
Available online at www.sciencedirect.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ScienceDirect

Nuclear Physics B 893 (2015) 21–53

www.elsevier.com/locate/nuclphysb

Integrability in N = 2 superconformal gauge theories

Elli Pomoni a,b,∗

a DESY Theory Group, DESY Hamburg, Notkestrasse 85, D-22603 Hamburg, Germany
b Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece

Received 24 November 2014; accepted 11 January 2015

Available online 30 January 2015

Editor: Herman Verlinde

Abstract

Any N = 2 superconformal gauge theory (including N = 4 SYM) contains a set of local operators made 
only out of fields in the N = 2 vector multiplet that is closed under renormalization to all loops, namely 
the SU(2, 1|2) sector. For planar N = 4 SYM the spectrum of local operators can be obtained by mapping 
the problem to an integrable model (a spin chain in perturbation theory), in principle for any value of the 
coupling constant. We present a diagrammatic argument that for any planar N = 2 superconformal gauge 
theory the SU(2, 1|2) Hamiltonian acting on infinite spin chains is identical to all loops to that of N = 4
SYM, up to a redefinition of the coupling constant. Thus, this sector is integrable and anomalous dimensions 
can be, in principle, read off from the N = 4 ones up to this redefinition.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

After the discovery of the AdS/CFT correspondence, theoretical physics is experiencing a 
great upheaval. In particular, thanks to integrability, localization and dual string descriptions, we 
now possess a plethora of exact results in gauge theories that previously seemed unreachable 
[1,2]. So far, the majority of these results has been only for the most symmetric gauge theory 
in four dimensions, namely the N = 4 SYM. It would be most unfortunate if these powerful 
techniques were to be valid only for this particular theory. We already know that localization 

* Correspondence to: DESY Theory Group, DESY Hamburg, Notkestrasse 85, D-22603 Hamburg, Germany.
E-mail address: elli.pomoni@desy.de.
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.006
0550-3213/© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://core.ac.uk/display/82718029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.006
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:elli.pomoni@desy.de
http://dx.doi.org/10.1016/j.nuclphysb.2015.01.006
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2015.01.006&domain=pdf


22 E. Pomoni / Nuclear Physics B 893 (2015) 21–53
techniques are applicable in N = 2 supersymmetric gauge theories [2], and we would like to 
investigate which other methods are transferable as well. In [3–9], progress was made in figuring 
out the string dual to some N = 2 gauge theories. In the current article we want to investigate 
whether the property of integrability is present as well, building on work in [10–19].

It would be very important to figure out which particular properties of a gauge theory make 
it integrable. How necessary are planarity, conformality, supersymmetry (and how much super-
symmetry) for the integrability of the N = 4 SYM theory? Partial answers to these questions 
can be found in [22] and references therein as well as in [10–21], where deformations of N = 4
SYM and other gauge theories with genuinely less supersymmetry are studied, respectively. But 
a systematic approach is yet to be discovered. Another critical point for the structure of the 
asymptotic Hamiltonian (dilatation operator) and thus for integrability is the representation of 
the fields under the color group. As we saw clearly emerging in the calculation of [11], sectors 
with fields only in the vector multiplet enjoy Hamiltonians identical to the N = 4 SYM (up to 
two loops [11], see also [15–19]), while sectors with bi-fundamental fields have Hamiltonians 
with deformed chiral functions1 [11].

In order to face all these questions, we look at the next simplest cases (after N = 4), namely 
N = 2 superconformal gauge theories, and consider a particular, but quite large closed subsector 
of the theory, specifically the SU(2, 1|2) subsector which contains gauge-invariant local operators 
composed of fields only in the vector multiplet. We argue that to all-loop orders in perturbation 
theory the planar and asymptotic Hamiltonian acting on states in this subsector is, up to a func-
tional redefinition of the ’t Hooft coupling constant2 g2 → f (g2) = g2 +O(g6), identical to the 
integrable dilatation operator of planar N = 4 SYM,

HN=2(g) = HN=4(g) with g =
√

f
(
g2

)
. (1.1)

The planar Hamiltonian (dilatation operator or mixing matrix) for a given sector (set of gauge-
invariant local operators) at � loops is obtained by computing the overall UV divergent piece of 
the two-point function

〈
Ō1(x)O2(y)

〉(�) (1.2)

for all local operators O1(x), O2(x) in the sector, to order g2�, in the large N limit.3 We refer the 
reader to the reviews [26,27] for more details. In the spin chain picture each operator O(x) com-
posed of L fields corresponds to a spin chain state with L sites. At each site the state space that 
we will consider is the infinite-dimensional module V presented in Section 2. The Hamiltonian 
can be thought of as a matrix acting on the total space 

⊕∞
L=2 V⊗L.

1 The simplest example of a chiral function is χ(1) = 1 − P. As far as we know, the available calculations (see [27]
for a review) indicate that for N = 4 SYM only combinations of undeformed chiral functions appear in the Hamiltonian. 
However, when supersymmetry is lowered and bi-fundamental fields are considered we encounter deformed chiral func-
tions such as χ(1) = 1 − ρP [11], with ρ the ratio of the two coupling constants that correspond to the two color groups 
under which the bi-fundamental fields are charged.

2 The ’t Hooft coupling constant λ = g2
YMN = 16π2g2.

3 In dimensional reduction [28] it is extracted from the coefficient of the simple pole (1/ε). The finite piece of the two 
point functions affects only the normalization.
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As an organizing principle we find it useful to think that we are first computing all connected 
off-shell n-point functions G(�)

cn , then we insert them between the two bare operators O(y) and 
Ō(x) and finally Wick-contract the external legs of Gcn with the bare operators. Schematically,4〈

Ō(x)O(y)
〉(�) ≡ 〈

Ō(x)
∣∣G(�)

cn (x, y)
∣∣O(y)

〉
. (1.3)

Disconnected diagrams (after stripping off the composite operators) do not contribute to the 
Hamiltonian, because their overall divergences only contain higher degree poles (1/εn with n >
1) [24].

The contents of the rest of paper are as follows. We finish the introduction with an outline of 
the all-loop argument. We then begin the main bulk of the paper with Section 2 and a description 
of the SU(2, 1|2) sector. In Section 3 we introduce all the notation and the language that we will 
use throughout the paper. Even though the statement (1.1) holds for any N = 2 superconformal 
quiver, for simplicity we always think in terms of the N = 2 SU(N) × SU(N) elliptic quiver 
(the interpolating theory) that we describe in Section 3.3. In Section 4 we review and elaborate 
on the diagrammatic observation that was made in [11] and led us to this paper. In Section 5 we 
present and study explicitly the diagrams that lead to the one-, two- and three-loop Hamiltonians. 
Careful observation of these diagrams and comparison with the N = 4 SYM ones allows us to 
conclude that, to three loops, the statement (1.1) is true. Finally, in Section 6 we use the lessons 
we learned by studying the diagrams up three loops to argue that (1.1) should also hold as an 
all-loop statement. Some extra examples of multi-vertex insertions at four-, five- and six-loop are 
presented in Appendix A and two examples of powercounting in Appendix B.

1.1. Outline of the argument

The main goal of this article is to argue that (1.1) is a true statement for the all-loop Hamilto-
nian HN=2(g) that acts in the SU(2, 1|2) subsector (see (2.1)) of N = 2 superconformal gauge 
theories. Our strategy is to study the difference

δH(�) = H
(�)

N=2 − H
(�)

N=4 (1.4)

order by order in perturbation theory. To obtain the Hamiltonian we need to compute all the 
connected off-shell n-point functions of the N = 2 chiral superfield strength5

δG(�)
cn (W) = 〈W̄1 · · ·Wn〉(�)N=2 − 〈W̄1 · · ·Wn〉(�)N=4, Wi ≡W(xi, θi, θ̃i ) (1.5)

at loop order �, insert them in the two-point function 〈Ō(x)O(y)〉 and Wick-contract, as we have 
schematically depicted in (1.3). To simplify this complicated problem we organize our arguments 
in terms of the difference of the two effective actions

δΓ = ΓN=2 − ΓN=4, (1.6)

which is the generating functional of the difference of all the n-point 1PI functions that are 
relevant for the SU(2, 1|2) sector,

4 Note that apart from derivatives, the matrix structure of the Hamiltonian can already be read off from the connected 
n-point functions Gcn that we insert in the two point function (1.3).

5 The N = 2 chiral superfield strength W is the N = 2 superfield that contains all the fields in the N = 2 vector 
multiplet and thus all the fields in the SU(2, 1|2) subsector (2.1) as its components (3.5). A collection of the basic 
superspace ingredients we use can be found in Section 3.2.
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δΓn(W) = Γ N=2
n (W) − Γ N=4

n (W). (1.7)

The purpose of the notation Γn(W) is to remind us that we only need 1PI diagrams whose ex-
ternal legs are W’s and W̄’s and not bi-fundamental hypermultiplets. This is a highly non-trivial 
statement which we discuss in Section 6.4. There, we provide evidence that one can obtain all the 
connected off-shell n-point functions δGcn(W) that are relevant for the SU(2, 1|2) sector from 
the n-point 1PI functions δΓn(W) (1.7) alone.

For our purposes it is useful to think of the difference of the two effective actions (1.6) as the 
sum

δΓ = δΓren. tree + δΓnew (1.8)

where δΓren. tree denotes terms which were already present in the classical action and are now 
renormalized, while δΓnew new effective vertices which are created for the first time at some loop 
order. The δΓren. tree terms yield the n-point 1PI functions that we will call dressed skeletons (bare 
skeletons that appeared at tree level6 and are dressed at higher loops), while the δΓnew terms lead 
to new n-point 1PI functions that were not there before. The most crucial (non-trivial) step of 
our argument is that the new effective vertices δΓnew cannot contribute to the renormalization 
of the operators of the SU(2, 1|2) sector, due to the following reasons:

• the choice of the sector,
• planarity,
• Lorentz invariance,
• a non-renormalization theorem [23,24].

This crucial step of our argument is taken in Sections 6.1 and 6.2, while particular examples 
of δΓnew vertices not contributing to the Hamiltonian are already encountered at two and tree 
loops in Sections 5.2 and 5.3, respectively. The connected graphs δGnew

cn (W) that are made out 
of δΓnew can either not be planarly Wick-contracted to O ∈ SU(2, 1|2) or (if they can) do not 
lead to logarithmic divergences

〈Ō|δGnew
cn (W)|O〉 = finite ∀O ∈ SU(2,1|2), (1.9)

due to the non-renormalization theorem of [23,24] that we discuss in Section 6.2. The first of 
the points above, “the choice of the sector” refers to the fact that gauge-invariant local operators 
O ∈ SU(2, 1|2) are made only out of fields in the vector multiplet and have the spinor indices α
always in the symmetric representation of the SU(2)α ∈ SU(2, 2|2). “Lorentz invariance” refers 
to the fact that all the vertices in the effective action are Lorentz invariant (singlet/antisymmetric 
representation of the SU(2)α) while all the operators O ∈ SU(2, 1|2) transform in the symmetric 
representation of the SU(2)α and thus cannot be Wick-contracted. This is demonstrated with an 
explicit example in Eqs. (5.6) and (5.7).

As we discuss in Section 6.1, showing that the new effective vertices δΓnew cannot contribute 
to the renormalization of the operators of the SU(2, 1|2) sector is feasible because for N = 2
superconformal theories there exists a classification of all possible new terms that can appear 
in the effective action. This classification of all possible new terms is obtained using supercon-
formal invariance [25] and makes attainable the task of considering them all. Then, using the 
background field method (Section 3.4),

6 After stripping off the operators. See Section 3.1 for a discussion on this language.
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• Gauge invariance (and renormalizability)
• N = 2 supersymmetry

force all the effects of the loops to be encoded in a single renormalization factor Z(g). Combining 
all these facts, we arrive, in Section 6.3, at the relation

δΓcontributing(W;g) = δΓren. tree(W;g) = Stree(W;g). (1.10)

This is a schematic equation that should be read as follows: the only 1PI diagrams that contribute 
to the Hamiltonian are dressed skeleton diagrams with δΓren. tree vertices! Although initially we 
make this statement for the 1PI’s, in Section 6.4 we will explain the reason why only these single 
vertices are enough to obtain all the connected diagrams that contribute to the Hamiltonian. All 
this is done firstly for operators without derivatives, for which the matrix structure of the Hamil-
tonian can already be seen in the connected n-point functions Gcn (1.3). Finally, in Section 6.5
we observe that operators with derivatives in the SU(2, 1|2) sector create in the numerators of 
the loop integrals traceless symmetric products of momenta that do not alter their degree of di-
vergence. This concludes our argument for N = 2 superconformal gauge theories.

2. The SU(2, 1|2) sector

In [11] we made a very simple but important observation: operators which mix in sectors 
including fields only in the vector multiplet, up to two-loops, enjoy Hamiltonians identical to 
the N = 4 one. This type of observation has also been made in [15–17] but was never really 
appreciated or put in use. Before trying to use and generalize this observation we want to ask 
what is the biggest possible sector made out only of fields in the vector multiplet.

The biggest sector of operators that are made only out of fields in the N = 2 vector multiplet 
and that is closed to all loops is the SU(2, 1|2) sector:

φ, λI+, F++, D+α̇ . (2.1)

Above, for simplicity we choose α = + in order to get the highest-weight state of the symmetric 
representation of the SU(2)α part of the Lorentz group. But, of course, all the statements that 
we will make below hold for any element in the symmetric representation. Also, I = 1, 2 is the 
SU(2)R symmetry index.

The way to prove that the sector is closed to all loops goes as follows. All the fields (2.1) that 
compose the operators O in this sector obey the condition

 = 2j − r ∀O ∈ SU(2,1|2), (2.2)

where  is the classical conformal dimension of the component fields, r the classical U(1)r
R-symmetry and j the classical SU(2)α spin. In the conventions of [6], the U(1)r charges for 
the fields in (2.1) are [φ]r = −1, [λ]r = −1/2 and [F]r = 0. Moreover, all the other individual 
fields (and combinations of them) break this condition, and operators which contain them obey 
the inequality

 > 2j − r ∀O /∈ SU(2,1|2). (2.3)

For example, in the conventions of [6] the U(1)r charge of [ψ]r = +1/2 and its bare conformal 
dimension ψ = 3/2 > 2j −r = 1/2. The condition (2.2) is not a BPS condition. , r and j will 
be corrected in perturbation theory, but they will never be corrected enough to mix with the rest 
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of the fields that break (2.2) by an integer. Thus, in perturbation theory the SU(2, 1|2) sector is 
closed to all orders in the ’t Hooft coupling constant, and since the ’t Hooft coupling expansion is 
believed to converge [29], this statement is also true for any finite value of the ’t Hooft coupling 
constant in the planar limit.

It is also very simple to check that all the fields (2.1) and thus all the operators in the SU(2, 1|2)

sector obey

 = 2 + r − 2j̄ and j + j̄ = 1 + r ∀O ∈ SU(2,1|2). (2.4)

The SU(2, 1|2) sector includes many smaller familiar subsectors such as SU(1|1) and SU(1, 1).
Finally, we would also like to note that, if the incoming operator is O ∈ SU(2, 1|2), the out-

going (conjugate) operator

Ō ∈ SU(1,2|2) is made out of φ̄, λ̄+̇I , F̄+̇+̇, Dα+̇. (2.5)

The outgoing operator Ō is in the symmetric representation of the SU(2)α̇ part of the Lorentz 
group and it obeys

 = 2j̄ + r ∀Ō ∈ SU(1,2|2). (2.6)

In the spin chain picture each operator O(x) composed of L fields corresponds to a spin chain 
state with L sites. At each site, the state space that corresponds to the SU(2, 1|2) subsector is 
the infinite-dimensional module V = {Dn+α̇(φ, λI+, F++)} where n = 0, . . . , ∞ is the number 
of derivatives at each site. The SU(2, 1|2) sector is a non-compact analogue of the SU(3|2)

sector of Beisert [30]. Let us see how this arises. We begin the study of spin chains for N = 2
superconformal gauge theories by identifying the equivalent of the BMN vacuum. For every color 
group in the quiver we can consider a “holomorphic” operator TrφL, made out of the complex 
scalar in the vector multiplet, that is part of the chiral ring and thus protected (has zero anomalous 
dimension). This operator will always obey the BPS condition  = r (= L). We define  − r

as the magnon number. The operator TrφL has  − r = 0, so the spin chain state to which 
it corresponds can be considered as the vacuum. The next step is to identify the single magnon 
states with  −r = 1. One can go through all the fields available in N = 2 superconformal gauge 
theories and discover that the only operators with  − r = 1 are the ones with a single insertion 
in the sea of φ’s of a (λIα , Dαα̇) with indices in the adjoint of the color group or a bi-fundamental 
(QI , ψ̄α̇).7 All the other states (operators) with  − r > 1 should be, from the spin chain point of 
view, thought of as composite states (bound states) made out of the elementary (single magnon) 
excitations (λIα , Dαα̇) and (QI , ψ̄α̇).

Following Beisert [31], the choice of the BMN vacuum TrφL breaks the symmetry as follows

SU(2,2|2) → SU(2|2)R × SU(2)α.

In other words SU(2|2)R ×SU(2)α is the symmetry that the single magnon excitations (λIα , Dαα̇)

and (QI , ψ̄α̇) enjoy in the φ-vacuum. In our notations SU(2|2)R has SU(2)R and SU(2)α̇ as 
its bosonic subgroups. Excitations that correspond to broken generators (λIα , Dαα̇) will become 
Goldstone excitations and they will be the gapless magnons8 according to Table 1.

7 When the bi-fundamentals (QI , ψ̄α̇)’s are inserted they interpolate between two different vacua and the spin chain 
for a single magnon can never be closed [10].

8 The magnon that do not come from broken generators are gapped magnons (QI , ψ̄α̇) (non-Goldstone excitations) 
[12].
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Table 1
The symmetry structure of the N = 2 quiver spin chains. The choice of the vacuum breaks the SU(2, 2|2)

symmetry down to SU(2|2)R × SU(2)α . The SU(2)R and SU(2)α̇ are the bosonic subgroups of SU(2|2)R . 
The broken generators become the Goldstone excitations (λIα , Dαα̇).

SU(2)α̇ SU(2)R SU(2)α

SU(2)α̇ Lα̇
β̇ Qα̇J D†α̇

β

SU(2)R SI
β̇ RIJ λ†I

β

SU(2)α Dα
β̇ λαJ Lα

β

The Goldstone excitations (λIα , Dαα̇) belong to the same supersymmetry multiplet

QI
β̇

∣∣λJα 〉 = εIJ |Dαβ̇〉. (2.7)

As such, they must have the same dispersion law

E(p;g) =
√

1 + 8f
(
g2

)
sin2

(
p

2

)
(2.8)

that is fixed by the SU(2|2)R symmetry up to an unknown function f (g2) of the coupling con-
stants [31],

f
(
g2) = g2 +O

(
g4). (2.9)

After fixing the spin SU(2)α quantum number to α = +, its highest weight state, the SU(2|2)R
symmetry of the excitations around the vacuum TrφL also fixes the scattering matrix up to an 
unknown function f (g2) of the coupling constant [31]. The SU(2|2) scattering matrix for the 
(λI+, D+α̇) immediately satisfies the Yang–Baxter equation (YBE) (given the fact that the N = 4
one does [31]) and thus we expect the SU(2, 1|2) sector to be integrable.

We wish to conclude this section by presenting one more argument for the integrability of 
the SU(2, 1|2) sector that is based on AdS/CFT ideology and was presented in [14]. For this 
argument we will consider a quite wide and well studied class of N = 2 superconformal theories 
that admit a string dual description: orbifolds of N = 4 SYM. When orbifolding N = 4 SYM by 
a discrete subgroup Γ ⊂ SU(2) ⊂ SU(4)R , elliptic quivers with a product gauge group SU(N)M

are obtained, with their M gauge couplings being exactly marginal parameters. The gravity duals 
of these N = 2 superconformal theories are described by type IIB string theory on AdS5 ×S5/Γ

[32,33]. At strong coupling one can compute the SU(2|2) S-matrix of the excitations around 
the BMN vacuum using the sigma model description. String states in the SU(2, 1|2) sector are 
classically described by the same sigma model as the N = 4 ones because they live only in the 
AdS5 × S1 part of the space, i.e. in directions of the target space unaffected by the orbifold. To 
be more concrete, we consider the Z2 orbifold case which has two marginal ’t Hooft couplings λ
and λ̌. The dictionary between the gauge theory and the string theory parameters in this case is

1

g2
YM

+ 1

ǧ2
YM

= 1

2πgs

,
ǧ2

YM

g2
YM

= β

1 − β
, β ≡

∫
S2

BNS (2.10)

where B is the NSNS field with period β through the blown-down S2 of the orbifold singularity 
[33,34]. The only difference with N = 4 SYM is that the relation between α′ and the AdS radius 
R changes to
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f
(
g2) = R4

(2πα′)2
= 2λλ̌

λ + λ̌
. (2.11)

Thus, the only difference of this N = 2 S-matrix from the N = 4 one will be a renormalization 
(rescaling) of the string tension. Tempted by the fact that we can see integrability at one- and 
two-loops [11], as well as at the strong coupling [14], we were motivated to look for integrability 
for any value of the couplings λ and λ̌.

3. Language

As we will see throughout this article, it is very important to use the appropriate (convenient) 
language (formalism); the one that keeps manifest as much symmetry as possible. When we use 
N = 1 superspace, N = 1 supersymmetry is manifest and to obtain N = 2 we need to further 
impose SU(2)R . On the other hand, when we use N = 2 superspace the full N = 2 supersymme-
try is immediately manifest. For N = 2 theories it is preferable to perform calculations in N = 2
superspace where even the intermediate steps of the calculation reflect the fact that N = 2 super-
symmetry is present. However, given the fact that the bigger part of the integrability community 
is not used to N = 2 superspace, and also that we eventually want to generalize our argument to 
N = 1 theories,9 we will initially make as many steps as possible using N = 1 superspace. What 
is more, background field formalism makes gauge invariance manifest and when combined with 
supersymmetry leads to very powerful non-renormalization theorems that explain many “mirac-
ulous cancellations”10 [35–41]. For a more modern approach on the background field method 
(BFM) in N = 2 superspace the interested reader can see [42,43] for Harmonic and [44] for 
Projective superspace.

3.1. Skeletons

All tree-level connected graphs we either call tree-level skeletons or bare skeletons. In Figs. 4, 
5 and 7 all the diagrams on the left-hand side are bare skeleton diagrams. At higher loops, the 
tree-level connected graphs (bare skeletons) will be corrected (dressed) by connected propagators 
(self-energy) and vertex corrections. We will refer to these graphs as dressed skeleton diagrams. 
Examples of dressed skeletons are depicted in Figs. 4(i), 5(ii), 7(ii) and 7(iii) with the grey 
bubbles denoting the vertex and leg corrections.

The graphs that contain new vertices Γ new
n in the effective action – with the grey bubbles say-

ing new – will not be called skeletons! See Figs. 5 (iv), 7 (v) and 7 (vi). The monicker “skeletons” 
refers only to diagrams that appeared already at tree level, while the graphs that correspond to 
Γ new

n are made out of loop diagrams.

3.2. Superspace

In this section we review some basic elements of the superspace formalism that we will use 
throughout the paper. For a review see [45–47].

9 This is work in progress.
10 The phrase “miraculous cancellations” we borrow from the title “Miraculous ultraviolet cancellations in supersym-
metry made manifest” of the seminal work [41].
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In N = 1 superspace language, the fields that compose the operators in the SU(2, 1|2) sector 
are components of the N = 1 vector superfield V and of the N = 1 adjoint chiral superfield Φ
that form the N = 2 vector multiplet. In the Wess–Zumino gauge,

Φ|θ=0 = φ, D+Φ|θ=0 = λ1+, W+|θ=0 = λ2+, D+W+|θ=0 =F++ (3.1)

where Wα is the N = 1 chiral superspace field strength Wα ≡ iD̄2(e−V DαeV ). The usual space-
time derivatives can be written as

i∂+α̇ = {D+, D̄α̇}. (3.2)

In order to obtain covariant derivatives, one goes through the definition of a gauge-covariant, 
super-covariant derivative

Dα = e−V DαeV . (3.3)

Note that in the N = 1 superspace language we need two different superfields to describe the 
SU(2, 1|2) sector. This increases the number of diagrams that have to be considered and obscures 
the computation for other reasons such as gauge fixing.

In the most naive form of N = 2 superspace language (namely the real superspace R4|8 with 
coordinates {x, θ, θ̃}) the N = 2 vector multiplet can be written using the N = 2 chiral superfield 
strength [48]

W = Φ + θ̃ αWα + θ̃2G. (3.4)

All the fields in (2.1) can be obtained from the N = 2 field strength

W|θ=θ̃=0 = φ, DI+W
∣∣
θ=θ̃=0 = λI+, DI+D+IW

∣∣
θ=θ̃=0 =F++ (3.5)

in Wess–Zumino gauge, and

iδIJ ∂+α̇ = {
DI+, D̄α̇J

}
, (3.6)

where I = 1, 2 is the SU(2)R symmetry index. Within this formalism, the N = 2 SYM classical 
Lagrangian can be compactly written as

L(W;g) = 1

g2

∫
d2θd2θ̃ Tr

(
W2)

= 1

g2

[∫
d2θ Tr

(
WαWα

) +
∫

d2θd2θ̄ Tr
(
e−V Φ̄eV Φ

)]
. (3.7)

Before concluding this section, we should stress that the calculations should not be done in the 
Wess–Zumino gauge. The WZ gauge breaks supersymmetry and obscures the intermediate steps 
of the calculations [49]. What is more, going from N = 2 superspace to N = 1 we partially 
gauge fix. Gauge theory in N = 2 superspace enjoys a bigger gauge invariance than the N = 1
one.

3.3. The interpolating theory

Before drawing Feynman diagrams we wish to explicitly give the Lagrangian of an example 
of an N = 2 superconformal gauge theory, so that the reader can always have in mind what are 
the possible vertices that could be used and what are the Feynman rules. We pick to present the 
N = 2 SU(N) × SU(N) elliptic quiver which has two exactly marginal coupling constants g
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Table 2
The field content of the N = 2 interpolating theory in terms of N = 1 superfields.

Field SU(N) × SU(Ň) SU(2)R U(1)

V (adj.,1) 1 0
Φ (adj.,1) 1 1

V̌ (1, adj.) 1 0
Φ̌ (1, adj.) 1 1

QÎ (�, �̄) � 0

Q̃Î (�̄,�) �̄ 0

and ǧ and is the conformal theory, considered in [6,10,11,13], which interpolates between the 
N = 2 superconformal QCD (SCQCD) (for ǧ = 0) and the Z2 orbifold of N = 4 that has the 
same dilatation operator with N = 4 SYM (for ǧ = g). We like to refer to it as the interpolating 
theory.

We will use the N = 2 elliptic quiver with two color groups SU(N) × SU(N) as the paradig-
matic example, but our results are easily generalizable to any N = 2 superconformal quiver. In 
particular we will argue that the statement (1.1) is true for any N = 2 superconformal ADE 
quiver (that correspond to a finite or affine Dynkin diagram) with the nodes denoting the color 
groups and the lines that connect them the fundamentals or bifundamental matter (quarks).

In terms of N = 1 superfields, with the conventions of [11], the action reads

S = 1

2

∫
d4xd2θ

[
1

g2
YM

Tr
(
WαWα

) + 1

ǧ2
YM

Tr
(
W̌αW̌α

)]

+
∫

d4xd4θ
[
Tr

(
e−gYMV Φ̄egYMV Φ

) + Tr
(
e−ǧYM V̌ ¯̌

ΦeǧYM V̌ Φ̌
)]

+
∫

d4xd4θ
[
Tr

(
Q̄ÎegYMV QÎe−ǧYM V̌

) + Tr
( ¯̃
QÎeǧYM V̌ Q̃Îe−gYMV

)]
+ i

∫
d4xd2θ

[
gYM Tr

(
Q̃ÎΦQÎ

) − ǧYM Tr
(
QÎΦ̌Q̃Î)]

− i

∫
d4xd2θ̄

[
gYM Tr

(
Q̄ÎΦ̄

¯̃
QÎ

) − ǧYM Tr
( ¯̃
QÎ

¯̌
ΦQ̄Î)]

, (3.8)

where now Wα ≡ iD̄2(e−gYMV DαegYMV ). The global SU(2)R symmetry that transforms the chi-

ral quark Q into the anti-chiral ¯̃
Q is not manifest in the N = 1 superspace language. The field 

content of the theory and its transformation properties under the SU(N) × SU(N) gauge and the 
SU(2)R × U(1) R-symmetry groups are shown in Table 2. The index Î = 1, 2 denotes an extra 
SU(2)L global symmetry that the interpolating theory has for all values of the coupling constants 
[6]. The relation between the Yang–Mills coupling constants, gYM and ǧYM , that appear in the 
Lagrangian and the ’t Hooft coupling constants that appear in the loop expansion of the dilatation 
operator is

λ = g2
YMN = 16π2g2, λ̌ = ǧ2

YMN = 16π2ǧ2. (3.9)

The explicit Feynman rules can be found in Appendix of [11].
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3.4. Background field formalism

The gauge theories that we are considering are renormalizable theories and all the divergences
encountered will be renormalized, with all the loop effects encoded in Z’s that relate bare and 
renormalized quantities for every field and vertex that appear in the tree-level Lagrangian

g0 = Zgg, V0 = √
ZV V, Φ0 = √

ZΦΦ,

(Wα)0 = √
ZWαWα, α0 = Zαα, (3.10)

as well as for the gauge fixing parameter α. In principle we have to calculate all possible leg and 
vertex corrections (all possible Gcn). Connected n-point functions Gcn with conventional gauge 
fixing do not obey Ward identities (WI), but the more complicated Slavnov–Taylor identities. The 
background field formalism allows gauge fixing without loosing explicit gauge invariance (see 
[50] for a comprehensive review and [39,41] for the superspace discussion). Connected n-point 
functions Gcn of the background fields obey WI. In N = 1 superspace language all we have 
is Zg(g), ZV (g) and ZΦ(g).11 The action is a functional of the classical background fields for 
which

Zg(g)
√

ZV (g) = 1 (3.11)

due to conservation of charge (the usual WI that is due to gauge invariance). There is a second 
Ward identity due to N = 2 supersymmetry

ZWα(g) = ZΦ(g) = ZW (g), (3.12)

where ZW (g) is the Z factor of the N = 2 chiral superfield strength

W0 = √
ZWW, (3.13)

defined in (3.4). However, this WI only holds when the full N = 2 gauge symmetry is properly 
preserved. Gauge fixing N = 2 gauge invariance down to N = 1 will break (3.12) if done in a 
crude way. This is why it is important to perform the calculations in N = 2 superspace where 
(3.12) is automatic [41]. The use of BFM guarantees (3.11) and relates ZW (g) to Zg(g), and all 
in all there is one function of the coupling Z(g) that encodes all the information about divergences
and renormalization.

Renormalization of composite operators, already a complicated problem itself, is further ob-
scured when done with conventional gauge fixing where 1PI n-point functions Γn do not obey 
WI. As a result of conventional gauge fixing, gauge-invariant operators mix with non-gauge-
invariant operators of the same (classical) conformal dimension. All this complexity can be 
overcome [51] by using the BFM, that allows gauge fixing without loosing explicit gauge in-
variance. For a rather modern and clear presentation of renormalization of composite operators 
in the background field gauge see [52].

4. The diagrammatic difference with N = 4 SYM

In this section, we review and generalize a very simple but important diagrammatic observa-
tion that was made in [11]. When drawing the diagrams that must be computed for the calculation 
of the SU(2, 1|2) Hamiltonian, one discovers [11] that:

11 Plus Zα for the gauge fixing parameter, when we consider non-gauge-invariant quantities.
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Fig. 1. These are some examples of amputated diagrams that contribute to δΓn at two-loops and to δH(3) at three-loops. 
They all have a Q-loop (dashed lines) and inside it a Φ̌ (solid lines) or a V̌ (wiggly lines) propagates. They are all related 
to each other by momentum derivatives (Ward Identities).

Fig. 2. This is a part of a quiver. The vector multiplet in the center denoted by SU(N)(0) has coupling constant g(0)

and fields content (V (0), Φ(0)), then SU(N)(1) and SU(N)(−1) denote the nearest neighbor color group with coupling 
constants g(1) and g(−1) , respectively. Finally, SU(N)(2) and SU(N)(−2) denote the next to nearest neighbors with 
coupling constant g(2) and g(−2) .

For any N = 2 superconformal theory the only possible way to make diagrams different from 
the N = 4 ones is to make a loop with quarks Q (or Q̃) and let a V̌ or Φ̌ propagate inside this 
loop!

Examples of such Feynman diagrams are given in Fig. 1. Note that we are working with the 
interpolating theory (3.8). When we consider the SU(2, 1|2) sector made out of unchecked fields 
(Φ , V ), a checked field (Φ̌, V̌ ) must necessarily propagate inside the Q-loop in order to make a 
diagram different from the N = 4 one, and vice versa. This is due to the fact that we need a vertex 
with the second coupling constant ǧ. By power counting, this observation immediately pushes 
the possibility for δH = HN=2 − HN=4 = 0 to three-loops. In the next section we explain this 
in detail. We use the language of N = 1 superspace closely following [11]. The wiggly lines 
depict N = 1 vector superfields V (or V̌ ) while the solid lines denote N = 1 chiral superfields 
Φ (or Φ̌). The dashed lines denote bi-fundamental hyper-multiplets Q and Q̃.

For more general ADE quivers with more than two color groups the corrections will appear 
as follows in the operator renormalization diagrams. At one and two loops only the coupling 
constant g(0) that corresponds to the vector multiplet of the sector (V (0), Φ(0)) will appear. At 
three loops the nearest neighbor (in the quiver diagram) color group coupling constant g(1) (and 
g(−1)) kicks in, and then the next to nearest neighbor g(2) (and g(−2)) at five loops and so on. See 
Figs. 2 and 3 while remembering that four-loop self-energy corrections enter the calculation of 
the five-loop Hamiltonian.

5. One, two and three loops

In this section we will study and classify the diagrams that need to be computed in order to 
obtain the difference between the dilatation operator of the N = 2 interpolating theory that we 
presented in Section 3.3 and the dilatation operator of N = 4 SYM
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Fig. 3. This “nested” Feynman diagram illustrates how to four loops the different coupling constants of the quiver enter 
in the self-energy corrections of V (0) . We begin with g(0) at one loop, then g(1) enters at two loops, g(2) at four, etc. 
This means that in the computation of the Hamiltonian g(0) enters at one loop. Then g(1) and g(−1) appear at tree loops 
and g(2) and g(−2) at five loops and so on.

δH = HN=2 − HN=4 (5.1)

in the SU(2, 1|2) sector, up to three loops, and in the large N limit. Almost all the problems that 
we will face in the next Section 6 with the all-loop argument already appear to three loops. So, 
it is important to first deal with them here, where we can draw concrete examples of diagrams 
and discuss their structure and consequences. To be more precise, all the problems concerning 
single-vertex insertions appear up to three loops. For multi-vertex insertions one would have to 
study four-, five-loop and six-loop examples. This is done in Appendix A where some examples 
are presented.

5.1. One-loop

At one-loop it is very simple to calculate the dilatation operator in the SU(2, 1|2) sector of 
any gauge theory. The only classes of diagrams that could contribute are

(i) The g2 bare skeleton diagrams that are identical to the ones of N = 4 SYM.
(ii) The one-loop self-energy correction of all the fields that appear in the operator.

The bare skeleton diagrams are identical12 to the ones of N = 4 SYM for any gauge theory, 
because the tree level vertices that make up these diagrams are identical to the N = 4 ones. It 
is important to realize that for the SU(2, 1|2) sector Hamiltonian there are no bare skeleton di-
agrams made out of vertices coming from the superpotential! This is in strict distinction with 
the SU(2) sector of N = 4 SYM presented in [24] and the deformed SU(2) sector of the N = 2
interpolating theory presented in [11] that is made out of hyper-multiplets. The one-loop diver-
gences in the self-energy diagrams are, for any superconformal gauge theory [11], identical to 
the ones in N = 4. In fact, in superspace, the one-loop divergences in the self-energy diagrams 
are immediately equal to zero. In Fig. 4(i) a representative of the g2 bare skeleton diagrams is 
depicted. Therefore, we get

H
(1)

N=2(g) = H
(1)

N=4(g). (5.2)

12 This statement should be understood in the following way: the bare skeleton diagrams that are evaluated with the 
N = 2 vertices of the action (3.8) give the same result as the bare skeleton diagrams evaluated with the N = 4 SYM 
vertices.
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Fig. 4. At one-loop, the only types of diagrams that can contribute to the renormalization of an operator are tree-level 
skeleton diagrams of order g2 and one-loop self-energy corrections of the fields that appear in the operator.

Fig. 5. At two-loops, the types of diagrams that contribute to the renormalization of operators are bare skeleton diagrams 
of order g4, one-loop self-energy and vertex corrections to the tree-level skeleton diagrams of order g2 that appeared in 
the one-loop order (dressed skeletons) and two-loop self-energy corrections. What is more, operators can be renormalized 
by new vertices that appear for the first time in the effective action at one-loop.

A comment for the technically inclined reader is in order. When we use N = 1 superspace, the 
self-energy correction is zero due to the fact that the Wess–Zumino (WZ) gauge is not fixed. In 
components, we obtain a non-zero answer [10,13], as an artifact of the WZ gauge [49].

5.2. Two-loops

For the two-loop renormalization of operators in the SU(2, 1|2) sector one would have to 
compute the following classes of diagrams:

(i) g4 bare skeletons
(ii) dressed skeletons: g2 tree-level skeletons from the previous one-loop order now dressed

with the insertion of an one-loop self-energy or one-loop vertex corrections
(iii) the two-loop self-energy corrections
(iv) new vertices that are created at one-loop in the effective action [53] of N = 2 theories Γ (1)

new.

Obviously, the g4 bare skeletons are identical to the N = 4 ones; for skeletons with the same 
external field content. In addition, the g2 bare skeletons that are dressed with one-loop corrections 
are identical to the N = 4 ones iff the theory is conformal. Moreover, in a conformal theory the 
two-loop self-energy corrections do not contribute to the difference δH because their logarithmic 
divergences are zero.13 Thus, the only diagrams that need to be separately discussed are the ones 
that include new vertices that appeared in the effective action for the first time at one-loop δΓ (1)

new.

13 In [11] the two-loop self-energy of Φ was computed. Then, N = 2 supersymmetry guarantees that ZWα (g) = ZΦ(g)

as we discussed in Section 3.4. For an all-loop argument using N = 2 superspace see [40].
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Fig. 6. Examples of the diagrams that are responsible for new vertices in the one-loop effective action of N = 2 gauge 
theories and computed in [53]. A careful examination of this figure tells us that these diagrams cannot be made planar if 
we require all the fields Φ to be next to each other.

The one-loop corrections to the effective action Γ (1)
new of an N = 2 gauge theory with fun-

damental hypermultiplets (Q, Q̃) were computed in [53]. In N = 2 superspace language the 
new terms originate from the real function H(W, W̄) of the chiral (anti-chiral) scalar superfield 
strength W (W̄) which is integrated with the full N = 2 superspace measure

SH =
∫

d4xd4θd4θ̃ H(W,W̄), (5.3)

as opposed to the holomorphic prepotential 
∫

d2θd2θ̃ W2 of the tree-level action (3.7). Diagrams 
with external Φ and Φ̄ are depicted in Fig. 6. The diagrams in (a) depict the hypermultiplet 
contribution, while those in (b) illustrate the N = 2 vector multiplet contribution. The diagrams 
in (b) are identical to the N = 4 ones for any N = 2 gauge theory and give zero when we 
compute the difference δΓ (1)

new. On the other hand, the diagrams in (a) will lead to a non-zero 
contribution if the N = 2 theory is non-conformal, but when the number of the hypermultiplets 
(Q, Q̃) is such that the N = 2 theory is conformal they will be identical to the N = 4 ones and 
finally give

δΓ (1)
new(Φ, Φ̄) = 0. (5.4)

Summing everything up, to two loops, we get that the Hamiltonian of a superconformal N = 2
theory in the SU(2, 1|1) sector

H
(2)

N=2(g) = H
(2)

N=4(g). (5.5)

5.3. Three-loops

In this section, we will discuss which three-loop Feynman diagrams appearing in the operator 
mixing are different from the N = 4 ones, in the large N limit.

At three loops the diagrams that contribute to the dilatation operator can be classified as fol-
lows

(i) g6 bare skeletons
(ii) dressed skeletons made out of g4 (or g2) bare skeletons dressed with one insertion (or two 

insertions) of one-loop corrections to their propagators or their vertices
(iii) dressed skeletons made out of g2 bare skeletons dressed with one insertion of a two-loop 

correction to their propagators or their vertices
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Fig. 7. The types of diagrams that contribute to the three-loop dilatation operator are depicted here. Apart form the bare 
and the renormalized skeletons we have the new vertices that appeared at one-loop and are now dressed. Moreover, extra 
new vertices can appear for the first time at two-loops.

(iv) three-loop self-energy corrections
(v) dressed Γ (1)

new (vertices that appeared for the first time in the one-loop effective action and 
are now dressed to become two-loop diagrams)

(vi) new vertices that appear in the effective action for the first time at two-loops δΓ (2)
new.

As before, diagrams that include g6 bare skeletons are identical to the N = 4 ones for any
gauge theory. For conformal theories, the one-loop corrections with which the g4 or g2 bare 
skeletons are dressed are also identical to the N = 4 ones, and the three-loop self-energy cor-
rections do not contribute to the difference δH , as their logarithmic divergence is zero. The 
diagrams that will definitely contribute to the difference δH (whether the theory is conformal 
or not) are the g2 bare skeletons that are dressed with one insertion of a two-loop correction to 
their propagators and their vertices (dressed skeletons). Following [11], the only diagrams that 
can contribute to δH(3) for conformal theories are depicted in Fig. 1. They correspond to two-
loop self-energy and vertex corrections. The amputated graphs depicted in Fig. 1 are all related 
to each other by taking derivatives with respect to momenta (in fact this is how Ward must have 
discovered the Ward identities).

Finally, the new effective vertices δΓnew will not contribute to δH for the following reasons:

• at two loops the effective action will include Γ (1)
new one-loop vertices from [53] that are now 

dressed by a one-loop insertion or a V . These vertices do not contribute due to planarity
(they cannot be Wick-contracted with operators of the SU(2, 1|2) sector), the choice of the 
sector and Lorentz invariance,

• of the new vertices that appear in the effective action for the first time at two loops δΓ (2)
new, 

the only one that can be planarly contracted to O ∈ SU(2, 1|2) is shown in Fig. 8 and it will 
not contribute due to the non-renormalization theorem of [23,24] that we will further discuss 
in Section 6.2 and in Appendix A.3.
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At this point, explaining in detail how the choice of the sector, planarity and Lorentz in-
variance prevent δΓ (1)

new(W, W̄) from contributing to the Hamiltonian at higher loops when Φ̌
and V̌ can propagate inside its loop is in order. The one-loop effective action, as computed in 
[53] by supersymmetrizing the contributions of diagrams such as the ones depicted in Fig. 6, is 
written in that article in Eqs. (22) and (24). Given the choice of our sector (2.1), the diagrams 
depicted in Fig. 6 cannot be planarly contracted to O ∈ SU(2, 1|2).14 This is because the di-
agrams in Fig. 6 include only alternating ΦΦ̄ΦΦ̄ · · · vertices. Moreover, the supersymmetric 
completion of ΦΦ̄ΦΦ̄ · · · includes, for example, vertices of the form WαWαW̄ α̇W̄α̇ , that cannot 
possibly be contracted to O in (2.1) due to the fact that they are Lorentz scalars, i.e. antisymmet-
ric representations of SU(2)α × SU(2)α̇ , while O ∈ SU(2, 1|2) is in a symmetric representation 
of SU(2)α .

To show this in detail let us consider inserting the new effective vertex WαWαW̄ α̇W̄α̇ between 
O(0) and Ō(x)

〈
Ō(x)

∣∣ ∫ dy WαWαW̄ α̇W̄α̇(y)
∣∣O(0)

〉
. (5.6)

To show that this is zero it is enough to perform half of the Wick-contractions. O(0) must 
include at least two nearest neighbor W+ (if it doesn’t, we get zero in the large N limit). Wick-
contracting,

W̄ α̇W̄α̇(y)O(0) ∼ εα̇β̇W̄α̇W̄β̇ (y)
(· · ·W+W+(0) · · ·) ∼ · · · εα̇β̇ y+α̇

y4

y+β̇

y4
· · · = 0, (5.7)

given the fact εα̇β̇ is antisymmetric, that the coordinates y are bosonic and thus y+α̇y+β̇ is sym-
metric.

We thus conclude that for conformal N = 2 theories the only diagrams that can contribute to 
δH(3) are the two-loop corrections of the g2 bare skeleton diagrams. This is the third diagram 
in Fig. 7 with the two-loop (self-energy or vertex) corrections depicted in Fig. 1 inserted in all 
possible positions. This is enough to show that

δH(3)(g) = c3(g)H
(1)

N=4, (5.8)

because the external fields structure of the dressed diagram is identical to the structure of the bare 
diagram. In the case of the interpolating theory, the only difference between dressed and bare 
diagrams is a factor

c3(g) = c3(g, ǧ) ∼ c3g
2(g2 − ǧ2), (5.9)

where the coefficient c3 includes combinatorial information together with the knowledge of the 
momentum integrals that are performed. The coefficient c3(g) can be obtained by an explicit 
calculation, but this is not our goal here. We just want to notice that it contains all the loop 
information encoded in Z(g) and the combinatorial information that is obtained by going from 
the effective action Γ (1PI generating functional) to 1PI n-point functions Γn and finally to 
connected graphs Gcn. This is why we set up our all-loop argument in terms of the effective 
action δΓ and the Z(g).

14 Cannot be planarly contracted at a single trace level. In this paper we are not interested in wrapping corrections. If 
we wish to include wrapping corrections we will have to take them in account as discussed in [61].
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Fig. 8. This is the first δΓnew-type diagram that can be planarly Wick-contracted to O ∈ SU(2, 1|2). This diagram is 
finite [62] and, when we subtract the N = 4 equivalent, leads to a contribution proportional to (ǧ2 − g2)g4. Due to 
the non-renormalization theorem of [23,24], this diagram gives also a finite contribution when inserted in the operator 
renormalization diagram, and thus does not contribute to anomalous dimensions.

Collecting all the above results, we see that the Hamiltonian up to three loops can be written 
as

δH(3)(g) = H
(3)

N=4(g), (5.10)

where g2 = f (g2, ǧ2) is a function of g and ǧ that we can obtain pertubatively.
One last explanation is in order: why does the new vertex that comes from the diagram in 

Fig. 8 not contribute to the Hamiltonian when it is Wick-contracted with operators with deriva-
tives? On the one hand, contracting this new vertex to an operator O ∈ SU(2, 1|2) without 
derivatives leads to a finite integral of the form∫

dq I
(
q2), (5.11)

where the integrand I(q2) is a scalar under Lorentz transformations. On the other hand, con-
tracting it to an operator O ∈ SU(2, 1|2) with derivatives leads to an integral the form∫

dq I
(
q2)q+α̇q+β̇ · · · . (5.12)

Due to Lorentz covariance, this integral can either be zero or after partial integration become 
proportional to

(
q+α̇

ext1q
+β̇
ext2 · · ·)∫

dq I
(
q2), (5.13)

where the numerator momenta with open Lorentz indices will have to end up outside. The mo-

menta q+α̇
ext1 , q+β̇

ext2 , . . . are external to the loop we are integrating over. This integral that we end 
up with is again finite and will not contribute to the Hamiltonian. In other words, operators 
with derivatives in the SU(2, 1|2) sector create traceless symmetric products of momenta in the 
numerator of the loop integral that cannot change the divergence structure of the integral. The 
argument we just gave is for partial derivatives ∂++̇; not for covariant derivatives. Up to three 
loops, it is trivial to consider the gauge boson emission diagrams and see that they obey (1.1). 
We skip this step because first of all it is very simple and secondly because one should not do 
it. Our logic is that we use of the background field formalism that guarantees gauge invariance. 
Whatever holds for partial derivatives ∂++̇ will also hold for covariant derivatives.
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Fig. 9. Length changing operation at order g3. This diagram is a bare skeleton.

Fig. 10. Examples of length changing operations at order g5.

5.4. Length-changing operations

The educated reader is most probably thinking that this is not all. Up to now we discussed 
one, two and tree loops, but there are elements of the Hamiltonian that come in between and 
correspond to length-changing operations. Let’s first consider the first length-changing opera-
tions appearing at order g3, which we like to call “one-loop and a half ”, or H(1.5). An example 
of such an operation is depicted in Fig. 9. Such a diagram is a bare skeleton, and as such it is 
identical to the N = 4 one.

At order g5 is when the next length-changing operation can occur (H(2.5) or “two-loops and 
a half ”). Examples of such an operation are depicted in Fig. 10. It is clear that the only thing one 
can do to the diagram is to either correct the g3 length-changing diagram by a one-loop vertex 
(first example) or by a one-loop self-energy correction, or attach an extra gluon (second example). 
As we have discussed above all these possibilities cannot make the Hamiltonian different from 
the N = 4 one.

For conformal N = 2 theories, only starting at order g7 (“three-loops and a half ”) we can 
have length-changing diagrams different from the N = 4 ones by inserting in the diagram of 
Fig. 9 corrections of the form of Fig. 1. However, this diagram is a dressed skeleton that will lead 
to δH (3.5) ∼ g2(g2 − ǧ2)H

(1.5)

N=4 up to a combinatorial factor and thus will obey (1.1).

6. All loops

At this point a clear pattern is emerging.

The only non-zero contribution to the difference of the Hamiltonians,

δH = HN=2 − HN=4, (6.1)

in the SU(2, 1|2) sector is due to the different dressings with δZ(g) of the bare skeleton diagrams.

In principle, one should also consider new effective vertices that will appear in the effective action
at some loop order, but as we will see in this section these new vertices can never contribute to 
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the Hamiltonian of the SU(2, 1|2) sector! Then, given the fact that the dressed skeletons have 
precisely the same structure as the bare skeletons, the �-loop Hamiltonian is corrected by

δH(�) ∼
�−2∑
�′=1

c�
�′(g)H

(�′)
N=4. (6.2)

The coefficients c�
�′(g) include two different pieces of information. The first piece of information 

is the combinatorial factors that one obtains from the computation of the connected graphs Gcn

starting from the 1PI generating functional Γ and, finally, the Wick-contractions with O and Ō. 
The second one is the dynamics, the effects of the loops and renormalization, and is encoded in 
a single function δZ(g). The combinatorial factors are the same as in N = 4 exactly because the 
bare skeletons with external fields only in the vector multiplet of any gauge theory are identical 
to the N = 4 ones. However, the Z(g) for a particular N = 2 superconformal theory is of course 
different from N = 4 and δZ(g) leads to the unique and universal function f (g2) that encodes 
the redefinition of the coupling constant g2 → f (g2).

All this information is elegantly encoded in the effective action without the difficulty of having 
to keep track of combinatorial factors. Our strategy is to consider, at any loop order, the difference 
in the two effective actions δΓ = ΓN=2 − ΓN=4, which we will think of as the sum

δΓ = δΓren. tree + δΓnew (6.3)

of terms that were already there at the tree level and are now renormalized δΓren. tree and vertices 
that were not there at tree level δΓnew.

In the next two sections we discuss the structure of possible new vertices in the effective 
action. Most of the terms in δΓnew cannot contribute to the Hamiltonian of the SU(2, 1|2) sec-
tor because they cannot be Wick-contracted with an operator O ∈ SU(2, 1|2) due to planarity, 
Lorentz invariance of δΓnew and the choice of the sector. The ones that in principle could con-
tribute (given in (6.6)) do not lead to logarithmic divergences due to a non-renormalization 
theorem, described in Section 6.2.

From this moment on we stop using N = 1 superspace language and turn to N = 2 super-
space. We do this because in N = 2 superspace all the fields in the N = 2 vector multiplet are 
packed in a single N = 2 superfield W . We also want to stress that the Feynman diagrams that 
we draw in this section are also in N = 2 superspace and solid lines now depict W .

6.1. Classification of possible new vertices in the effective action

For conformal N = 2 theories the possible new terms that can appear in the effective action
have been extensively studied [25,53,56–58] and classified in [25] by studying all the possible 
superconformal invariants. Schematically, they are15

Γnew(W) =
∫

d4x d8θ H(W,W̄)

H(W,W̄) = ln2(WW̄) + [
Λ

(
Ψ̄ 2) lnW + h.c.

] + Υ
(
Ψ 2, Ψ̄ 2) + F

(
Ψ 2, Ψ̄ 2) (6.4)

15 The effective action as written in (6.4) is actually only for the case where we are in the Coulomb branch and SU(N)

is broken down to U(1)N−1. However, we just write this to avoid cluttering the notation. For a non-abelian version one 
can see for example [59,60].



E. Pomoni / Nuclear Physics B 893 (2015) 21–53 41
where Λ and Υ are arbitrary holomorphic and real analytic functions, respectively, of

Ψ 2 = 1

W2
D̄4 lnW̄, Ψ̄ 2 = 1

W̄2
D4 lnW with D4 = (

DI=1)2(
DI=2)2

, (6.5)

while F is a function16 of Ψ 2, Ψ̄ 2 and the derivatives combination DIJ = Dα(ID
J )
α .

Due to planarity, Lorentz invariance of δΓnew and the choice of the SU(2, 1|2) sector most 
of these terms can immediately be excluded. From (6.4), the only other possible terms that can 
contribute to anomalous dimensions in the SU(2, 1|2) sector have the form Tr(WnW̄n). To see 
this we firstly notice that vertices that include alternating Tr(WW̄WW̄ · · ·) cannot be contracted 
to operators of the SU(2, 1|2) sector. This is precisely the same argument as the one we used in 
Section 5.2.

This means that the only new vertices in the effective action that can in principle contribute 
to the SU(2, 1|2) sector have the form

δΓ can
new =

∑
n

cn Tr
(
WnW̄n

)
. (6.6)

We use the notation δΓ can
new to remind us that this is a subset of the δΓnew vertices that can in 

principle be Wick-contracted to the operator O in the SU(2, 1|2) sector. In N = 1 superspace 
language these vertices include Tr(WnW̄n)|θ̃=0 = Tr(ΦnΦ̄n) + . . . . They can in principle lead 
to elements in the Hamiltonian that are proportional to the chiral identity, but, as we will discuss 
in the next section, they do not contribute logarithmic divergences due to the non-renormalization 
theorem of [23,24].

6.2. A non-renormalization theorem

The non-renormalization theorem of [23,24] was proved using N = 1 superspace formalism 
and is based on powercounting and the structural properties of Feynman diagrams in N = 1 su-
perspace. For us, the important lesson is that insertions of the form 〈Φn(x)Φ̄n(y)〉, which are 
proportional to the chiral identity,17 do not contribute to the renormalization of operators. An 
example of such an insertion is depicted in Fig. 8 and in Appendix B we show by powercount-
ing that it will not lead to UV divergence once it is inserted in the operator renormalization 
diagram. This result is also true for many such insertions in the operator renormalization dia-
gram as long as the final connected graph has structure proportional to the chiral identity. An 
example of a connected graph made out of two vertices is also worked out in Appendix B. 
This non-renormalization theorem reflects the fact that chiral operators OL(Φ) = Tr(ΦL) are 
protected as members of the chiral ring. Even though this theorem was derived in N = 1 super-
space, one can easily reformulate it in N = 2 language, to reflect the fact that chiral operators 
OL(W) = Tr(WL) are also protected, since they are members of the N = 2 chiral ring.

The derivation of the theorem is very technical and we will skip it here. The interested reader 
is invited to read [23,24] for the N = 1 superspace proof. Below we just present the main points 
that one would have to change when going from N = 1 to N = 2 superspace in order to rederive 
the theorem in N = 2 language. One would also need to write down the Feynman rules explicitly 

16 More information on the form of the function F can be found in Eqs. (2.14) and (2.15) of [25].
17 The authors of [23,24] sometimes refer to the chiral identity as the trivial chiral function χ( ) with no argument, to 
remind us that nothing is permuted. They state that finiteness conditions imply that diagrams with trivial chiral function 
χ( ) cannot have an overall UV divergence.
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in order to do the power counting. For that the naive real superspace R4|8 that we use here might 
be way too complicated [39] and one should maybe instead turn to the N = 2 Harmonic [47] or 
Projective [44,54,55] superspace formalism.

The 2-point functions of the form 〈Φn(x)Φ̄n(y)〉 with n > 1 come with non-negative powers 
of ε in dimensional regularization. Moreover, when they are inserted in the operator renormaliza-
tion diagrams, the diagrams remain finite or less. In usual (non-chiral) operator renormalization 
diagrams when a finite vertex is inserted, an overall 1/ε divergence is obtained. However, a chiral 
loop cannot create a 1/ε contribution, due to the following facts: (i) that four D’s (superspace 
derivatives) are used from the numerator each time we perform a θ integral (

∫
d4θ ) [45], (ii) that 

the chiral operator comes with one less D̄2 [23,24]18 and (iii) a D̄2 can always be moved outside 
the diagram on the external lines (onto a scalar propagator which is not part of a loop). Thus, the 
“effective number of D’s” in the loops is equal to the number of D’s minus twice the number of 
scalar propagators not belonging to any loop [23]. At the end there are not enough momenta left 
in the numerator to make the loop divergent.

Similarly, the 2-point functions of the form 〈Wn(x)W̄n(y)〉 do not lead to divergences when 
inserted in the operator renormalization diagrams of chiral operators. As in the N = 1 superspace 
language, a chiral loop cannot create a 1/ε contribution due to the following facts: (i) that eight 
superspace derivatives (four D’s and four D̃’s) are used from the numerator each time we perform 

a d4θd4θ̃ integral [44], (ii) that the chiral operator comes with one less D̄2 ¯̃
D2 and (iii) D̄2 ¯̃

D2’s 
can always be moved outside the diagram on external scalar propagators reducing the “effective 
number of D’s” in the loops by four times the number of scalar propagators not belonging to any 
loop. This means again that there are not enough momenta left in the numerator to make the loop 
divergent.

With the use of this non-renormalization theorem we conclude that the new effective vertices 
(6.6) appearing in δΓnew cannot contribute to the Hamiltonian of our sector.〈

Ō(x)
∣∣δΓ new

n (y)
∣∣O(0)

〉 = finite. (6.7)

For an explicit demonstration see Appendix B. Moreover, this result can also be generalized to 
the case where a collection of vertices (6.6) is inserted in the operator renormalization diagram 
as long as the final connected graph is proportional to the chiral identity. This statement, together 
with a few more observations that we will make in Section 6.4, allow us to conclude that〈

Ō(x)
∣∣δGnew

n (y)
∣∣O(0)

〉 = finite (6.8)

for every possible connected graph that includes one or more new effective vertex. The next step 
is to consider what happens to the δΓren. tree vertices that create the dressed skeleton diagrams.

6.3. First without derivatives (only skeleton diagrams)

Given the fact that new effective vertices do not contribute to the two-point functions 〈ŌO〉, 
to obtain the Hamiltonian we just have to compute corrections to the propagators, and the n-point 

18 The chiral superfields obey the constraint D̄α̇Φ = 0 that we resolve using an unconstrained superfield Φ = D̄2ϕ

before doing any Feynman diagram computation. To obtain the two point function 〈ŌO〉 we have to add to the path 
integral a source term 

∫
d2θ jO. In order to complete its integral 

∫
d2θ → ∫

d4θ we steal a D̄2 from the operator O =
Tr(ΦL) = Tr(D̄2LϕL) and thus each chiral operator comes in the Feynman diagram with one less D̄2. Unconstrained 
N = 2 superfields where introduced in [39] and further studied and used in [41].
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vertices, that where already there in the Lagrangian at tree level, and then insert them in the two 
point functions 〈ŌO〉. As already discuss in Section 3.4, in the BFM all the information about 
loops will be encoded in a single function Z(g) (because ZW (g) and Zg(g) are related through 
a WI that reflects gauge invariance). We first consider the diagrams that lead to elements in the 
Hamiltonian without any derivatives. These are dressed skeletons and are encoded in δΓren. tree. 
Simply by using

1. Gauge invariance (that is manifest in the background field method)
2. N = 2 supersymmetry (use N = 2 superspace)

we get that the tree level action S(W; g) (3.7) will be corrected only by a function that is propor-
tional to the tree level action itself

δΓren. tree(W;g) = Γtree(W;g) ≡ S(W;g) (6.9)

where g = √
f (g2) is some function of the coupling constant. This fact can also be understood 

using N = 2 superconformal representation theory considerations. With this information at hand, 
the n-point diagrams immediately obey

δΓ ren. tree
n (W;g) = Γ tree

n (W;g) ∀n. (6.10)

6.4. From 1PI to connected graphs

Up to now we have argued using planarity, Lorentz invariance and a non-renormalization 
theorem that a single insertion of a new effective vertex (1PI n-point graph) between O and Ō is 
finite 〈

Ō(x)
∣∣δΓ new

n (y)
∣∣O(0)

〉 = finite ∀O ∈ SU(2,1|2), (6.11)

and does not contribute to the Hamiltonian. Of course this in not enough. For (1.1) to hold we 
need to argue that the same statement is true not only for 1PI n-point graphs, but also for the 
connected graphs〈

Ō(x)
∣∣δGnew

c n (y)
∣∣O(0)

〉 = finite ∀O ∈ SU(2,1|2). (6.12)

This will allow us to go from the statement

δΓ ren. tree
n (W;g) = Γ tree

n (W;g) ∀n (6.13)

that we argued above to

δGcontribute
cn (W;g) = Gtree

cn (W;g) ∀n. (6.14)

In this section, we shall do precisely that, namely provide evidence that one can obtain the con-
nected off-shell n-point functions δGcn(W) that are relevant for the SU(2, 1|2) sector from the 
n-point 1PI functions δΓn(W) (1.7) alone. This is a highly non-trivial statement and should be 
further studied by carefully checking as many explicit examples as possible. Some are presented 
in Appendix A. This way one might get inspired and manage to formulate and prove this state-
ment with a formal, path integral based argument. We leave this for future work.

Our argument is built on the following simple, but important observation. To make a connected 
graph δGcn(W) that is not 1PI we must be able to disjoin the graph by cutting a single line. 
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Fig. 11. In this figure possible connected graphs δGc n(W) that are made out of two δΓren. tree and Γnew vertices are 
depicted. Only the first one on the left can be Wick-contracted to the operators of the sector, and it leads to a finite 
contribution when inserted in 〈ŌO〉 due to the non-renormalization theorem of [23,24].

Fig. 12. These are examples of diagrams that, although we make them from 1PI vertices, they are still 1PI as they cannot 
be disjoint by cutting a single line. This means that we have already consider them in the previous section.

Inversely, if by cutting an internal propagator we cannot disjoint the graph, then this graph must 
be a 1PI δΓn(W) that we should be able to obtain by taking functional derivatives of the effective 
action δΓ (W) with the appropriate number of fields W and W̄ . This means that it corresponds 
to (or can also be thought of as) a single new effective vertex, and we have already explained why 
a single new effective vertex δΓ new

n cannot contribute to the Hamiltonian.
Examples of diagrams that correspond to connected graphs δGcn(W) are depicted in Fig. 11. 

Examples of diagrams that correspond to 1PI δΓn(W) are depicted in Fig. 12. The diagrams in 
Fig. 12 should not be considered as arising from the contraction of two or more vertices (because 
this makes things difficult), but as coming from an insertion of a single vertex that is created at 
some higher loop order. Note that we have switched formalism from N = 1 superspace to the 
real R4|8 N = 2 superspace introduced in Section 3.2. In Figs. 11 and 12 the solid lines, now, 
depict the N = 2 chiral superfield strength W that includes all the component fields in the N = 2
vector multiplet and the dashed lines for the N = 2 fundamental hypermultiplet.

There are two classes of δΓ new
n , that we should discuss why they cannot make δGnew

n (W) that 
can contribute to the Hamiltonian when combined with themselves (δΓ new

n ) or δΓ ren. tree
n .

1. δΓ new
n (W, Q): new vertices that include hypermultiplets (Q, Q̃) as external fields

2. δΓ new
n (W): new vertices with only W’s (and W̄’s) as external fields

For the first class of new vertices in the effective action that include Q’s the argument goes 
as follows. In order to hide all the Q’s inside loops (if not we cannot Wick-contract them to the 
sector), so that the δGcn(W) has only W and W̄ external fields and can be Wick-contracted to 
O and Ō, we need to make a Q-loop! Such a diagram is always 1PI because there are always 
two internal Q propagators. A Q-loop cannot be disjoined by cutting a single line.
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For the second class of new vertices in the effective action, after careful inspection of all the 
possible new effective vertices available (6.4), we observe that:

• Multiple vertices of the form Γ can
new (6.6) also lead to finite contributions due to the non-renor-

malization theorem, as explained in Section 6.2. See Fig. 15 and the discussion in Appen-
dices A.3 and B for an example.

• Vertices of the form Γ can
new (6.6) combined with δΓren. tree will also give finite contributions 

when inserted in the operator renormalization diagram due to the non-renormalization theo-
rem of [23,24]. Note that for the SU(2, 1|2) sector Hamiltonian there are no vertices coming 
from the superpotential that can be attached to Γ can

new externally in such a way that it can be af-
terwards Wick-contracted to the operator. Such an observation was already used in Section 4. 
One more concrete example is given in Appendix A.1.

• For combinations of multiple vertices from (6.4) with Ψ ’s (6.5) there are two possibilities. 
They can either not be Wick-contracted to 〈ŌO〉 in the sector at all, or if all the Ψ ’s are inter-
nally contracted can only make 1PI vertices of the form Γ can

new (6.6), that will not contribute 
due to the non-renormalization theorem of [23,24].

For some concrete examples at four-, five- and six-loops see Appendix A.

6.5. The derivatives “commute” with the dressing of the skeletons

To complete our argument we need to explain why all the observations we made in the pre-
vious sections still hold even when the operator O includes derivatives. The only difference in 
the calculation between operator renormalization with and without derivatives is that the final 
integral one has to perform has extra momenta in the numerator in the case of an operator with 
derivatives. For each derivative in the operator, we have one momentum in the numerator of the 
final integrand. We argue in this section that operators with derivatives in the SU(2, 1|2) sector 
create in the numerators of the loop integrals traceless symmetric products of momenta which do 
not alter the degree of divergence of the loop integrals.

The proof of this statement goes as follows. For an operator OL = Tr(WL) in SU(2, 1|2) that 
does not include any derivatives the integrals that appear when we try to compute the two-point 
function 〈ŌO〉 will have the form∫

dq1 · · ·dqk I
(
q2

1 , . . . , q2
k

)
(6.15)

where I({q2
i }) is a scalar under Lorentz transformations. The integral, when considering the 

renormalization of an operator composed of the same fields as before but with extra derivatives, 
schematically On

L = Tr(Dn+α̇WL),19 will be obtained by inserting momenta (one for each deriva-
tive) and will have the form∫

dq1 · · ·dq� I
(
q2

1 , . . . , q2
�

)
q

+α̇1
1 q

+α̇2
2 · · · . (6.16)

19 Of course it is important where the derivatives are, O{n}
L

= Tr(Dn1WDn2W · · ·), in which site of the spin chain with 
OL = Tr(WL) vacuum.
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Lorentz symmetry does not allow for an integral that is not a scalar to give a non-zero answer. 
Performing the integrals with the extra momenta in the numerators can either give zero or after 
partial integration an integral proportional to

(
q+α̇

ext1q
+β̇
ext2 · · ·)∫

dq1 · · ·dq� I
(
q2

1 , . . . , q2
�

)
, (6.17)

where the momenta q+α̇
ext1 , q+β̇

ext2 , . . . are external to the loops we are integrating over. This means 
that due to Lorentz invariance (covariance) the SU(2, 1|2) sector derivatives have to go out of the 
integral! The integral we have to evaluate will have the same divergence structure as the integral 
without derivatives. Derivatives in the SU(2, 1|2) sector create traceless symmetric products of 
momenta which do not alter the degree of divergence of the loop integrals.

Applying what we just learned the first thing to notice is that the new effective vertices of the 
form Tr(WnW̄n) will still lead to finite integrals and will not contribute to the Hamiltonian. We 
have already seen an example of this in the three-loop Section 5.3 and here we generalize this 
statement for any vertex of the form (6.6).

Thus, even when we take into account operators with derivatives, only the skeleton diagrams 
can be inserted in the two-point functions 〈ŌO〉 and lead to logarithmic divergences. In fact we 
should be careful and note that the argument that we are giving here is only for plain deriva-
tives ∂++̇; not for covariant derivatives. The generalization to include gauge boson emission 
processes is incorporated by the use of the background field formalism that guarantees gauge 
invariance.

Given the fact that only skeleton diagrams can be inserted in the two-point functions 〈ŌO〉
what we do is to begin with the tree level integral of

〈Ō|G(tree)
cn (W)|O〉 (6.18)

and at � loops replace it with

〈Ō|δG(�)
cn (W)|O〉 (6.19)

where δG(�)
cn (W) are the connected off-shell n-point functions at � loops with external W’s 

and W̄’s, defined in (1.5). In the previous sections we have shown that (6.14)

δG(�)
cn (W;g) = G(tree)

cn (W;g) (6.20)

This means that the leading divergent part of the integrals, that appear in the �-loop Hamiltonian 
calculations for some particular distribution external number of derivatives (momenta) is identi-
cal, as a function of momenta, to the “tree level” integrals, i.e. identical to the ones in N = 4 the 
first time they appear. The main lesson of this section could be phrased as the statement that the 
derivatives “commute” with the operation of dressing the skeleton diagrams, and this concludes 
our argument for N = 2 superconformal gauge theories.

7. Conclusions and discussion

In this paper, building up on the work of [10–14], we have discussed first why any N = 2
superconformal gauge theory (including the N = 4 SYM) contains an SU(2, 1|2) sector that is 
made out of only fields in the vector multiplet and that is closed to all loops under renormalization. 
This statement is valid to all orders of the ’t Hooft coupling constant in the planar limit, and 
since the ’t Hooft coupling expansion is believed to converge [29], it is also a true statement at 
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finite ’t Hooft coupling. We have then presented a diagrammatic argument that the asymptotic 
SU(2, 1|2) Hamiltonian of any N = 2 superconformal gauge theory is identical at all loops to 
that of N = 4 SYM

HN=2(g) = HN=4(g) with g =
√

f
(
g2

)
,

up to a redefinition of the coupling constant g2 → f (g2) = g2 + O(g6). We wish to insist on a 
disclaimer: the Hamiltonian that we have been discussing here is the asymptotic Hamiltonian! It 
does not include wrapping corrections [61] and it can only compute the anomalous dimensions 
of sufficiently long operators. It can compute the anomalous dimensions of operators that cor-
respond to spin chain states with their number of sites L ≥ � + 1 being bigger than the range 
of the interaction which is specified by the number of loops �. We leave the study of wrapping 
corrections for future work.

To finish the job and actually be able to compute the spectrum of N = 2 superconformal 
gauge theories we need to calculate the function f (g2) (or δZ(g)). One way to obtain δZ(g)

is to perform Feynman diagram computations and compute the difference in the self-energy 
of W in N = 4 and N = 2 superconformal gauge theories. In fact in [11] one can already 
find the answer for the 2-loop self-energy (3-loop Hamiltonian). Of course at some point this 
method will run out of steam as Feynman diagram computations will get very hard quite fast. 
Alternatively, one can consider the circular Wilson loop,20 for which exact results can be obtained 
using localization [2]. When the circular Wilson loop is calculated diagrammatically the final 
result will deviate from the N = 4 one solely due to the universal function of the coupling δZ(g)

(or f (g2)). For example, one should be able to extract δZ(g) for the N = 2 SCQCD from the 
result of [64] and for the Z2 interpolating quiver from the result of [65].21 Finally, we should also 
be able to compare with the cusp anomalous dimensions [67] where the function f (g2) should 
also appear as a universal function.

Our result implies that any planar N = 2 superconformal gauge theory in the SU(2, 1|2) sec-
tor is integrable, with its integrability inherited directly from planar N = 4 SYM. Given this 
result, we should also address the question of which particular properties make a gauge theory 
integrable. We were able to formulate our argument by comparing the planar N = 2 Hamilto-
nian with the N = 4 SYM one, and thus planarity is essential and irreplaceable. Moreover, for 
our argument the choice of the sector was crucial, and in particular the fact that all the fields 
that compose the operators in the SU(2, 1|2) sector are in the N = 2 vector multiplet! In order, 
though, to be able to restrict to a sector with only fields in the vector multiplet, we had to restrict 
Lorentz indices to α = +, highest weight states (symmetric representations of SU(2)α). This re-
striction “protected” the operators from possible corrections coming from new effective vertices. 
Only terms that exist in the action already at tree level (of course renormalized) were allowed 
to contribute. Finally, gauge invariance (and renormalizability) played a critical role. Everything 
was renormalized with a single Z(g) function, when BFM was employed.

A key element for the integrability of the SU(2, 1|2) sector was the fact that all the fields 
composing the sector are in the N = 2 vector multiplet. It is thus very compelling to look for 
possible integrable subsectors in other gauge theories with the same property. For N = 1 super-
conformal gauge theories the N = 1 vector multiplet contains the gluon and the gluino, and the 

20 In [63] the calculation of the circular Wilson was loop performed up to three loops but in components. For this 
program to have any hope of success one will have to proceed using N = 2 superspace.
21 This was done after the first version of this paper appeared in the arXiv in [66].
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biggest subsector with fields only in the vector multiplet is an SU(2, 1|1) sector that is closed to 
all loops and contains

λ+, F++, D+α̇, (7.1)

with

 = 2j − r ∀O ∈ SU(2,1|1). (7.2)

Similarly, for N = 0 superconformal gauge theories we should consider the SU(2, 1) sector that 
is closed to all loops and contains

F++, D+α̇, (7.3)

with

 = 2j ∀O ∈ SU(2,1). (7.4)

As we stressed in Section 2, there is no reason why (7.2) and (7.4) should persist in perturbation 
theory. In fact they will be violated by corrections of the order of g2. However, for the fields 
outside of the sectors (7.1) and (7.3) the equalities (7.2) and (7.4) are violated already classically 
by an integer, thus perturbative corrections will never be big enough to allow them to enter the 
sector.

Gauge invariance (when the BFM is used), and supersymmetry (for the N = 1 case), imply 
that in these sectors all the fields that compose the operators are renormalized with a single 
Z(g). Up to three-loops we can see that the statement (1.1) goes through also for any N = 1 and 
any N = 0 superconformal gauge theory. This is work in progress. To cut a long story short, if 
we could succeed in showing that the new effective vertices that appear in the effective actions 
cannot contribute to the SU(2, 1|1) sector of N = 1 and to the SU(2, 1) sector of N = 0 gauge 
theories, we will have shown that (1.1) generalizes for any superconformal gauge theory. Up to 
tree loops this is very simple. The missing element in pushing (1.1) to higher loops is that we do 
not have a complete classification of all the possible new vertices that can in principle appear in 
the effective action.

We would like to conclude our paper with a comment on N = 4 SYM. It is believed, due to 
different types of calculations, that the magnon dispersion relation for N = 4 (see [24,27] and 
references therein)

E(p;g) =
√

1 + 8h(g) sin2
(

p

2

)
(7.5)

gets no corrections in perturbation theory and h(g) = g2. This result is definitely tied to the fact 
that if one uses the appropriate language (that might be the light-cone superspace formalism 
of [68,69]22) there are no corrections for g at all, i.e. Z(g) = 1 for N = 4 SYM. This would 
mean that the computation of the Hamiltonian would contain only bare skeleton diagrams – and 
combinatorial factors. According to the way of thinking that we have presented here, one should 
start from the effective action, combined with the fact that Z(g) = 1 and then try to obtain the 
Hamiltonian. This strategy should make it possible to calculate the Hamiltonian of N = 4 to 
more (maybe all) loops, at least in some subsectors.

22 See [70] for a modern presentation that is actually devoted on correlation functions of composite gauge-invariant 
operators of N = 4 SYM.
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Fig. 13. Examples of diagrams that appear at order g7 (three loops and a half). They are made out of a δΓ (2)
new and a 

tree level cubic vertex. These diagrams will add up to zero in N = 1 superspace. They are examples of the “miraculous 
cancellations” that have to happen in N = 1 superspace because we are not keeping the whole symmetry manifest.
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Appendix A. Multi-vertex examples from higher loops

In this appendix we present a few examples of multi-vertex insertions with one or more δΓnew

vertices, and explain why they cannot contribute to anomalous dimensions. Up to three loops 
only single δΓnew vertex diagrams appear and we have presented the reasons why they cannot
contribute to the Hamiltonian in Section 5. But, from four loops and on, combinations of such 
single vertices (with δΓren. tree or δΓnew) have to be considered. This was addressed in Section 6.4, 
but we think that it is very useful to supplement the arguments there by some explicit examples. 
This is what we do in this appendix.

A.1. Four-loops

Some of the first diagrams that may come to mind, for someone who is used to N = 1 su-
perspace, are the ones depicted in Fig. 13. These diagrams appear at order g7 (three loops and a 
half) and are made out of a δΓ (2)

new and a tree level cubic vertex. These diagrams from the N = 1
superspace point of view look like they may contribute to logarithmic divergences. But, after 
summing them all up, the N = 1 superspace practitioner will discover that they all add up to 
zero. This is because the two different vertices Tr(Φ̄V Φ) and Tr(Φ̄ΦV ) differ by a minus sign. 
The reader can find many such examples explicitly worked out in [24].

A.2. Five-loops

At five-loops and order g10 another new type of diagram that we wish to examine appears, 
depicted in Fig. 14. This is a connected diagram that is not 1PI because it is made by gluing two 
vertices with a single propagator. This diagram will not contribute for many reasons. One reason 
is that it cannot be planarly Wick-contracted to the operators in the SU(2, 1|2) sector.

One might have similar worries for the case of combining by gluing a single line between new 
effective vertices of the form WαWαW̄ α̇W̄α̇ . One could try to generalize the Lorentz invariance 



50 E. Pomoni / Nuclear Physics B 893 (2015) 21–53
Fig. 14. This connected diagram is made out of a one-loop new 1PI vertex and a two-loop new 1PI vertex. This diagram 
cannot be planarly Wick-contracted.

Fig. 15. This connected diagram cannot contribute to the divergences due to the non-renormalization theorem of [23,24].

of Section 5.3, but this is not a good strategy. This is the moment when one should just abandon 
N = 1 superspace and realize that these vertices are just inside the N = 2 effective action in 
Eq. (6.4).

A.3. Six-loops

In Fig. 15 we give one last example of a g12 diagram (six-loop Hamiltonian). This diagram 
is also new in the sense that at six loops it is the first time we can combine two δΓ (2)

new vertices 
to make a connected graph. This connected diagram cannot contribute to the divergences due to 
the non-renormalization theorem of [23,24]. The explicit powercounting is performed in the next 
section of Appendix B (Fig. 16(b)).

Appendix B. Explicit examples of powercounting

In this section of the appendix we perform the powercounting explicitly for two particular 
examples in order to demonstrate how/why the non-renormalization theorem of [23,24] works. 
The non-expert reader might have to first read [23,24,45].

First we wish to show why the diagram depicted in Fig. 16(a) will not contribute to anomalous 
dimensions. Note that, as we discussed in Section 6.2 there is one D̄2 missing from the operator 
and also two D̄2 that could go to the external legs are not even shown in the figure because 
they are external to the loops. As one can see from the figure we have 5 D̄2’s and 6 D2’s for 
which we have to perform the D-algebra. The diagram has 3 loops, which means that there are 
3 integrals 

∫
d4θ that have to be performed and these integrals will eat up 3 D̄2’s and 3 D2’s. 

After the integrations we will be left with 2 D̄2’s and 3 D2’s that can create a maximum of 2 
p2 in the numerator. The diagram moreover contains 9 propagators and the 3 loops will lead to 
3 momentum integrals. All in all,
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Fig. 16. In this figure we show two examples of powercounting. The solid lines depict chiral superfields and the black dot 
the operator insertion. Only the “effective number” of D’s (= number of D’s – twice the number of scalar propagators 
not belonging to any loop) [23] is put in the figure.

Λ∫ [
d4p

]3 (p2)2

(p2)9
∼ 1

Λ2
(B.1)

the superficial degree of divergence is −2, which means that the diagram is not divergent.
We then consider the diagram depicted in Fig. 16(b). As before one D̄2 is missing from the 

operator and three D̄2 that could go to the external legs are not even shown in the figure. It 
contains 11 D̄2’s and 12 D2’s which the 6 loop integrals 

∫
d4θ will reduce to 5 D̄2’s and 6 

D2’s. These D’s can only create 5 p2 in the numerator. The diagram contains 18 propagators 
and 6 loops. Finally, we find that the superficial degree of divergence

Λ∫ [
d4p

]6 (p2)5

(p2)18
∼ 1

Λ2
(B.2)

is −2 which again means that the diagram is not divergent.
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