sp+y)) q+(N · (sp+y)) V} (6.46)

“tk=(2t2)−1 3 |s|2+2s · (Sp+y)+|y|2+2y · sp+ C
i, j [ p
i+j \ p

si · sj 4

+t−c 3g0(q, q)+2g0(q, V)+q0(V−Wp, V+Wp)+ C
i, j [ p
i+j > p

g0(wi, wj)4 .
(6.47)

It is convenient to write also the equation for s=Nk, namely

“ts=t−2 3 st0 ·Ns+s ·N(Sp+y)+(y+sp) ·Ny+y ·Nsp+ C
i, j [ p
i+j \ p

si ·Nsj 4

+t−cN 3g0(q, q)+2g0(q, V)+q0(V−Wp, V+Wp)+ C
i, j [ p
i+j > p

g0(wi, wj)4 .
(6.48)

We define q̃=h−1
2 q and k̃=h−1

3 k and we estimate “t |q̃|2k and “t |k̃|2a by
exactly the same method as in Lemmas 3.5, 3.6, 3.7, based on Lemma 3.4,
using in particular (3.22) (3.23) (3.24) for q̃ and (3.25) (3.26) (3.28) for k̃,
and omitting the terms with h −2 and h −3. We obtain for t [ t0

“t |q̃|2k \ 2rŒ |q̃|2k+n/2 −Ct−2 |q̃|k+n/2 {h−1
2 |V|k+2− n/2

+|q̃|k+n/2 |k+fp+q|a+h−1
2 |V|k+1− n/2 |k+jp+q|a

+(|q̃|k+h−1
2 |V|k )|k|a+n/2+|q̃|k |fp+q|a+n/2+h−1

2 |V|k |jp+q|a+n/2}
(6.49)

“t |k̃|2a \ 2rŒ |k̃|2a+n/2 −Ct−2 |k̃|a+n/2 3 |k̃|a+n/2 |k+fp+q|a

+|k̃|a |fp+q|a+1− n/2+h−1
3 |jp+q|a |q|a+1− n/2+h−1

3 |q|a |jp |a+1− n/2

+h−1
3 C

i, j [ p
i+j \ p

|ji |a |jj |a+1− n/2
4−Ct−ch−1

3 |k̃|a+n/2 3h2 |q̃|k+n/2

(|q|k+|V|k)+h2 |q̃|k |V|k+n/2+|V−Wp |k |V+Wp |k+n/2

+|V−Wp |k+n/2 |V+Wp |k+ C
i, j [ p
i+j > p

|wi |k |wj |k+n/2 4 . (6.50)
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In order to continue the estimates, we need some information on V, q and
on the (jm, wm). Applying Proposition 6.1 with f=fp−1 and Proposition
6.3, both with k̄=k+2− n, we rewrite (6.8) and (6.34) as

Y(V; [T,.), 1, k+2− n) [ a (6.51)

Y(V−Wp; [T,.), h2, k) [ a (6.52)

for some a depending on a+, under the conditions

k+ > n/2, ap−1 > n/2− n, kp \ k+2− n (6.53)

where (cf (5.8))

km=k+ −ml̄, am=k+ − l −ml̄.

Similarly, applying Proposition 6.2 with f=fp−1, ā=a+1, h0=h̄0 and
therefore h1=h̄1, we rewrite (6.22) (6.23) as

Z(q; [T,.), 1, a+1) [ b (6.54)

Z(q − k+; [T,.), h̄1, a) [ b (6.55)

for some b depending on a+ and b+, under the conditions

ap−1 > n/2− n, ap−1 \ a+2− n/2, a+ \ a+1. (6.56)

Finally, from Proposition 5.2, we obtain

|wj(t)|k+n/2 [ aQ̄j−1(t) for 1 [ j [ p, (6.57)

|Wp(t)|k+n/2 [ a, (6.58)

for some a depending on a+, under the conditions

k+ > n/2, kp \ k+n/2, (6.59)

and

|jj(t)|a+1− n/2 [ bN̄j(t) for 0 [ j [ p, (6.60)

|fp(t)|a+1− n/2 [ bh̄0(t) (6.61)

for some b depending on a+, under the conditions

k+ > n/2, ap \ a+1− n/2. (6.62)

480 GINIBRE AND VELO



In the estimates (6.51) (6.52) (6.54) (6.55) (6.57) (6.58) (6.60) (6.61), we use
two common letters a and b to refer to estimates of amplitudes and phases
respectively. The constant a depends only on a+, while b depends on a+

and on b+. The conditions (6.53) (6.56) (6.59) (6.62) are implied by (6.38),
which is the statement of

k+ > n/2, kp \ k+2− n, ap \ a+1, a+ \ a+1.

With the estimates (6.51)–(6.61) available, we continue to estimate (q, k)
by integrating (6.49) (6.50) over time in the interval [t, t0]. We define
y(1)=y(1)(q; [t, t0], h2, k) and z(1)=z(1)(k; [t, t0], h3, a). We proceed
exactly as in the proofs of Lemmas 4.1, 4.2 and 4.3, using the Schwarz
inequality for the time integrals whenever necessary. We use furthermore
the fact that (6.49) (resp. (6.50)) contains |q̃|k+n/2 (resp. |k̃|a+n/2) as a factor
in its RHS, thereby yielding a factor y1 (resp. z1) after integration, and the
elementary fact that

y2Ky2
1 [ Ay1 S yKy1 [ A

and its analogue for (z, z1). We then obtain the following estimates, where
Sup means that the Supremum of the function of time that follows is taken
in the interval [t, t0], and where an overall constant C is omitted for
brevity.

yKy1 [ a Sup(t−2rŒ−1h−1
2 )+ab Sup(t−2rŒ−1N̄ph

−1
2 )

+b(y+y1) Sup(t−2rŒ−1h̄0)+a(z+z1) Sup(t−2rŒ−1h−1
2 h3)

+(yz1+y1z) Sup(t−2rŒ−1h3), (6.63)

zK z1 [ b2 Sup(t−2rŒ−1h̄0h
−1
3 N̄p)+b(z+z1) Sup(t−2rŒ−1h̄0)

+zz1 Sup(t−2rŒ−1h3)+a(y+y1) Sup(t−crŒ−1h−1
3 h2)

+yy1 Sup(t−crŒ−1h−1
3 h2

2)+pa2 Sup(t−crŒ−1h−1
3 (h2+Q̄p)) (6.64)

where the factor p in the last term simply means that that term is absent for
p=0. The various Sup in time are estimated in an obvious way with the
help of the conditions (6.39) (6.40) which are taylored for that purpose.
The only non-obvious term is the coefficient of b2 in (6.64), which is
estimated by (6.39) (6.40) as

(t−2rŒ−1N̄ph
−1
2 )(t−crŒ−1h2h

−1
3 )(tcrŒh̄0) [ ||rŒ||1

since

h̄0=F
t

1
dt1 t−c1 rŒ(t1)−1 rŒ(t1) [ t−crŒ(t)−1 F

t

1
dt1 rŒ(t1) [ ||rŒ||1 t−crŒ−1 (6.65)
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by the monotony of t−crŒ−1. Absorbing the factor ||rŒ||1 in the (again
omitted) overall constant and defining as previously Y=yKy1 and
Z=zK z1, we end up with

Y [ a+ab+bYh̄1+aZh1+YZh1h2 (6.66)

Z [ b2+pa2+bZh̄1+Z2h1h2+aY+Y2h2 (6.67)

where the functions h1, h̄1 and h2 are taken at time t where they take their
Supremum in [t, t0], since they are assumed to be decreasing.

In order to conclude the estimates, we impose the conditions

4 b h̄1(T) [ 1, 4(1+b) h2(T) [ 1, Zh1(t) [ (1+b) (6.68)

which together imply 4Z h1(t) h2(t) [ 1 for all t \ T. We then obtain

Y [ 2a(1+b)+2a Z h1 [ 4a(1+b) (6.69)

Z [ 2(b2+pa2)+2a Y+2Y(Y h2) [ 2(b2+pa2)+4aY

[ 2(b2+pa2)+16a2(1+b). (6.70)

The condition Zh1 [ 1+b then reduces to

(2(b2+pa2)(1+b)−1+16a2) h1 [ 1

which is implied by

(2b+(16+2p) a2) h1(T) [ 1. (6.71)

The condition (6.71) together with the first two conditions of (6.68) then
take the form (6.41), while the estimates (6.69) (6.70) yield the estimate of
the first terms in the LHS of (6.42) (6.43). The estimates of the second
terms follow from those of the first ones and from (6.52) and (6.55),
together with the condition h3 \ Ch̄1 from (6.40).

Finally the estimates (6.44) (6.45) follow immediately from (6.42) (6.43),
from (6.51) or (6.58) and from (6.61) (6.54).

We now discuss briefly the contribution of the parabolic regularization
terms in the previous proof. We regularize the system (2.11)–(2.12) in the
same way as in the proof of Proposition 4.1 (see (4.51), where however the
sign of the regularizing terms should be changed since we are now solving
the equations for decreasing t starting from t0). Instead of (6.49) (6.50), we
then obtain

“t |q̃|2k \ 2h(|Nq̃|2k+h−1
2 ReONq̃, NVPk)+previous terms,

“t |k̃|2a \ 2h(|Nk̃|2a+h−1
3 ONk̃, N(fp+q)Pa)+previous terms,
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where O · , ·Pk and O · , ·Pa denote the scalar products in Kk
r and Yar . The

scalar products are controlled since we have assumed that (V, fp+q) ¥
Xk+1, a+1
r, loc by imposing k̄=k+2− n, ā=a+1 and ap \ a+1. They produce

additional terms in the final estimates which are uniformly bounded in h in
a neighborhood of zero.

With the a priori estimates (6.44) (6.45) replacing Lemma 4.1, the proof
of Proposition 6.4 proceeds in the same way as that of Proposition 4.1, as
mentioned above. In particular, the required regularity estimates and dif-
ference estimates are provided by Parts 3 of Lemmas 4.2 and 4.3, which are
taylored for that purpose. The assumption on (w, j) made in those parts
follow from (6.44) (6.45) and from the relation

h̄0 [ ||rŒ||1 h0

which follows from (6.65), while the regularity assumptions on the initial
data required in Lemma 4.2 are ensured by the previous regularity of V
and fp+q. L

We can now take the limit t0 Q. of the solution (wt0 , jt0 ) constructed in
Proposition 6.4, for fixed (w+, k+).

Proposition 6.5. Let the assumptions of Proposition 6.4 be satisfied.
Then

(1) There exists T, 1 [ T <., depending only on (c, p, a+, b+) and
there exists a unique solution (w, j) of the system (2.11)–(2.12) in the inter-
val [T,.) such that (w, h̄−1

0 j) ¥Xk, a
r ([T,.)) and such that the following

estimates hold

Y(w−V; [T,.), h2, k)KY(w−Wp; [T,.), h2, k) [ A(a+, b+), (6.72)

Z(j − fp − q; [T,.), h3, a)KZ(j − fp − k+; [T,.), h3, a) [ A(a+, b+),
(6.73)

Y(w; [T,.), 1, k) [ A(a+, b+), (6.74)

Z(j; [T,.), h̄0, a) [ A(a+, b+). (6.75)

One can define T by a condition of the type (6.41).
(2) Let (wt0 , jt0 ) ¥Xk, a

r ([T, t0]) be the solution of the system
(2.11)–(2.12) constructed in Proposition 6.4. Then (wt0 , jt0 ) converges to
(w, j) in norm in XkŒ, aŒ

r ([T, T1]) for kŒ < k, aŒ < a and in the weak-f sense in
Xk, a
r ([T, T1]) for any T1, T < T1 <., and in the weak-f sense in Kk

r À Yar
pointwise in t for all t \ T.

(3) The map (w+, k+) Q (w, j) defined in Part (1) is continuous from
the norm topology of (w+, k+) in Kk+

r.
À Ya+r. to the norm topology of (w, j)
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in XkŒ, aŒ
r ([T, T1]) for kŒ < k, aŒ < a and to the weak-f topology in

Xk, a
r ([T, T1]) for any T1, T < T1 <., and to the weak-f topology in Kk

r À Yar
pointwise in t for all t \ T.

Remark 6.5. For simplicity, we have not stated the strongest continuity
properties that would follow by tracking more accurately the exponents in
the proof of Part (3). Actually the required topology on (w+, k+) could be
weakened to the norm topology of KkŒ

r.
À YaŒr. on the bounded sets of

Kk+
r.

À Ya+r. for suitable (kŒ, aŒ) smaller than (k+, a+).

Proof. Parts (1) and (2) will follow from the convergence of (wt0 , jt0 )
when t0 Q. in the topologies stated in Part (2). Let T [ t0 [ t1, let
(wt0 , jt0 ) and (wt1 , jt1 ) be the corresponding solutions of the system
(2.11)–(2.12) obtained in Proposition 6.4, and let (w− , j−)=(wt0 −wt1 ,
jt0 − jt1 ). From (6.42) (6.43) and their analogues for (wt1 , jt1 ), it follows
that

Y(w− ; [T, t0], h2, k) [ A(a+, b+)

Z(j− ; [T, t0], h3, a) [ A(a+, b+)
(6.76)

so that in particular

|w−(t0)|k [ A(a+, b+) h2(t0)

|j−(t0)|a [ A(a+, b+) h3(t0).
(6.77)

We now apply Lemma 4.3, part (3) to (w− , j−). For that purpose we
take h0=t−crŒ−1, so that by (6.40)

h1 \ t−2rŒ−1h0, h2h0 [ h3 (6.78)

and in particular (h0, h1) satisfy the assumptions of Lemma 4.3. The
assumptions (4.35) (restricted to the relevant interval [T, t0]) and (4.38)
follow from (6.44) (6.45) and from (6.65), while the condition (4.26) can be
included in (6.41). We now apply (4.41) with kŒ=k−1+n, aŒ=a−1+n,
together with (6.77) (6.78), thereby obtaining

Y(w− ; [T, t0], h−1
0 , k−1+n) [ A(a+, b+){h0(t0) |w−(t0)|k−1+n

+h1(T) |j−(t0)|a−1+n}

[ A(a+, b+) h3(t0) (6.79)

Z(j− ; [T, t0], 1, a−1+n) [ A(a+, b+){|j−(t0)|a−1+n

+h0(t0) |w−(t0)|k−1+n}

[ A(a+, b+) h3(t0). (6.80)
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From (6.79) (6.80) and from the fact that h3 tends to zero at infinity, it
follows that there exists (w, j) ¥Xk−1+n, a−1+n

r, loc ([T,.)) such that (wt0 , jt0 )
converges to (w, j) in norm in Xk−1+n, a−1+n

r ([T, T1]) for all T1, T < T1 <..
From that convergence, from (6.42)–(6.45) and from standard compact-
ness, continuity and interpolation arguments, it follows that (w, h̄−1

0 j) ¥
Xk, a
r ([T,.)), that (w, j) satisfies the estimates (6.72)–(6.75) and that

(wt0 , jt0 ) converges to (w, j) in the other topologies stated in Part (2).
Furthermore (w, j) satisfies the system (2.11)–(2.12), and uniqueness of
(w, j) under the conditions (6.72) (6.73) follows from Proposition 4.3 and
from the fact that h3(t) tends to zero at infinity.

Part (3). Let (w+, k+) and (w −+, k −+) belong to a fixed bounded set of
Kk+
r.

À Ya+r. , so that (5.17) (5.18) and (6.72)–(6.75) hold with fixed A. Let
(Wp, fp) and (W −

p, f −p) be the associated functions defined by (5.22) and let
(w, j) and (wŒ, jŒ) be the associated solutions of the system (2.11)–(2.12)
defined in Part (1). We assume that (w −+, k −+) is close to (w+, k+) in the
sense that

|w+ −w −+|k+ [ e, |k+ − k −+|a [ e0. (6.81)

Let w−=w−wŒ, j−=j − jŒ and let t0 > T be defined by h2(t0)=e, which
can be done for any (sufficiently small) e > 0 and which implies that t0 Q.
when e Q 0. It follows from (6.72) and (5.17) that

|w−(t0)|k [ Ah2(t0)+|Wp(t0)−W −

p(t0)|k [ A(h2(t0)+e) [ Ah2(t0) (6.82)

and from (6.73) and (5.18) that

|j−(t0)|a [ Ah3(t0)+|fp(t0)− f −p(t0)|a+|k+ − k −+|a

[ A(h3(t0)+h̄0(t0) e)+|k+ − k −+|a [ Ah3(t0)+e0.
(6.83)

We now apply Lemma 4.3, part (3) with kŒ=k−1+n, aŒ=a−1+n,
thereby obtaining

Y(w− ; [T, t0], h−1
0 , k−1+n) [ A(h0(t0) h2(t0)+h1(T)(h3(t0)+e0))

[ A(h3(t0)+e0) (6.84)

Z(j− ; [T, t0], 1, a−1+n) [ A{h3(t0)+e0+h0(t0) h2(t0)}

[ A(h3(t0)+e0). (6.85)

When e tends to zero, h3(t0) tends to zero, and therefore (6.84) (6.85) imply
norm continuity in Xk−1+n, a−1+n

r ([T, T1]) for all T1, T < T1 <.. The other
continuities follow therefrom, from the estimates (6.74) (6.75) and from
standard continuity, interpolation and compactness arguments. L
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7. ASYMPTOTICS AND WAVE OPERATORS FOR u

In this section we complete the construction of the wave operators for
the equation (1.1) and we derive asymptotic properties of solutions in their
range. The construction relies in an essential way on those of Section 6,
especially Proposition 6.5, and will require a discussion of the gauge
invariance of those constructions. This section follows closely Section II.7.

We first define the wave operator for the auxiliary system (2.11)–(2.12).

Definition 7.1. We define the wave operator W0 as the map

W0: (w+, k+) Q (w, j) (7.1)

from Kk+
r.

À Ya+r. to the space of (w, j) such that (w, h̄−1
0 j) ¥Xk, a

r ([T,.))
for some T, 1 [ T <., where r, k+, a+, k, a satisfy the assumptions of
Proposition 6.5 and (w, j) is the solution of the system (2.11)–(2.12)
obtained in Part (1) of that proposition.

In order to study the gauge invariance of W0, we need some information
on the Cauchy problem at finite times for the equation (1.1). We define the
operator J — J(t)=x+itN, which satisfies the commutation relation

i M D N=J M D, (7.2)

where M and D are defined by (2.4) (2.5). For any interval I … [1,.), any
nonnegative integer k and any nonnegative C1 function r defined in I, we
define the space

Xk
r(I)={u: DgMgu ¥ C(I, Kk

r)}

={u: OJ(t)Pk f(J(t)) u ¥ C(I, L2)}.
(7.3)

where OlP=(1+l2)1/2 for any real number or self-adjoint operator l and
where the second equality follows from (7.2) and from Remark 3.1. (The
space Xk

0(I) was denoted Xk(I) in II). We recall the following result (see
Proposition I.7.1).

Proposition 7.1. Let k be a positive integer and let 0 < m < 2k. Then the
Cauchy problem for the equation (1.1) with initial data u(t0)=u0 such that
OJ(t0)Pk u0 ¥ L2 at some initial time t0 \ 1 is locally well posed in Xk

0( · ),
namely

(1) There exists T > 0 such that (1.1) has a unique solution with initial
data u(t0)=u0 in Xk

0([1K (t0 −T), t0+T]).

486 GINIBRE AND VELO



(2) For any interval I, t0 ¥ I … [1,.), (1.1) with initial data u(t0)=u0

has at most one solution in Xk
0(I).

(3) The solution of Part (1) depends continuously on u0 in the norms
considered there.

We come back from the system (2.11)–(2.12) to the equation (1.1) by
reconstructing u from (w, j) by (2.7) and accordingly we define the map

L: (w, j) Q u=M D exp(−ij) w. (7.4)

It follows immediately from Lemma 3.3 that the map L satisfies the
following property.

Lemma 7.1. Let a+2 > n/2 and 0 [ k [ a+2. Then for any interval
I … [1,.) and any nonnegative C1 function r defined in I, the map L is
bounded and continuous from Yk, a

r, loc(I) (defined by (5.1) (6.2)) to Xk
r(I),

with norm estimates in compact intervals independent of r.

We now give the following definition

Definition 7.2. Two solutions (w, j) and (wŒ, jŒ) of the system
(2.11)–(2.12) in Yk, a

r, loc(I) for some k, a, r and some interval I … [1,.) are
said to be gauge equivalent if L(w, j)=L(wŒ, jŒ), or equivalently if

exp(−ij(t)) w(t)=exp(−ijŒ(t)) wŒ(t) (7.5)

for all t ¥ I.

The following sufficient condition for gauge equivalence follows imme-
diately from Lemma 7.1 and from the uniqueness statement of Proposition
7.1, part (2).

Lemma 7.2. Let a+2 > n/2 and 0 [ k [ a+2. Let I … [1,.) be an
interval, let r be a strictly positive C1 function defined in I, and let (w, j) and
(wŒ, jŒ) be two solutions of the system (2.11)–(2.12) in Yk, a

r, loc(I). In order
that (w, j) and (wŒ, jŒ) be gauge equivalent, it is sufficient that (7.5) holds
for one t ¥ I.

We now turn to the study of the gauge equivalence of asymptotic states
(if any) for solutions of the system (2.11)–(2.12) such as those obtained in
Proposition 4.1. For that purpose, we need r to be decreasing, namely to
be defined by (4.1) for some t0 \ 1.

Proposition 7.2. Let k \ 0 and a > n/2− n. Let r be defined by (4.1)
for some t0 \ 1 and let h0 and h1 be as in Proposition 4.1. Let (w, j) and
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(wŒ, jŒ) be two gauge equivalent solutions of the system (2.11)–(2.12) such
that (w, h−1

0 j), (wŒ, h−1
0 jŒ) ¥Xk, a

r ([T,.)) for some T, t0 [ T <.. Let

b=Z(j; [T,.), h0, a)KZ(jŒ; [T,.), h0, a). (7.6)

Then

(1) There exists w ¥ Ya−1+n
r(.) such that jŒ(t)− j(t) converges to w

strongly in YaŒr(.) for aŒ < a−1+n and weakly in Ya−1+n
r(.) . The following

estimate holds:

|jŒ(t)− j(t)− w|a−2+n [ Cb |jŒ(T1)− j(T1)|a−1+n h1(t) (7.7)

for t \ T1, for some T1 sufficiently large, namely satisfying

b h1(T1) [ c (7.8)

for some constant c.
(2) Assume in addition that 1− n/2 [ k [ a+1 and let w+ and w −+ be

the limits of w(t) and wŒ(t) as t Q. obtained in Proposition 4.2. Then
w −+=w+ exp(−iw).

(3) Let p \ 0 be an integer. Assume in addition that w+, w −+ ¥ Kk+
r(.)

where k+ satisfies

k+ > n/2, k+ \ (p+1) l̄ −1 (7.9)

and let fp, f −p be associated with (w+, w −+) according to (5.22) and Proposi-
tion 5.2. Assume that the following limits exist

lim
tQ.

(j(t)− fp(t))=k+, lim
tQ.

(jŒ(t)− f −p(t))=k −+ (7.10)

as strong limits in L.. Then k −+=k++w.

Proof. Part (1). Let j± (t)=jŒ(t)± j(t). By the same estimates as in
the proof of Lemma 3.7, we obtain

“t |j− |2aŒ−2rŒ |j− |2aŒ+n/2 [ Ct−2 |j− |aŒ+n/2 {|j− |aŒ+n/2 |j+|a+|j− |aŒ |j+|a+n/2}
(7.11)

for n/2 [ aŒ+1 [ a+n. Defining z(1)=z(1)(j− ; [T1, t], 1, aŒ) with
T [ T1 < t, integrating over time and using (7.6), we obtain

z2K z2
1 [ z2

0+C(Sup
[T1, t]

t−2 |rŒ|−1 h0) bz1(z+z1)

[ z2
0+Cbh1(T1) z1(z+z1),
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where z0=|j−(T1)|aŒ, which under the condition (7.8) with suitable c, yields

Z(j− ; [T1,.), 1, aŒ) [ C |j−(T1)|aŒ. (7.12)

From

“tj−=(2t2)−1 (Nj− ·Nj+)

we next estimate directly

|“tj− |aŒ−1 [ C t−2 |j− |aŒ |j+|a

[ C t−2 h0 b |j−(T1)|aŒ
(7.13)

by (7.6) and (7.12). The last member of (7.13) is integrable in time since

F
.

t
dt1 t−2

1 h0(t1) [ ||rŒ||1 h1(t), (7.14)

which for aŒ=a−1+n proves the existence of the limit w ¥ Ya−2+n
r(.) for j−

together with the estimate (7.7). The fact that actually w ¥ Ya−1+n
r(.) and the

other convergences stated in Part (1) follow therefrom and from (7.12) by
standard compactness and interpolation arguments.

Parts (2) and (3). The proof is identical with that of the correspond-
ing statements in Proposition II.7.2 and will be omitted. L

Remark 7.1. The assumptions made on (k, a) in Parts (1) and (2) of
Proposition 7.2 are implied by the assumptions (3.48) and k \ 1− n/2 of
Proposition 4.1, so that Parts (1) and (2) apply directly to the solutions of
the system (2.11)–(2.12) constructed in that proposition. In Part (3), the
assumption (7.9) is that required in Proposition 5.2 to ensure the existence
and appropriate estimates of fp, f −p . That assumption, together with the
existence of the limits (7.10), is ensured under the assumptions of Proposi-
tion 5.3, namely if (k, a) satisfy in addition (5.24) for some k0 satisfying
(5.25) and if (p+2) c > 1 and Pp(1) <..

Proposition 7.2 prompts us to make the following definition.

Definition 7.3. Two pairs of asymptotic states (w+, k+) and (w −+, k −+)
are gauge equivalent if w+ exp(−ik+)=w −+ exp(−ik −+).

With this definition, Proposition 7.2 implies that two gauge equivalent
solutions of the system (2.11)–(2.12) in R(W0) are images of two gauge
equivalent pairs of asymptotic states. One should however not overlook the
following fact. The wave operator W0 is defined through Proposition 6.5
which uses an increasing r defined by (6.1) whereas Proposition 7.2 uses a
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decreasing r (essentially in the proof of (7.12)). In order to apply Proposi-
tion 7.2 to the solutions constructed in Proposition 6.5 with increasing r,
one has therefore to take some large t0, to define

r̃(t)=r(t0)−F
t

t0
rŒ(t1) dt1

and to apply Proposition 7.2 with that new r̃, thereby ending up with
information on (w, w+, w −+, k+, k −+) in spaces K or Y associated with
r̃(.)=r(.)−2 >.t0 rŒ(t) dt < r(.). That fact of course does not impair
the algebraic relations expressing gauge invariance.

We now turn to the converse result, namely to the fact that gauge
equivalent asymptotic states generate gauge equivalent solutions through W0.

Proposition 7.3. Let (k, a) and (k+, a+) satisfy the assumptions of
Proposition 6.5, namely (3.48), k \ 1− n/2 and (6.38). Let r and the esti-
mating functions of time also satisfy the assumptions of Proposition 6.5. Let
(w+, k+), (w −+, k −+) ¥ Kk+

r.
À Ya+r. be gauge equivalent and let (w, j), (wŒ, jŒ)

be their images under W0. Then (w, j) and (wŒ, jŒ) are gauge equivalent.

Proof. The proof is identical with that of Proposition II.7.3. We
reproduce it for completeness.

Let t0 be sufficiently large and let (wt0 , jt0 ) and (w −t0 , j −t0 ) be the solu-
tions of the system (2.11)–(2.12) constructed by Proposition 6.4. From the
initial conditions

wt0 (t0)=V(t0), w −t0 (t0)=VŒ(t0),

jt0 (t0)=fp(t0)+q(t0), j −t0 (t0)=f −p(t0)+qŒ(t0),

from the fact that fp=f −p by Proposition 5.2, part (2) and that
V exp(−iq)=VŒ exp(−iqŒ) by Proposition 6.2, part (4), it follows that

wt0 (t0) exp(−ijt0 (t0))=w −t0 (t0) exp(−ij −t0 (t0))

and therefore by Lemma 7.2, (wt0 , jt0 ) and (w −t0 , j −t0 ) are gauge equivalent,
namely

wt0 (t) exp(−ijt0 (t))=w −t0 (t) exp(−ij −t0 (t)) (7.15)

for all t for which both solutions are defined.
We now take the limit t0 Q. for fixed t in (7.15). By Proposition 6.5,

part (2), for fixed t, (wt0 , jt0 ) and (w −t0 , j −t0 ) converge respectively to (w, j)
and (wŒ, jŒ) in KkŒ

r À YaŒr . By Lemma 3.3, one can take the limit t0 Q. in
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(7.15), thereby obtaining (7.5), so that (w, j) and (wŒ, jŒ) are gauge
equivalent. L

We can now define the (local) wave operators (at infinity) for u.

Definition. The wave operator W is defined as the map

W: u+ Q u=(L p W0)(Fu+, 0), (7.16)

where W0 and L are defined by Definition 7.1 and by (7.4).

We collect in the following proposition the information on W that
follows from the previous study, in particular from Propositions 6.5
and 7.3.

Proposition 7.4. Let p \ 0 be an integer with (p+2) c > 1. Let r

(defined by (6.1)) and the estimating functions of time satisfy the assump-
tions of Proposition 6.5 (see especially (6.39) (6.40) and Remark 6.4). Let

l=m −n+2 [ 2n, (7.17)

k \ 1− n/2, k > 1− n+m/2. (7.18)

Let k+ satisfy (6.38) for some a satisfying a > n/2− n, a \ k− n. Then

(1) The wave operator W maps FKk+
r.

to Xk
r([T,.)) for some T,

1 [ T <.. (Actually T depends on u+).

(2) W is injective.

Proof. Part (1) follows from the definitions, from Lemma 7.1 and from
Proposition 6.5 with k+=0. The only point to be checked is the fact that
(7.17) (7.18) imply the existence of a such that (k, a) satisfies (3.48). Now
the a dependent part of (3.48) reduces to

k− n [ a [ k+n − l (7.19)

n/2− n < a < 2k− l+n −n/2 (7.20)

and the compatibility of (7.19) (7.20) for a is easily seen to reduce to (7.17)
and to the second inequality in (7.18).

Part (2) follows from Proposition 7.2 and from the fact that a gauge
equivalence class of asymptotic states contains at most one element with
k+=0. L
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Remark 7.2. One may wonder whether the restriction to asymptotic
states with k+=0 in (7.16) restricts the range of W as compared with that
of L p W0. From Proposition 7.3, it follows that

(L p W0)(w+, k+)=(L p W0)(w+ exp(−ik+), 0)

in so far as w+ exp(−ik+) has the regularity needed to apply Proposition
6.5. This is the case if a+ \ k+ −2 by Lemma 3.3. That condition however is
significantly stronger than the condition on a+ contained in (6.38), espe-
cially for large p, i.e. for small c. Therefore, there is actually a restriction of
the range for regularity reasons, in spite of the (algebraic) gauge invariance
of the construction expressed by Proposition 7.3.

We next collect the information and in particular the asymptotic estima-
tes obtained for the solutions of the equation (1.1) in R(W).

Proposition 7.5. Let 0 < m [ n−2+2n [ n. Let 0 < c [ 1 and let p \ 0
be an integer with (p+2) c > 1. Let r (defined by 6.1) and the estimating
functions of time satisfy the assumptions of Proposition 6.5 (especially (6.39)
(6.40)). Let (k, a, k+) satisfy (7.18) (3.48) (6.38). Let u+ ¥ FKk+

r.
and a+=

||Fu+; Kk+
r.

||. Then

(1) There exists T, 1 [ T <., and there exists a unique solution
u ¥ Xk

r([T,.)) of the equation (1.1) which can be represented as

u=M D exp(−ij) w

where (w, j) is a solution of the system (2.11)–(2.12) such that
(w, h̄−1

0 j) ¥Xk, a
r ([T,.)) and such that

|w(t)−Fu+|k−1+n h0(t) Q 0 (7.21)

|j(t)− fp(t)|a−1+n Q 0 (7.22)

when t Q.. The time T can be defined by a condition of the type (6.41) with
b+=0.

(2) The solution is obtained as u=Wu+, following Definition 7.4.
(3) The map W is continuous from FKk+

r.
to the norm topology of

XkŒ
r (I) for kŒ < k and to the weak-f topology of Xk

r(I) for any compact
interval I … [T,.), and to the weak topology of MDKk

r pointwise in t.
(4) The solution u satisfies the following estimate for t \ T:

||OJ(t)Pk f(J(t))(exp[ifp(t, x/t)] u(t)−M(t) D(t) Fu+)||2 [ A(a+) h3(t)
(7.23)

for some estimating function A(a+).
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(5) Let 2 [ r <.. The solution u satisfies the following estimate:

||u(t)− exp[−ifp(t, x/t)] M(t) D(t) Fu+||r [ A(a+) r(t)−b t−d(r)h3(t),
(7.24)

where d(r)=n/2−n/r, b=n−1(d(r)−k)K0 if r <. or k > n/2, b=
n−1(n/2−k+e) if r=. and k [ n/2.

Proof. Parts (1) (2) (3) follow from Propositions 6.5 and 4.3, from
Definition 7.4 and from Proposition 7.4.
Part (4). From the commutation relation (7.2), from Remark 3.1 and

from Lemma 3.3, it follows that the LHS of (7.23) is estimated by

|| · ||2 [ C |exp(i(fp − j)) w−Fu+|k

[ C{|w−Fu+|k+|exp(i(fp − j))−1|a |w|k}

[ C{|w−Wp |k+|Wp −w+|k+exp(C |fp − j|a) |fp − j|a |w|k}

and the result follows from the estimates (6.72) (5.9) (6.73) (6.74).
Part (5) follows from Part (4) and from the inequality

||v||r=t−d(r) ||DgMgv||r [ Ct−d(r) ||ONPm DgMgv||2

=Ct−d(r) ||OJ(t)Pm v||2

which follows from (7.2) and Sobolev inequalities with m=d(r) if r <.,
m=n/2+e if r=., together with the fact that

|t|m−k f(t)−1 [ Cr−b. L

Remark 7.3. In (7.23) and (7.24), one could replace MDFu+ by U(t) u+

since the difference is small in the relevant norms. One could also replace
Fu+ by Wp, but this would not produce any improvement in the estimates,
since the main contribution comes from the phase. The estimate (7.24) is a
rather weak one, since we have omitted the function f which generates the
Gevrey regularity. It is only one example of a large number of similar
estimates exhibiting the typical t−d(r) decay associated with L r norms.

The final step of the standard construction of the wave operators for the
equation (1.1) would consist in extending the solutions u to arbitrary finite
times, and defining the maps W1: u+ Q u(1) where u=Wu+. In order not to
waste the Gevrey regularity of the local solutions at infinity, this would
require a treatment of the global Cauchy problem at finite times for arbi-
trarily large data in the same Gevrey framework. This is a rather different
problem and we shall refrain from considering it here.
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APPENDIX A

In this appendix we derive a number of properties of the function f̃
defined by (3.2), which make it a possible substitute for the function f0

defined by (3.1) in the definition of the spaces Xk, a
r . In all this appendix, we

assume 0 < n [ 1 and we take r=1. The parameter r can be reintroduced
easily by scaling. Accordingly we define

f̃(t)=C
j \ 0

(j!)−1/n |t| j, (A.1)

F(t)=C
j \ 0

(j+1)−1 (j!)−1/n |t| j+1. (A.2)

We also use (A.1) and (A.2) to define f̃ and F when applied to t ¥ R+.
With that convention, we have f̃(t)=f̃(|t|) and F(t)=F(|t|) for all
t ¥ Rn. Furthermore f̃=dF/d|t|.

We first derive some preliminary estimates which allow in particular for
a comparison of f̃ and f0.

Lemma A.1. The following estimates hold for all t ¥ Rn:

C
j \ 1

j(j!)−1/n |t| j [ |t|n C
j \ 0

(j!)−1/n |t| j [ C
j \ 0

(j+1)(j!)−1/n |t| j, (A.3)

C
j \ 0

(j+1)−1 (j!)−1/n |t| j+1 [ |t|1− n C
j \ 0

(j!)−1/n |t| j, (A.4)

f̃−1(df̃/d |t|) [ |t|n−1 [ F−1f̃=F−1(dF/d |t|), (A.5)

|t|n f̃ [ d(|t| f̃)/d |t|, (A.6)

F(a)(|t|Ka)n−1 exp(n−1(|t|n−an)) [ f̃(t) [ exp(n−1 |t|n) (A.7)

for all a > 0,

f̃(t)=(2p) (n−1)/2n n1/2 |t| (n−1)/2 exp(n−1 |t|n)(1+o(1)) when |t| Q..
(A.8)

Proof. (A.3a) and (A.4) follow from the Hölder inequality on Z+ with
the measure (j!)−1/n |t| j and the exponents 1/n and 1/(1− n), applied
respectively to the pairs of functions (j, 1) and ((j+1)−1, 1).

(A.3b) follows similarly from the Hölder inequality with the measure
(j+1)(j!)−1/n |t| j and the exponents n−1(1+n) and 1+n, applied to the
functions (j+1)−1 and 1.

(A.5) is a rewriting of (A.3a) and (A.4), while (A.6) is a rewriting of
(A.3b).
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(A.7) follows from (A.5). In fact (A.5) states that the functions
f̃(t) exp(−|t|n/n) and F(t) exp(−|t|n/n) are respectively decreasing (and
therefore less than one) and increasing in |t|. The first fact yields (A.7b)
while both of them together with f̃ \ |t|n−1 F yield (A.7a). Note also that
(A.7b) follows directly from the definition (A.1) and from the fact that

f̃(t)=||(j!)−1 |t|nj; a1/n||1/n [ ||(j!)−1 |t|nj; a1||1/n=exp(n−1 |t|n)

by the standard embedding of ap spaces.
(A.8) is proved in [15] (see (8.07) p. 308) in the special case n \ 1/4, but

the proof extends easily to the whole range 0 < n [ 1. L

The estimates (A.7) and the asymptotic property (A.8) compare f̃ with
f0 by stating that essentially f̃ ’ f1/n

0 . On the other hand (A.6) is the
analogue of the fact that df0/d |t|=n |t|n−1 f0 and allows for the con-
struction of function space norms satisfying an inequality which can
replace (3.12) in the subsequent estimates.

We next show that f̃ satisfies estimates similar to those of Lemma 3.1.

Lemma A.2. Let (t, g) ¥ Rn. Then f̃ satisfies the estimates

f̃(t) [ f̃(t − g) f̃(g) for all (t, g), (A.9)

f̃(t) [ f̃(t − g) exp(|g|n) for |t|N |g| [ |t − g|, (A.10)

(f̃(g)− f̃(t)) |g|1− n [ |t − g| f̃(g) for |t| [ |g|, (A.11)

|f̃(t)− f̃(g)| |g|1− n [ |t − g|1− n f̃(t − g) f̃(g) for all (t, g), (A.12)

|f̃(t)− f̃(g)| |g|1− n [ |t − g|1− n (exp(|t − g|n)−1) f̃(g)

for |t|N |t − g| [ |g|, (A.13)

|f̃(t)− f̃(g)| |g|1− n [ C |t − g|1− n (f̃(t − g)−1) exp(|g|n)

for |t|N |g| [ |t − g|. (A.14)

In (A.14) one can take C=1, except in the region |t| [ |t − g| [ |g| where
C=21− n.
The function f̃(t)K f̃(1) satisfies the same estimates as f̃(t).

Proof. (A.9) is trivial except if |t| \ |g|K |t − g|. In all cases, we estimate

f̃(t) [ C
j, k \ 0

(j!)−1 (k!)−1 ((j+k)!)1−1/n |t − g| j |g|k

[ C
j, k \ 0

(j!)−1/n (k!)−1/n |t − g| j |g|k=f̃(t − g) f̃(g) (A.15)

since (j+k)! \ j!k!.
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(A.10) is trivial in the allowed region except if |g| [ |t − g| [ |t|. In that
case, we rewrite the first inequality in (A.15) as

f̃(t) [ C
k \ 0

3 C
j \ 0

((j!)−1/n |t − g| j)n (((j+k)!)−1/n |t − g| j+k)1− n4

×(k!)−1 |g|k |t − g| (n−1)k

[ f̃(t − g) exp(|g| |t − g|n−1) [ f̃(t − g) exp(|g|n)

(A.16)

by the Hölder inequality applied to the sum over j for fixed k and the fact
that |g| [ |t − g|.

(A.11). We estimate

f̃(g)− f̃(t)=C
j \ 1

(j!)−1/n (|g| j−|t| j) [ |t − g| C
j \ 1

(j!)−1/n j |g| j−1

[ |t − g| |g|n−1 f̃(g)

by (A.3a).
(A.12) follows from (A.11) and from |t − g|n [ f̃(t − g) if |t| [ |g|. If

|t| \ |g|, we estimate

f̃(t)− f̃(g) [ C
j \ 1, k \ 0

(j!)−1 (k!)−1 ((j+k)!)1−1/n |t − g| j |g|k

= C
j, k \ 0

((j+1)!)−1 (k!)−1 ((j+k+1)!)1−1/n |t − g| j+1 |g|k

[ C
j, k \ 0

(j+1)−1 (j!)−1/n |t − g| j+1 (k+1)((k+1)!)−1/n |g|k

since (j+k+1)! \ j!(k+1)!,

· · · [ |t − g|1− n f̃(t − g) |g|n−1 f̃(g)

by (A.3a) and (A.4).
(A.13) follows from (A.11) and |t − g|n [ (exp(|t − g|n)−1) if |t| [ |g|. If

|t − g| [ |g| [ |t|, we estimate in the same way as in (A.16)

(f̃(t)− f̃(g)) |g|1− n [ |g|1− n C
j \ 1

3 C
k \ 0

((k!)−1/n |g|k)n (((j+k)!)−1/n |g| j+k)1− n4

×(j!)−1 |t − g| j |g| (n−1)j

[ f̃(g){|g|1− n (exp(|t − g| |g|n−1)−1)} (A.17)

by the Hölder inequality applied to the sum over k for fixed j. Now for
fixed |t − g|, the last bracket in (A.17) is a decreasing function of |g| and for

496 GINIBRE AND VELO



|g| \ |t − g| is therefore less than its value for |g|=|t − g|, which yields
(A.13) in that case.

(A.14). If |t|K |g| [ |t − g|, (A.14) with C=1 follows from |g| [ |t − g|
and from

|f̃(t)− f̃(g)| [ f̃(t − g)−1.

If |g| [ |t − g| [ |t|, (A.14) with C=1 follows from |g| [ |t − g| and from a
minor variant of (A.16) with the sum over j restricted to j \ 1, so that

f̃(t)− f̃(g) [ (f̃(t − g)−1) exp(|g|n). (A.18)

If |t| [ |t − g| [ |g|, (A.14) with C=21− n follows from |g| [ 2 |t − g| and
from (A.18) with t and g interchanged.

The last statement of Lemma A.2 is obvious as regards (A.9) (A.10) and
follows from the fact that

|f̃(t)Ka−f̃(g)Ka| [ |f̃(t)− f̃(g)|

for all t, g and a > 0 as regards (A.11)–(A.14), in the same way as in
Lemma 3.1. L

It follows from Lemma A.2 that f̃(t) and f̃(t)K f̃(1) satisfy the basic
estimates (A.9) and (A.12) which are used throughout this paper, thereby
making those functions into suitable substitutes for f0 and f in the defini-
tion of the spaces. Note also that by (A.7) (A.8), exp(|g|n) ’ f̃(g)n (up to a
small power of g), which makes (A.10) (A.13) (A.14) into close analogues
of (3.4) (3.6) (3.7).

We finally use the function f̃ to relate the definition of spaces such as Kk
r

or Yar to more standard definition of Gevrey spaces. Since this part is
meant to be only illustrative, we restrict our attention to space dimension
n=1. The Gevrey class G1/n can be defined as the vector space of C. func-
tions u such that there exists a constant C such that

cjC−j(j!)−1/n
“
ju ¥ apj (L

q
x), (A.19)

where 1 [ p, q [. and {cj} is a sequence of positive numbers with at most
polynomial increase or decrease at infinity. Of course if one allows for all
possible C > 0, the parameters p, q, and {cj} are irrelevant, and one can
take p=q=. and cj — 1, which yields the standard definition. Here
however we fix C, in fact C=r−1/n, so as to obtain a Banach space, and
those parameters become important. Since moreover we want a Hilbert
space in order to apply the energy method in a convenient way, we take
p=q=2, thereby obtaining the Gevrey Hilbert space X with norm

||u; X||=||bjr
j/n
“
ju; a2j (L

2
x)||, (A.20)

SCATTERING FOR HARTREE EQUATIONS 497



where bj=cj(j!)−1/n. Let now

f(t)=f(|t|)=C
j \ 0

aj |t| j=f+(t)+f−(t),

where {aj} is a sequence of positive numbers and where f+ and f− denote
the sums over even and odd j respectively. We claim that for a suitable
relation between {aj} and {bj}, the norm in X is equivalent to the norm

||u||g=||f(r1/nt) û||2. (A.21)

In fact

f+(t)2+f−(t)2 [ f(t)2 [ 2(f+(t)2+f−(t)2)

so that if we define {bj} by

f+(t)2+f−(t)2=C
j \ 0

b2
j |t|2j (A.22)

then

||u; X|| [ ||u||g [`2 ||u; X|| (A.23)

which proves the equivalence. The relation (A.22) can be rewritten as

b2
k= C

0 [ j [ 2k
aja2k−j.

In the special case of f̃, where aj=(j!)−1/n, it is obvious that

aj [ bj [`2j+1 aj

and one can show that actually when j Q.

bj=aj(pnj)1/4 (1+o(1)) (A.24)

which together with (A.8) makes it possible to define equivalent norms of
the form (A.20) for the spaces Kk

r and Yar .

APPENDIX B

In this appendix we prove a Lemma which exemplifies the fact that for
r > 0 and n < 1, the lower condition a+2 > n/2 on a needed in Lemma 3.3
in order to make Yar into an algebra can be relaxed by using the estimate
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(3.4) instead of (3.3) (but not uniformly in n and r). Following Remark 3.1,
we consider the Hilbert space K with norm

||u; K||=||f̄û||2

where f̄ is either ff1 or f0f1 with f0, f defined by (3.1) and f1 defined by
(3.10) for some k< , k> ¥ R+.

Lemma B.1. Let K be as above, with 0 < n < 1, r > 0, k> \ 0 and
0 [ k< < n/2. Then K is an algebra, namely there exists a constant C such
that for all u1, u2 ¥ K

||u1u2; K|| [ C ||u1; K|| ||u2; K||. (B.1)

One can take

C2=F dg f̄(g)−2 (1+22kf0(g)2n) (B.2)

where k=k< Kk> and the integral converges under the assumptions made on
n, r and k< .

Proof. By the Schwarz inequality, we estimate

||f̄u1u25 ||22=F dt f̄(t)2 :F dg û1(g) û2(t − g):
2

[ F dt f̄(t)2 3F dg f̄(g)−2 f̄(t − g)−24

×3F dg f̄(g)2 f̄(t − g)2 |û1(g)|2 |û2(t − g)|24 [ C2 ||f̄û1 ||
2
2 ||f̄û2 ||

2
2

where

C2=Sup
t

f̄(t)2 F dg f̄(g)−2 f̄(t − g)−2

=2 Sup
t

f̄(t)2 F
|g| [ |t−g|

f̄(g)−2 f̄(t − g)−2.

Now for |t| [ |t − g|, f̄(t) [ f̄(t − g) while for |g| [ |t − g| [ |t| one has
|t| [ 2 |t − g| so that

f1(t) [ 2k < Kk > f1(t − g)=2kf1(t − g),
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and

f(0)(t) [ f(0)(t − g) f0(g)n

by (3.4). Therefore

C2 [ 2 Sup
t

3F
|g|K |t| [ |t−g|

dg f̄(g)−2+F
|g| [ |t−g| [ |t|

dg f̄(g)−2 22kf0(g)2n4 .

The Supremum over t is easily seen to be the limit |t| Q., namely

C2 [ 2 3F
t ·g [ 0

dg f̄(g)−2+F
t ·g \ 0

dg f̄(g)−2 22kf0(g)2n4

=F dg f̄(g)−2 (1+22kf0(g)2n)

and the integral converges for small g by the condition k< < n/2 and for
large g by the conditions r > 0 and n < 1. L

The same result with essentially the same proof holds if one replaces f0

by f̃ in the definition of K. One then has to replace (3.4) by (A.10) in
the proof. The same result also holds for arbitrary k> ¥ R (still with
0 [ k< < n/2), but the proof is more cumbersome for k> < 0.
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