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Abstract The primary objective of this work is to develop an effective spacecraft orbit control

algorithm suitable for spacecraft orbital maneuver and/or rendezvous. The actual governing equa-

tion of a spacecraft orbiting the earth is merely nonlinear. Disturbance forces resulting from aero-

dynamic drag, oblateness of the earth till the fourth order (i.e. J4), and random disturbances are

modeled for the initial and target orbits. These disturbances increase the complexity of nonlinear

governing equations. Global optimum solutions of the control algorithm parameters are determined

throughout real coded genetic algorithms such that the steady state difference between the actual

and desired trajectories is minimized. The resulting solutions are constrained to avoid spacecraft

collision with the surface of the earth taking into account limited thrust budget.
� 2011 National Authority for Remote Sensing and Space Sciences.

Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Spacecraft orbital maneuver is used frequently for many rea-

sons, such as station keeping, orbital transfer, and rendezvous.
It is classified, based on a control sense, as a tracking rather
than a stabilization problem. In order to execute such maneu-

vers, a good modeling of some environmental effects is re-
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quired. The most important environmental effects are
aerodynamic drag, and oblateness of the earth. The most com-
mon methods existing in the literature depend on C–W equa-

tions which describe the relative motion for two vicinal
spacecraft as shown in Yang et al. (2010) and Zhang et al.
(2011). Unfortunately, these equations did not include the ef-

fect of aerodynamic drag, oblateness of the earth, or bounded
thrust budget. Naasz (2002) describes the problem of space-
craft orbit control taking into account only the effect of earth

oblateness, up to the term, J2, only. Another important note
regarding the problem at hand is that, it is a constrained opti-
mization problem. The nature of the first constraint results

from the fact that the spacecraft must avoid collision with
the surface of the earth during the execution of its orbital
maneuver. The second constraint results logically from the
bounded thrust budget. Luo and Tang (2005) suffers from
nces. Production and hosting by Elsevier B.V. All rights reserved.
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Figure 1 Gravitational force.
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the same drawbacks presented. In addition, the control force
magnitude is not considered at all, the number of controller
parameters to be tuned are very huge (actually 18 while as

the current research requires only two parameters), and the
control algorithm requires high computational burden over
the spacecraft onboard computer (which is usually fully

loaded) due to mathematical processes required for the 18 con-
troller parameters. Massary and Bernelli-Zazzera (2009), is
concerned with satellite formation maneuver which is usually

constrained with the relative distance between the satellites
of the formation. This in turn, as mentioned in Massary and
Bernelli-Zazzera (2009), requires much more computational
resources.

The objective of the research at hand is to establish an effec-
tive control algorithm suitable for station keeping, orbital
transfer, and rendezvous. System describing equations are

based on Cowell’s formulation (Vallado, 1997). This formula-
tion is found to be very useful in many applications because
any arbitrary disturbing acceleration could be simply added

to the two-body equation so as to produce a more precise solu-
tion to the ordinary differential equation. Thus, disturbing
acceleration resulting from aerodynamic drag, and oblateness

of the earth to the nth order could be simply modeled (Tamer,
2009). Deriving the control law based on Cowell’s formulation,
as seen in subsequent sections, is a straight forward process to
determine the initial guessing of the control gains. Further-

more, Cowell’s formulation could be easily differentiated to
obtain the state transition matrix (Tamer, 2009; Montenbruck
and Gil, 2005). A very important constraint that must be sat-

isfied is that the spacecraft must avoid collision with the sur-
face of the earth during its orbital maneuvers. Transfer orbit
which do not satisfy this condition must be eliminated. The ef-

fect of bounded thrust budget is taken into consideration dur-
ing the control law design. Global optimum solutions for the
control gains are found throughout real coded genetic algo-

rithms (RCGA) given in Jamshidi et al. (2003). These solutions
of course consider the effect of aerodynamic drag, J4, and
bounded thrust budget.

The main contribution of the research at hand is its simple

and effective controller design method based on Cowell’s for-
mulation taking into account various sources of nonlinearity,
such as aerodynamic disturbance, oblateness of the earth, J4,

and bounded thrust budget. Concurrently with these nonlin-
earities, the orbital maneuver is restricted such that the maneu-
vering satellite must not hit the surface of the earth. Moreover,

the number of controller parameters to be selected is only two,
so the computational burden over the spacecraft onboard
computer (which is usually fully loaded) is drastically reduced
compared to the algorithm presented in Luo and Tang (2005).
2. Spacecraft orbital dynamics

The translation motion model of a spacecraft is derived using

Newton’s law of gravitation between two particles i, and j as
seen in Fig. 1. The force acting on a particle i due to the exis-
tence of a particle j is given by the relation (Tamer, 2009).

~Fij ¼
�Gmimj

krijk2
rij
krijk

ð1Þ

where G, is the gravitational constant
(G = 6.673 · 10�11 ± 0.001 · 10�11 m3

kg:s2
); mi, is the mass of
particle i; mj, is the mass of particle j; rij, is the vector from
the particle j to the particle i, as illustrated in Fig. 1.

Eq. (1) is known in the literature as the two-body problem.
In the following treatment it is assumed that

� There are no aerodynamic forces.
� There are no thrust forces.

� The spacecraft is a point mass.
� The earth is a point mass.
� There is not any disturbing force acting on the spacecraft.

For a spacecraft, Eq. (1) describes the forces acting on the
spacecraft due to the presence of the earth. This force, accord-
ing to Newton’s second law, is equal to the spacecraft mass

times its acceleration. Therefore, in an inertial frame of refer-
ence we could write (Montenbruck and Gil, 2005)

~Fij ¼
�GmEmsc

kRk3
R

�����
I

¼ msc

d2R

dt2

����
I

ð2Þ

Where mE, is the earth mass; msc, is the spacecraft mass; R, is
the spacecraft position vector defined in the inertial frame of
reference (the subscript (I) denotes an inertial frame of refer-
ence. i.e. RjI ¼ RI ¼ ½XI YI ZI �T); ||R||, is the distance be-

tween the spacecraft and the earth center. and consequently,

R
oo

I þ
lE

kRIk3
RI ¼ 0 ð3Þ

with lE, is the earth’s gravitational constant

(lE = 3.986 · 1014 m3/s2).
Orbital disturbances such as those resulting from earth

oblateness, third body effects, etc. could be included in Eq.

(3) simply by adding an inertial perturbing acceleration, aI
to Eq. (3). Thus, Eq. (3) results in the Cowell’s formulation
(Tamer, 2009).
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Or in a more compact form

R
oo

I ¼
�lE

kRIk3
RI þ aI ¼ fþ aI ¼ fEðRIÞRI þ aI ð5Þ
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3. Perturbation models

3.1. The earth oblateness

The gravity field affecting the motion of a spacecraft in a two-
body keplerian orbit assumes a perfectly spheroid shape of the

earth. However, for higher accuracies of spacecraft position
the ellipsoidal shape of the earth must be used instead. The
gravitational potential function of the earth could be expanded

in a spherical harmonic form as

U ¼ lE

rS

Xlmax

l¼0

Xl

m¼0

R�
rS

� �l

PlmfClm cosðm/SÞ þ Slm

� sinðm/SÞg ð6Þ

with R¯, is the earth’s mean equatorial radius (R¯ =
6378.1363 · 103m); Plm, are associated Legendre functions;

m, is the model order; l, is the model degree; Clm and Slm,

are the dimension-less coefficients used to describe the shape
and mass distribution inside the earth; rS, is the geocentric dis-

tance; /S, is the east longitude from Greenwich.
If the selected coordinate system in which the potential

function is calculated coincides with the geocentric equatorial

axes, the terms, C1,0, C1,1, and S1,0 become zero. The term
C0,0 is equal to 1 and is corresponding to a spherical earth
model. Thus, Eq. (6) turns out to be

U ¼ lE

rS
1þ

Xlmax

l¼2

Xl

m¼0

R�
rS

� �l

PlmfClm cosðm/SÞ
 

�þ Slm sinðm/SÞgÞ ð7Þ

the associated Legendre polynomial could be computed recur-
sively by the relations:-

P0;0 ¼ 1 ð8Þ
Pl;l ¼ ð2l� 1ÞPl�1;l�1 cos k ð9Þ

Pl;0 ¼
ð2l� 1ÞPl�1;0 sin k� ðl� 1ÞPl�2;0

l
ð10Þ

Pl;m ¼ Pl�2;m þ ð2l� 1ÞPl�1;m�1 cos k ð11Þ

where k: is the latitude.

The partial derivatives of the gravitational potential func-
tion are

@U

@rS
¼ �l

r2S

Xlmax

l¼2

Xl

m¼0

R�
rS

� �l

ðlþ 1ÞPl;mfCl;m cosðm/SÞ

þ Sl;m sinðm/SÞg ð12Þ

@U

@k
¼ l

rS

Xlmax

l¼2

Xl

m¼0

R�
rS

� �l

fPl;mþ1 �m tanðkÞPl;mgfCl;m cosðm/SÞ

þ Sl;m sinðm/SÞg ð13Þ

@U

@/S

¼ l
rS

Xlmax

l¼2

Xl

m¼0

R�
rS

� �l

mPl;mfSl;m cosðm/SÞ

� Cl;m sinðm/SÞg ð14Þ

and finally, the perturbation acceleration in the earth centered
earth fixed (ECEF) coordinate system is:
aXE ¼
1

rS

@U

@rS
� ZE

r2S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

E þ Y2
E

q @U

@k

8><
>:

9>=
>;XE

� 1

X2
E þ Y2

E

@U

@/S

YE ð15Þ

aYE ¼
1

rS
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q @U

@k

8><
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>;YE

� 1

X2
E þ Y2

E

@U

@/S

XE ð16Þ

aZE ¼
1

rS

@U

@rS
ZE þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

E þ Y2
E

q
r2S

@U

@k
ð17Þ

where XE, YE, and ZE: are the spacecraft position vector com-
ponents in ECEF coordinate system.

The difference between ellipsoidal and spherical earth mod-
el results in a difference in the position vector of order 20 km
(Vallado, 1997). This difference reaches a maximum value at

the poles and vanishes at the equator. The accelerations result-
ing from oblateness of the earth could be transformed from the
ECEF frame of reference to the inertial frame (ECI) through
the relation

aXI

aYI

aZI

2
64

3
75 ¼

cos ag � sin ag 0

sin gg cos ag 0

0 0 1

2
64

3
75

aXE

aYE

aZE

2
64

3
75 ð18Þ

and ag is the Greenwich right ascension determined from Bate
and White (1971)

ag ¼ ag0 þ 1:002737903� 2p�D ð19Þ

with ag0, 1.74933340 rad at 1/1/1970 0 h:0 m:0 s; D, time in

day fraction elapsed since 1/1/1970 0 h:0 m:0 s.

3.2. Aerodynamic drag

The aerodynamic force, dfAero on a satellite surface element

dA, is given by Tamer, (2003)

dfAero ¼ �
1

2
CDqV2dA ð20Þ

Where V, is the the translational velocity of the satellite t rel-
ative to the incident stream. q, is the atmospheric density; CD,
is the drag coefficient. For practical applications, CD may be
set in the range of 2.0.

The atmospheric density is modeled based on interpolation
between the values given in Larson and Wertz (1999).
4. Spacecraft orbit control

In order to simplify the problem, a PD control strategy is em-
ployed. The initial estimates of the required control gains are

determined using classical control techniques. Optimum esti-
mates of these initial values are obtained throughout genetic
algorithms. For a general state feedback approach, we could

write system equation as (Franklin and Emami, 2010)
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X
o

¼ FXþ Gu ð21Þ

where X is the state vector, F is a matrix of constants, G is the
system input matrix, and u is the system input. Using state

feedback approach

u ¼ �KðX� XcommandedÞ ð22Þ

substitution from Eq. (22) into Eq. (21) results in

X
o

¼ FX� GKðX� XcommandedÞ ð23Þ

rearranging Eq. (23) gives

X
o

�FXþ GKX ¼ GKXcommanded ð24Þ

taking Laplace transform

‘fX
o

�FXþ GKXg ¼ ðsI� fF� GKgÞXðsÞ
¼ GKXcommandedðSÞ ð25Þ

so, the transfer function becomes

XðsÞ
Xcommanded

¼ GK

sI� fF� GKg ð26Þ

To apply Eq. (21) we could simplify Eq. (4) by considering
only the XI direction, so we could write

X
oo

I ¼
�lE

kRIk3
XI þ aXI ¼ �x2

0XI þ aXI ð27Þ

or, in a canonical state space form

X
o

¼ X
o

I

V
o

Ix

2
4

3
5 ¼ 0 1

�x2
0 0

� �
XI

VIx

� �
þ

0

1

� �
aXI ¼ FXþ Gu ð28Þ

based on Eq. (28), the characteristic equation is given as,

jsI� Fj ¼
s 0

0 s

� �
�

0 1

�x2
0 0

� �����
���� ¼ s �1

x2
0 s

� �����
���� ¼ s2 þ x2

0

ð29Þ

the controlled system similarly has the characteristic equation

given by Eq. (28)

jsI�fF�GKgj¼
s 0

0 s

� �
�

0 1

�x2
0 0

� �
�

0

1

� �
kx kxd

� 	� �����
����

¼
s 0

0 s

� �
�

0 1

�x2
0 0

� �
�

0 0

kx kxd

� �� �����
����¼ s 0

0 s

� �
�

0 1

�x2
0�kx �kxd

� �����
����

¼
s 0

0 s

� �
�

0 1

�x2
0�kx �kxd

� �����
����¼ s �1

x2
0þkx sþkxd

� �����
����

¼ s2þkxdsþx2
0þkx

ð30Þ

comparing Eq. (30) with the standard characteristic equation
of a second order system given by

s2 þ 2fxnsþ x2
n ¼ 0 ð31Þ

we find that

kx ¼ x2
n � x2

0; 2fxn ¼ kxd ð32Þ

now, rearranging Eq. (27) gives

aXI ¼ X
oo

I þ x2
0XI ð33Þ
and from Eq. (22) we could write

aXI¼u¼�KðX�XcommandedÞ¼ kx kxd

� 	 Xcommanded
I �XI

Vcommanded
xI �VxI

" #

¼kxðXcommanded
I �XIÞþkxdðVcommanded

xI �VxIÞ
ð34Þ

the overall state space form of the spacecraft is given by
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3
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VIy

VIz

2
666666664

3
777777775

þ

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

2
666666664

3
777777775

aXI

aYI

aZI

2
64

3
75 ¼ FTXT þ GTuT ð35Þ

and the gains to be determined are, kx, kxd, ky, kyd, kz, and kzd.
These gains are required to satisfy certain performance param-

eters. Two meaningful parameters of the controlled system are
selected, namely, the damping ratio, fc, and the time constant,
sc. The time constant is related to the damping ratio through
the relation

sc ¼
1

fcxnc

ð36Þ

where xnc is the required natural frequency of the controlled
system.

5. Global optimum solutions for the control gains

Although the algorithm presented in the previous section is

based on linear control theory, the problem at hand is to some
extent nonlinear. This nonlinearity results from the describing
equation, nonlinear disturbances, and actuator saturation rep-

resented by the bounded thrust budget. Also, we should note
that during the execution of the orbital maneuver the satellite
must not hit the surface of the earth.

For nonlinear systems there exists several sets of solutions
those could minimize (or maximize) a certain objective func-
tion locally without being related to the true solution. In an-

other words, the simplex algorithm (which is a local
minimum maximum search algorithm) could stick in a local
minimum of the objective function and fails to find the global
optimum solution (Cappelleri et al., 2006). The simplex algo-

rithm is based on moving and resizing of a multidimensional
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polygon (or simplex) along a downhill direction to a local min-
imum (Sayeed, 2003). The downhill direction is obtained
numerically without the need to evaluate gradient calculations.

Genetic algorithms on the other hand could be used to search
for the global optimum solutions (Abdelkhalik, 2005). Ref.
Jamshidi et al. (2003) represents a distinguished text book that

handles genetic algorithms for real numbers instead of binary
coded numbers. The control gains are initially determined by
the linear control theory without any constraint. Afterwards,

the constraints are applied to the objective function to be min-
Figure 2 Orbital parameters for
imized by the real coded genetic algorithms (RCGA). The
objective function to be minimized is given by

J ¼
XN
i¼1

e2i ð37Þ

where ei is defined as the magnitude of the difference between

the actual satellite position and the target position. An individ-
ual, c should now be formed from a number of genes equal to
the controller parameters to be determined. First, let’s discuss
the initial and target orbits.



Figure 3 Controllability matrix rank during orbital maneuver execution.

Figure 4 Thrust force time history.
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the time constant parameter. If we chose a different time con-
stant for each axis of the XI, YI, and ZI axes, there will exist an
axis that reaches its steady state value fast and another one
reaching its steady state value slow. The overall time constant

of the system will be equal to the slowest one. Thus, there will
be no gain at all if we select a certain axis to respond faster
than the others, because the overall system will always be re-

stricted to the slowest responding axis. Furthermore, faster
responding axes require more control effort. Based on this dis-
cussion it is reasonable to select the time constant for all of the

axes to be the same. In addition, the damping ratio is selected
to be also the same for all of the axes. Thus, an individual c
consists from,
c ¼ ½ sc fc �T ð38Þ

the time constant, sc and the damping ratio, fc are directly re-
lated to the control gains through Eqs. (32) and (36). The
choice of equal time constant, and damping ration for all of

the axes implies that

kx ¼ ky ¼ kz ð39Þ

and

kxd ¼ kyd ¼ kzd ð40Þ

note that, during the execution of spacecraft orbital maneuver,

the spacecraft must not hit the surface of the earth. This con-



Figure 5 Satellite altitude above sea level.
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dition (constraint) is expressed as a negative fitness function
with a value of �10100 .
6. Controllability analysis

Controllability analysis is based mainly on the two matrices FT

and GT. As seen from Eq. (27), x0 = �lE/||RI||
3, which is not

constant at all during maneuver execution. This behavior
causes deviation of the performance of the control gains de-
signed based on linear control theory. To alleviate such diffi-

culty, RCGA are utilized to obtain the global optimum
values of the gains. Thus, the matrix FT in general, is time
dependent. The controllability matrix is computed from the

relation

C ¼ ½GT FTGT F2
TGT F3

TGT F4
TGT F5

TGT � ð41Þ

The controllability matrix given in Eq. (41) must have a full
rank (i.e. 6).
7. Simulation parameters, results, and testing

The initial orbital parameters are a (semi major ax-
is) = 72,71,200 m, e (orbit eccentricity) = 0.002, i (orbit incli-

nation) = 95o, X (right ascension of ascending node) = 100o,
x (argument of perigee) = 0o, and t (true anomaly) = 10o.
The target orbital parameters of the case study satellite are
a = 70,71,200 m, e = 0.003, i = 97.5o, X = 118o, x = 0o,

and t = 20o. Epoch time (18/7/2010 0 h:0 m:0 s). Time
step = 10 s. Thrust is applied after 7101 s measured since
the epoch time. A maximum thrust value of 890 N is applied.

The initial desired control loop natural frequency and damping
ratio are 0.00357 rad/s and 0.91, respectively. After application
of RCGA, the optimum values of the desired control loop nat-

ural frequency and damping ratio are found to be
0.004869 rad/s and 0.9621 respectively. Random disturbances
are assumed to affect the satellite position and velocity with

a standard deviation of 10 m, and 1 m/s, respectively. Fig. 2
shows the behavior of the satellite classical orbital elements
over 30,000 s. And as clear in this figure, the satellite had a suc-
cessful orbital maneuver after 10,000 s approximately.
Fig. 3 represents the rank of the controllability matrix de-
fined earlier. As clarified in Fig. 3, the rank of the controllabil-
ity matrix is six which indicate a full rank. Fig. 4 represents the

thrust force required to execute the orbital maneuver. As
shown in this figure, the maximum thrust bound is 890 N in
all of the thrust directions.

A typical liquid rocket engine to provide such thrust is gi-
ven in Larson and Wertz (1999). It is the R42 engine developed
by Marquardt. Engine mass is 4.54 kg. The choice of any rock-

et engine in this case study was done based on those engines
found in Larson and Wertz (1999). Some engines with less
thrust force (ranging from 400 to 500 N) were utilized. But uti-
lizing such low thrust engines had led to maneuver failure.

Fig. 5 represents a check that the spacecraft did not hit the
earth surface during its orbital maneuver. Note that, the sinu-
soidal behavior of the altitude and the semi-major axis is due

to oblateness of the earth, as clarified in Section 3.1.

8. Conclusion

The proposed structure of the control algorithm had success-
fully brought the spacecraft from its initial orbit to its target
orbit. Cowell’s formulation enabled a simple design of the con-

trol algorithm based on linear control theories. Nonlinearities
of the actual spacecraft behavior resulted from earth oblate-
ness, aerodynamic drag, and bounded thrust budget are taken

into consideration during the controller design process. RCGA
are effectively used to compute the global optimum gains of
the controller taking into account various sources of nonlin-
earity. Simulation results indicated that the spacecraft did

not hit the earth surface during the execution of its orbital
maneuver.
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