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Atmtraet--The singular integral S = f0 °° f(z)e-SJ0(w=)d=, related to the Hankel transform of 
order 0, is calculated numerically by using an integral expression for the Bessel function of order 
zero, J0. With the assumptions that the function f(=) is bounded and is analytic in some complex 
domain, the double integral obtained in this way is calculated by a combination of changes of variables 
and Gauss methods using Laguezre, Chebyshev and Lesertdre polynomials. The singular integral 
S' = f o  ](z)e-=Jz(wz) dz is derived from S. The subroutines written in FORTRAN run very fast 
on a personal computer and give a relative precision better than 5 x 10 -e . 

1. INTRODUCTION 

The  Fourier transform of a function f(R1,  R2) is defined as: 

/ : / :  1 f(R1, R2)e i(x~R'+x'R2) dRz dR2. (1) 

Let  now g(p), with p = ~ be a function which is invariant by rotation around the origin. 
The  Fourier transform of g is 

O(A) " "  g(p)Jo(Ap)p dp (2) 

where )~ = ~ and J0 is the Bessel function of order 0. The  transformation defined by 
equation (2) is also called the Hankel transform of order 0. The inverse transform has exactly 
the same form. 

In some applications, the function g may decrease exponentially. Consider the model integral: 

S = f(x)e-=Jo(o~z) dz (3) 

which is to be calculated numerically, f(z)  is assumed to be bounded. Because of the oscillation 
of the Bessel function J0 together with the exponential decay, classical numerical techniques like, 
e.g., Romberg's [4] are inefficient especially for large ~. 

The same problem arises for the integral 

co' = f(z)e-=Jz (~z) dz (4) 

where Jz is the Bessel function of order 1 and f(z)  is assumed to be bounded. 
In section 2, some prerequisite integrals will be considered. Then in section 3, we will present 

a method in which the integral (3) will be transformed to a double integral using an integral 
expression for the Bessel function of order zero. Although this approach does not appear a priori 
as the most straightforward one, it is proved to be efficient for the numerical calculation. The 
example in which f (z)  = 1 is calculated numerically and the results are shown and compared to 
the exact result .The calculation of the integral (4) simply uses the derivative of (3) with respect 
to oJ. It is presented in section 4. The example in which f(z) = 1 is also considered for this 
integral and the numerical result is compared to the exact one. 
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Integrals like 

2. SOME PREREQUISITE INTEGRALS 

A b f ( z )  (5) dz 

J0 ° f(x)e-" (0) dz 

_" f(z)(1 - t2) -I/2 dz (7) 
1 

can be calculated by using classical Gaussian quadrature formulae, viz. Gauss-Legendre for 
(5), Gaum-Lw~uerte for (6) and Gaum-Chebyshev ~ for (Z). These formulae are given in classical 
handbooks [I, 3, 4]. 

Consider now an integral which has a behaviour similar to (3) at infinity, that is an exponential 
decay together with an oscillation: 

fo ° f(x)e -~' cos~z dx. (8) 

Like for (3), classical numerical techniques are inefficient especially for large ~. However, for the 
integral in (8), a simple change of variables is sufficient to obtain an efficient integration technique 
as we will see now. 

The integral (8) is the real part of the integral 

~0 ~ 
s = f (~)~-<~-~)"  d~. (9) 

Let 

Then (9) becomes 

z = (1 - ~)z. (10) 

1 f ~' --Z 
J - I - i-'--~ JL f(l_--_--_--_--_-~)e dz. (11) 

where L is a half straight line in the complex plane (see figure 1); the argument of the current 
point of this line is arctan(-w).  

Y 

--~o L 

o x 

Figure 1: Domains in the complex plane. 
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Consider the domain D in the complex plane limited by the line L, the positive part Ox of the 
real axis, and the line at infinity. Let C be the integration contour around D. If the function 
f(1--~) is analytic in D, then by Cauchy's theorem 

I ~ Z --Z 
1 -  iw f(l_--~-~w)e d z -  0. (12) 

f(1--~-d) is analytic in D, provided f(z) is assumed to be analytic in D ~, which is the domain 
bounded by the positive real axis O~, the half straight line L ~ with argument arctanw, and the 
line at infinity (see Figure 1). 

With this assumption, and since the part of the contour at infinity gives a zero contribution 
to the integral in (12), there is only an integral on L and an integral on Oz (with the negative 
sign) in (12). Then J, equation (11), can be obtained from an integration on Oz: 

1 f0 °° z J = 1 - i-----d d z .  (13) 

The calculation of J may be done numerically in FORTRAN using the complex variables and 
the classical Gauss-Laguerre formulae for an integral of the type (6). The real part of (9), that 
is (8), is then obtained together with the imaginary part, that is: 

~o c° f(x)e -z  (14) sinwx dx. 

A FORTRAN subroutine named QCEXP performs these calculations 1. As an example, the 
following integrals were calculated numerically: 

f0 ° cos(1000z) = x (15) xe -x  dz ~ 0°999997000027 10-6 

fO ° sin(lOOOz) ---- X (16) x e  - x  dz 0.1999996000051 lO-S 

the exact results being respectively 

-0.999997000005 x 10 -6 

and 
0.1999996000006 x 10 -s.  

This shows the excellent precision obtained even for large w. The calculation time is very short 
as with all Gauss' type methods, and the program runs easily on a personal computer. 

3. CALCULATION OF THE INTEGRAL INVOLVING 
THE BESSEL FUNCTION OF ORDER 0 

Consider now the integral S, equation (3). The Bessel function of order 0, J0 can be written 
as an integral, after [2, formula 8, page 953]: 

/ ~  (1  - t2) -112 cos zt dt. (17) 
1 

J o ( z )  = -;  1 

Then the expression (3) for S may be rewritten as: 

S = ~_ll(1- t2)-l/2 go(t) dt 

1 All the FORTRAN subroutines quoted in this article are available directly from the author upon request. 

(18) 
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where 

go(e) = ~ f (z )e-"  cmCwzt) dr. 

Since go is even in t, and alternative expression for (18) is 

(19) 

S = 2 (1 - t2)-I/2go(t) dt. (20) 

The numerical method follows. The function go, equation (19), is calculated using the method of 
section 2 for the integral (8). Then the integral in equation (18) is calculated using the classical 
Gauss-Chebyshev quaclrature formulae as for integral (7). This method works well numerically 
for values of [~o[ up to order of unity; as an example, we calculated the following numerical value 
f o r ~  = h 

o ° e -=Jo(z)  dz = 0.707106781193 (21) 

whereas the exact result is I l V ~  - 0.707106781186. 
However, for large values of [~o[, the Gauss-Chebyshev quadrature method is not appropriate, 

because go has a peak around 0 which becomes sharp when [w I becomes large. This is bet ter  
seen on an example. From [2], page 707, we know the exact result: 

0 °° e-XJo(~Oz) dz = (1 + ~o2) -1/2. (22) 

In order to recover this result numerically using the above method, we calculate first the integral 
(19) 

go(e)  - - ~ - "  c ~ ( ~ o ~ t )  d~.  (23)  
z" 

The exact result is 
1 

g0(e) = ,(1 + w2t~)" (24) 

This function, which is to be integrated between -1 and 1, has a sharp peak in t = 0 for large 
(see Figure 2). 
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Figure  2: Func t ion  go(t)  for ~o = 100. 
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Using the result (24) for f (z)  = 1, let in the general case of an arbitrary f(x) 

ho(O = +  2t2)go(t) (25) 

so that the integral (20) to be calculated becomes 

f o l l  dt (26) S = 2 (1 - t~)-ll2ho(t) 1 + w2t ~" 

The peak of the integrand occurs for small t. Using the ideas of the method of matched asymptotic 
expansions, we write the integral in (26) as a sum of two terms, an "inner" one and an "outer" 
one: 

s = 2 + (271 

where ~ is a number such that: 
I ¢ e - I  ¢ I 1. (28) 

Let y = ~ arctan~t in the first integral, and t --- sinO in the second integral; then 

S = 2($1 + $2) (29) 

where 

/ ~ arctffia~ 
$I m fl(Y) dy (30) 

JO 

with 

1 1 ho (31) fl(Y) -- ~ w2 ) 

and ,/2 
$2 = f2(O) dO (32) 

¢ s ~ s i n  ¢ 

with 
h0(sin0) (33) 

f2(0) = ~(1 + w2 sin s 0)" 

Since f l(y)  and f2(0) are regular, the standard Gauss-Legendre formulae can be used to calculate 
numerically the integrals $1 and $2. The size ~ of the matching region can be adjusted at will 
provided the condition (28) is satisfied. We found by trial that, for f(z)  - 1, the best compromise 
to obtain the best precision for all [~[ > 1 is 

(34) 

We have seen that the method using the classical Gauss-Chebyshev quadrature formulae works 
well for values of Io~l up to order of unity, and that the method we have just exposed is more 
adapted for large values of Io~1. The value wl of I~a I at which one should switch from one method 
to the other was searched by trial. It was found that the best precision on the results is obtained 
for o~1 - 1.5. 

A FORTRAN subroutine name QJOEX performs these calculations. Note that the function 
f (z )  should in general be declared complex, since QCEXP is used in the course of the calculation. 
As an example, the integral 

0 ° dx 

was calculated and compared to the exact result (22) for several values of w. The results are 
shown in Table 1. 

The relative difference between the numerically calculated integral and the exact result is less 
than 5 x 10 -°  for all values of ca. Actually, the precision 5 x 10 -° is obtained around w - 10 e but 
the typical precision is more often of the order of 10 -8 or less. The calculation time is very short 
since only Gauss' type methods are used, and the program runs easily on a personal computer. 
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Table 1 
CaIcu]~ ion  of f0 ¢~ e - = J 0 ( w = )  dz for variotts values of w. Note tha t  there is a switch 

f rom one m e t h o d  to the other  at  w = 1.5. 

¢g 

1 

1.5 

1.5001 

lO 6 
1012 

Numerical  Result  Exact  Result  

0.7071067811935 0.7071067811865 

0.5547001896635 0.5547001962252 

0,5546745924751 0.5546745955967 

0.9999953118850 × 10 - 6  0.9999999999995 × 10 - 6  

0.99999999148"/3 × 10 -12 1 . ~  × 10 -12 

4. CALCULATION OF TH E  I N T E G R A L  INVOLVING 
THE BESSEL F U N C T I O N  OF O R D E R  1 

Consider now the integral involving J1, equation (4). A possible approach is, like in section 3, 
to use an integral relation for J1 ([2], formula 8, page 953): 

(1 - t2) 1/2 cos zt dr. (35) J l ( Z )  = 1 

Then the expression for S' in (4) is written: /_1 
s '  = (1 - t2) /2g (t) dt (36 )  

1 

where 

gl(t) = w_ --/~ f (z )ze -=  cos(wzt) d=. (37) 
z" J0 

and we proceed like in section 2. However, for large Iwl, gl has a sharp peak in t = 0 and varies 
rapidly around t = 0. This may be seen on an example. We know from [2], page 707, the exact 
result: 

fo ~ e-X gl (wz) dz = (38) 
1 m 

In order to recover this result numerically, we calculate first the integral (37) 

g (t) - - - "  (39 )  

The exact result is 

gl($) ---- lr(1 -t-w2t2) 2" (40) 

This function which is to be integrated between - 1  and 1 varies rapidly around t = 0 for large 
[w[ (see Figure 3). 

Moreover, it happens to have a positive and a negative part, the integrals of which are of the 
same order of magnitude. "We then have to subtract two quantities of the same order and the 
resulting preciJion is poor. Note that the same problem would arise when calculating (3) with 
f ( z )  - z. This is the reason why we assumed f (z )  to be bounded. 

For these reasons, we consider an alternate method to calculate the integral in (4). Using the 
classical property for the Bessel functions 

Jl(wz) = 1 dJo(wZ) (41) 
w dz 

we integrate (4) by parts and obtain 

S' = - -  f(z)e-=Jo(wz) dz 
w 

(42 )  
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Figure 3: ~mct ion  gl (t) for w = 100. 

This equation may be written in a more concise notation: 

S'[.f] = S [ f ]  - S[ f ]  (43) 
t,d 

A FORTRAN subroutine named QJ1EX uses this equation to  call the subroutine QJOEX. Note 
that  here the function f and its derivative f should be supplied. Both functions should be 
declared as complex, because the subroutine QCEXP is used in the course of the calculation. As 
an example the integral 

0 ° e-~Jl(wZ) d z  

was calculated and compared to the exact result (38) for several values of w. The results are 
shown in table 2. Since the main calculations are done with QJOEX, the remarks concerning the 
precision and calculation time are the same as in the preceding section. 

Table 2 
Calculation of f0 e -  J l  (wa~) d z  for various values of w. 

Note that  there is a switch from one m e t h o d  to  the other  at  w -- 1.5. 

¢d 

1 

1.5 

1.5001 

lO 6 

1012 

Numerical Result Exact Result 

-0.70?1067811935 -0.7071067811865 

-0.3698001264423 -0,3698001308168 

-0.3697584110893 -0.36~7584131702 

--0.99999531188,50 X 10 -12 --0.9999999999995 X 10 -12 

--0.9999999914673 X 10 -24 -1.0000000000(X)O X 10 -24 

5. CONCLUSION 

The singular integrals S, equation (3), related to Hankel transform and S', equation (4), are 
calculated numerically. 

The integral S is calculated by using an integral expression (17) for the Bessel function of order 
zero, J0. With the assumptions that the function f (z )  is bounded and is analytic in the complex 
domain D' (see figure 1), the double integral (18) (19) obtained in this way is calculated 

(1) for Iw[ _< 1.5 by Gauss-Laguerre and Gauss-Chebyshev formulae; 
(2) for Iwl > 1.5 by Ganss-Laguerre formulae, changes of variables, and Gauss-Legendre for- 

mulae. 

The singular integral S', equation (4), is calculated in terms of integrals of the type S, equation 
(3): see equation (43). 
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The subroutines QJOEX, to calculate (3), and QJIEX, to calculate (4), are tested on example 
cases. They run very fast on a personal computer and give a relative precision better than 5x 10 -e 

for all values of ~. 
The method uses the integral in (8) as an intermediate step in the calculation. The possibility 

to calculate directly this integral together with the related integral in (14) is also provided with 
the subroutine QCEXP. The relative precision given by this subroutine is typically 5 x 10 -11 . 
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