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Abstract 

In this study, a microscopic simulation model is developed for pedestrian behavior analysis at signalized crosswalks. It takes into 
account the special characteristics of pedestrian crossing behavior, such as group evasion with surrounding pedestrians, collision 
avoidance with conflicting vehicles, response to signal control, and response to crosswalk boundary. The classical social force 
model is modified to reproduce repulsive and attractive phenomena. Furthermore, a generic calibration approach is proposed 
based on maximum log-likelihood estimation, which enables to identify significant parameters in a statistical way. Last, a 
rigorous validation is conducted to confirm the model performance in terms of collision avoidance behavior with conflicting 
pedestrians and vehicles. 
 
© 2014 The Authors. Published by Elsevier Ltd. 
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1. Introduction  

Although signalized crosswalks are operated to give pedestrians priority, more than 30% of the total traffic 
accident fatalities in Japan are pedestrians. Many reasons exist behind such statistics, and pedestrian risk-taking 
behavior is deemed as one of the critical factors. This study is part of intensive efforts to develop a microscopic 
simulation platform for safety assessment at signalized intersection (Dang et al., 2012). Thus, in order to develop 
such a simulation platform, pedestrian behavior must be reasonably reflected.  
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 To date, pedestrian behavior modeling has attracted considerable attention. Comparing to macroscopic models, 
microscopic models offer a more detailed analysis of pedestrian behavior. Generally, existing microscopic models 
can be classified into two categories: discrete and continuous models. The family of discrete models includes 
discrete choice model (Robin et al., 2009), lattice gas model (Guo and Huang, 2008) and cellular automaton model 
(Burstedde et al., 2001), in which space is discretized to approximate real pedestrian movement. However, 
pedestrians behave flexibly and the choice of next step is unrestricted dynamic, which cannot be fully taken into 
account by only choosing one option from a limited choice set. Continuous models use differential equations to 
describe the dynamic movement in space. At the early stage, a magnetic-force model was developed by borrowing a 
motion equation used for magnetic fields (Okazaki, 1979). Based on this concept, a more robust physical force 
based model, i.e., social force model, was applied to evacuation analysis (Helbing and Molnar, 1995). The physical 
force based model makes it possible not only to accurately describe dynamic pedestrian movement in space, but also 
to reproduce the self-organization phenomenon such as lane-formation (Helbing et al., 2001).  

Although many studies focus on the general mechanism of pedestrian behavior, few studies shed light on the 
application of social force model to pedestrian behavior at signalized crosswalk. The characteristics of pedestrian 
behavior at signalized crosswalks, such as group evasive behavior with surrounding pedestrians, collision avoidance 
with turning vehicles, reaction to crosswalk boundary, and response to signal control, are important to evaluate the 
safety performance. However, existing models, neither fully developed nor correctly calibrated based on real 
trajectory data, fail to illustrate these crucial behaviors.  

The main contribution of this study is the development of a microscopic model based on social force theory, 
which enables to consider the characteristics of pedestrian behavior at signalized crosswalks. Furthermore, an 
estimation approach for calibrating the social force model based on real trajectory data is proposed. Last, the 
validation is conducted to confirm the model performance in terms of pedestrian behavior such as collision 
avoidance with conflicting vehicles and surrounding pedestrians. 

2. Model description  

The modified social force model in this study relates five sources of social force: driving force toward destination 
( ), repulsive force from surrounding pedestrians ( ), repulsive or attractive force from crosswalk boundary ( ), 
repulsive force from conflicting vehicles ( ), and attractive force from signal phase ( ). The resultant force ( ) 
can be expressed by Eq. (1). 

 
 
 

2.1. Driving  force 

As shown in Fig. 1(a), the first term of Eq. (1) represents the motivation to move forward. The desired direction 
( ) is defined by the current position and the exit position at crosswalk, toward which pedestrians desire to move. 
However, pedestrians change their speed vectors dynamically due to the stimulus of surrounding environment. A 
deviation of the current speed vector ( ) from the desired speed vector ( ) leads to a force to recover to the 
desired speed vector within a certain relaxation time ( ). Therefore, the driving force can be presented by Eq. (2).  
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2.2. Repulsive force from surrounding pedestrians 

The second term of Eq. (1) represents the interactions to surrounding pedestrians. It is assumed that each 
conflicting pedestrian within the subject pedestrian’s visual range will generate an elliptical force field that results in 
repulsive effect to the subject pedestrian. Different from the classical social model, in this study not only the relative 
distance but the relative time ( ) to the conflict point are considered as the influential factors to the repulsive 
force. As shown in Fig. 1(b), the resultant force ( ) of conflicting pedestrians can be presented by Eq. (3). 
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where  is the normalized vector which is perpendicular to the tangent line of the elliptical force field of 
pedestrian ,  is the interaction strength coefficient,  is the interaction range coefficient for distance,  is the 
interaction range coefficient for relative time,  is the number of conflicting pedestrians. And  is the length of 
semi-minor axis of the elliptical force field, which can be presented by Eq. (4). 
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where  is the current position of pedestrian α,  is the current position of the conflicting pedestrian ,  is the 
current speed vector of pedestrian ,  is the time step in simulation. 

Assume that the subject pedestrian will significantly react to the conflicting pedestrians once a potential collision 
is going to occur in the visual range. A potential collision can be identified by the time to conflict point (TTCP). 

(b) Resultant force from surrounding pedestrians

(d) Force from conflicting vehicle(c) Forces from crosswalk boundary
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Fig. 1. Sources of social force at crosswalk 
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TTCP is defined as the expected time for two pedestrians to pass the conflict point if they keep their current speeds 
and directions. The TTCP for the subject pedestrian  and the conflicting pedestrian  is given by Eq. (5). 
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where  is the current position of the conflicting pedestrian ,  is the conflicting point position. 

The relative time ( ) to the conflicting point in Eq. (3) can be presented by Eq. (6). Such conflict that the 
TTCPs of both pedestrians are positive will be deemed as valid, while negative value means that one pedestrian had 
passed the conflict point and no potential collision will occur. 
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2.3. Force from boundary 

Generally, pedestrians keep walking inside the boundary of crosswalk. As shown in Fig. 1(c)(1), it is assumed 
that when there is a velocity component toward the crosswalk boundary, a repulsive force ( ) will be generated. 
The repulsive force makes the pedestrian keep a certain distance from the boundary. However, when the pedestrian 
density at the crosswalk increases to some extent, some pedestrians may walk outside the crosswalk to avoid serious 
conflicts with others. However, most of them will move back to the crosswalk once the conflict becomes less severe. 
Therefore, as shown in Fig. 1(c)(2), it is assumed that an attractive force ( ) will attract back those pedestrians 
outside the crosswalk. The social force from crosswalk boundary ( ) can be presented by Eq. (7). 
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where  is the perpendicular foot point of pedestrian  on the nearest crosswalk boundary,  is the normalized 
vector pointing from boundary to pedestrian ,  is the normalized vector pointing from pedestrian α to crosswalk 
boundary. , , , and  are strength coefficients to be estimated.  

2.4. Force from left-turning vehicle 

Because it is left-hand traffic in Japan, left-turning vehicles usually conflict with pedestrians at a permitted phase. 
Generally, drivers are required to yield to crossing pedestrians. However, some drivers may take risky behavior by 
accepting short gaps, which threaten pedestrians’ safety. It is assumed that pedestrians are affected by the vehicle 
force field once he/she approaches it. As shown in Fig. 1(d), the pedestrian will take actions to avoid collision with 
the left-turning vehicle although the vehicle usually yields to the pedestrian. This situation is similar to collision 
avoidance with conflicting pedestrians, though the size of a left-turning vehicle is much larger than that of a 
pedestrian. Similarly, an elliptical force field is assumed to describe the force generated by the nearest left-turning 
vehicle. The difference from the force field of a conflicting pedestrian is that the two focuses of the ellipse are 
defined by the vehicle near-side rear position ( ) and the predicted vehicle near-side head position ( ) in 
next time step. Therefore, the repulsive force from a left-turning vehicle can be presented by Eq. (8). 
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where  and  are the strength coefficients,  is the normalized vector which is perpendicular to the tangent line 
of the elliptical force field of the left-turning vehicle,  is the length of semi-minor axis of the elliptical force field, 
which can be presented by Eq. (9). 
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where  can be presented by Eq. (10). 
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where  is the current speed vector of the conflicting vehicle. 

2.5. Force from signal  

Pedestrian behavior also gets influenced by the attractive force from signal control. Empirical analyses (Zhang et 
al., 2013) indicate that pedestrian speeds are significantly higher at pedestrian flashing green (PFG) phase than that 
at pedestrian green phase (PG). The possible reason is that pedestrians need to finish crossing before the onset of the 
red signal as soon as possible. Here, it is assumed that if the pedestrian is still on the crosswalk when the signal has 
changed to PFG or Red, he/she will accelerate and cross as fast as possible. The attractive force ( ) from the signal 
can be presented by Eq. (11). 
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where  and  are the strength coefficients,  is the destination position of the subject pedestrian α. 

3. Calibration methodology 

At the early stage, model parameters are usually calibrated by comparing aggregate outcomes such as speed-
density relationship (Seyfried et al., 2006), or emerging pedestrian movement patterns such as lane formation 
(Helbing et al., 2000). However, it is still unclear if a microscopic model is able to describe individual walking 
behavior accurately with a macroscopic calibration method, because the aggregate outcomes only provide a 
reasonable average prediction (Hoogendoorn and Daamen, 2006). Recently, as the calibration of microscopic 
pedestrian models has been considered as important pursuit, some researchers, such as (Daamen and Hoogendoorn, 
2012) and (Ko et al., 2013), have calibrated social force models by the maximum log-likelihood estimation method 
which is able to describe the parameters in a statistical way. The calibration methodology adopted in this study is 
similar to that used by (Hoogendoorn and Daamen, 2006). The only difference is that this study separates the 
parameters into two groups, i.e., measurable parameters and non-measurable parameters, and estimates them by 
maximum likelihood estimation (MLE) based on observed dataset. 

3.1. Data acquisition 

The north crosswalk at Kanayama intersection in Nagoya City, Japan is chosen as study site. The positions of 
pedestrians and left-turning vehicles were manually extracted from the video every 0.5s by using an image 
processing software (Suzuki and Nakamura, 2006). The dataset consists of the trajectories of 1,352 pedestrians and 
124 left-turning vehicles. In total, 97,200 position samples are available. The available observations are trajectory 
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profiles based on time series. From these data, all relevant quantities can be derived either directly or by applying 
finite differences, such as positions ( ), velocities ( ), accelerations ( ), distances between 
pedestrians, speed angles between pedestrians, etc.  

3.2. Calibration process 

The developed social force model contains various parameters. As some of them cannot be derived from the 
observed dataset, direct calibration is difficult for them. Here, we adopt a three-stage process to alleviate this 
problem. As the first step, the parameters such as visual range, which are measurable but difficult to be identified 
from the trajectory dataset, are estimated by referring to related studies. Secondly, the parameters such as relaxation 
time, which are possible to be identified from the observed dataset, are directly estimated. Finally, after fixing the 
above parameters, other parameters, such as the strength coefficients of each force that do not have concrete 
physical meanings, are derived by MLE. 

3.2.1. Calibration of measurable parameters 

There are four measurable parameters for calibration, i.e., angle of visual range (θ), radius of visual range (R), 
desired speed ( ), and relaxation time ( ). 

The visual range is defined as the radius and angle at which a given standard object can be seen with unaided 
eyes. Because of the limitation of data collection, it is difficult to directly estimate the visual range based on the 
trajectory dataset. Here, according to related studies (Guo et al., 2010; Antonini et al., 2006), the angle of visual 
range is set as 170° and the radius of visual range is set as 8m. 

Desired speed is defined as the personal average speed if a pedestrian crosses the road without any disturbance by 
signal, boundary, surrounding pedestrians and vehicles. The trajectory data were collected when there were no 
conflicting pedestrians and left-turning vehicles at pedestrian green phases and the subject pedestrian must be inside 
the crosswalk, which guarantees less repulsive or attractive force influencing the subject pedestrian. The results 
show that the average value of desired speed is 1.6m/s and the standard deviation is 0.15 m/s. 

Relaxation time is defined as the time a pedestrian recovering from current speed to the personal desired speed 
without any disturbance. To reduce the influence of other forces, only the dataset for desired speed estimation was 
used. However, the pedestrian speed still changes dynamically due to personal random decision. Here, we calculate 
the acceleration time period from a lower current speed to the personal desired speed as the relaxation time. If the 
current speed is lower than desired speed, a loop will start up to search forward and find out how many time steps 
passing until the speed recovers to the desired speed. According to the estimation result, the average value is 2.2s 
and the standard deviation is 0.5s. 

3.2.2. Calibration of non-measurable parameters 

After fixing the estimated measurable parameters, other parameters which are difficult to measure, i.e., , , 
, , , , , , ,  and , are calibrated by MLE. The position for the next time step ( ) 

closely depends on the model parameters ( ) to be estimated. The estimated distance vector ( ) is 
pointing from  to . Here, it is assumed that the length of  in x direction and in y 
direction are normally distributed with mean  and standard deviation .  and  can be 
estimated from the observed distance vector ( ). The likelihood  of a single prediction step, i.e., from 
time  to , is related directly to the probability density function of the normal distribution as shown in Eq. (12). 
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Note that the distance vector ( ) is a two-dimensional variable. To simplify the calculation, it is assumed 
that both vector components in x direction and in y direction are normal distributions. Therefore,  is the 
combination of  and  as shown in Eq. (13). Accordingly,  and  in Eq. (14, 15) are 
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derived from  and  respectively. 
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where  is the vector components  in x direction, and  is the vector 
components  in y direction. 

Considering the entire observed samples and neglecting the correlation between subsequent samples, the 
likelihood of the observation given for the model parameters ( ) can be presented by Eq. (16). 
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To facilitate the computation, the logarithm is taken on both sides of Eq. (16). Therefore, the log-likelihood can 
be presented by Eq. (17). The maximum log-likelihood estimates of model parameters ( ) are obtained such that 
Eq. (17) is maximized. 
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Table 1 shows the calibration result of parameter estimation. According to p values at the 95% confidence level, 
all the parameters in the modified social force model are significant. According to the estimation results, the 
coefficient for the interaction strength of vehicle repulsive force has the largest value, implying a higher sensitivity 
of collision avoidance with vehicles on pedestrian crossing behavior. 

Table 1. Calibration results of the social force model 

 
 

Parameters Equation Estimates p value Notes 

 (3) 0.81 0.00  
Strength coefficients for repulsive force from surrounding 
conflicting pedestrians  (3) 0.74 0.01  

 (3) 0.34 0.00 

 (7) 0.23 0.00  Strength coefficients for repulsive force from crosswalk 
boundary  (7) 0.65 0.00  

 (7) 0.51  0.00  Strength coefficients for attractive force from crosswalk 
boundary  (7) 0.93  0.00  

 (8) 1.29 0.02  Strength coefficients for repulsive force from conflicting left-
turning vehicle  (8) 0.96  0.00  

 (11) 0.12 0.00 Strength coefficients for attractive force from PFG and Red 
phase signal  (11) 0.09 0.00 
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Fig. 3. Comparison of passing positions at a specified cross-section 

 

4. Model performance 

4.1. Collision avoidance with surrounding pedestrians 

Two basic scenarios were set to observe the maneuver of collision avoidance with surrounding pedestrians. The 
subject pedestrian comes across only one conflicting pedestrian in scenario A while he/she comes across multiple 
pedestrians in Scenario B. Fig. 2(a) shows the comparison of instant angle variation in these two scenarios. As the 
red plots show, the pedestrian almost does not change the walking direction if not conflicting with others; while 
adjusts the instant angle to avoid collision if a potential collision is coming up. Then, the pedestrian recovers to the 
desired direction once the conflict disappears. The blue plots show that the subject pedestrian has to change the 
angle more frequently to avoid collision with multiple conflicting pedestrians. Fig. 2(b) shows the comparison of 
instant speeds. As the red plots show, the pedestrian keeps the desired speed if not conflicting with others. However, 
once someone approaches, the pedestrians will decrease the speed to avoid collision, and then recovers to the 
desired speed once passing the conflicting point. The blue plots show that the subject pedestrian has to decelerate 
and accelerate more frequently when conflicting with multiple pedestrians. 

4.2. Collision avoidance with conflicting vehicle 

To analyze the interaction with left-turning vehicles, two conditions are set. One is pedestrian-vehicle conflicting 
condition, which means that turning vehicles exists at or are approaching the crosswalk when pedestrians are 
crossing, while the other is no pedestrian-vehicle conflicting condition, which means that no conflicting vehicles 

 
Fig. 2. Performance of instant angle and speed in two scenarios 

 



529 Weiliang Zeng et al.  /  Procedia - Social and Behavioral Sciences   138  ( 2014 )  521 – 530 

exist when pedestrians crossing. As shown in Fig. 3, a specified cross-section, the central line of the third vehicle 
lane (from the curb of the exit approach), is chosen for analysis because the pedestrian vs. vehicle conflict occurs 
most frequently along this exit lane according to the observed dataset. It is shown that the peak of the histogram in 
observed dataset shifts from 0 to 2m if the pedestrian comes across left-turning vehicles. This phenomenon indicates 
that pedestrians are likely to detour to avoid collision with vehicles. According to t-test at the 95% confidence 
interval, no significant difference was found between observed and estimated passing positions. It demonstrates that 
the developed model can well present the behavior of collision avoidance with vehicles. Note that the peak of the 
histogram in estimated dataset shifts from 0 to 3m, which indicates that the reaction of pedestrian in simulation is a 
little more sensitive than that in real situation. Therefore, the repulsive force from turning vehicle still needs to be 
improved in the future. 

5. Conclusions and future work 

Based on social force theory, a modified social force model considering the typical pedestrian behaviour at 
signalized intersection, e.g., group evasive maneuver, collision avoidance with turning vehicles, reaction to 
crosswalk boundary, and response to signal, was developed. It not only possesses the advantage of the classical 
social force model, but also enables to reflect the characteristics of pedestrian behaviour at signalized crosswalk. 

Then, the developed model was incorporated into simulation. The maximum log-likelihood estimation was 
applied to the parameter calibration. The validation indicated that this model can well reproduce the collision 
avoidance with vehicles and surrounding pedestrians as in the real world. Therefore, the proposed model offers a 
good basis for intersection safety assessment by simulation. 

Still, there are several problems needing further attention in future work. For example, the reaction to vehicle is a 
little more sensitive than that in real world. In addition, the pedestrian characteristics such as age, gender, and 
partner relationship should also be considered as the influencing factors of crossing behavior. These limitations will 
be improved by a more elaborate modeling approach and a more strict calibration procedure in our future work.   
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