
 

 

Chinese
Journal of 
Aeronautics

Chinese Journal of Aeronautics 23(2010) 39-45 www.elsevier.com/locate/cja

Experimental Investigation into Characteristics of  
Plasma Aerodynamic Actuation Generated  

by Dielectric Barrier Discharge 

Wu Yuna,b,*, Li Yinghongb, Jia Minb, Song Huiminb, Su Changbingb, Pu Yikanga 

aDepartment of Engineering Physics, Tsinghua University, Beijing 100084, China 

bEngineering College, Air Force Engineering University, Xi'an 710038, China 

Received 2 March 2009; accepted 26 October 2009 

Abstract 

This article carries out synthetic measurements and analysis of the characteristics of the asymmetric surface dielectric bar-
rier discharge plasma aerodynamic actuation. The rotational and vibrational temperatures of an N2(C3

u) molecule are 
measured in terms of the optical emission spectra from the N2 second positive system. A simplified collision-radiation model 
for N2(C) and N2

+(B) is established on the basis of the ratio of emission intensity at 391.4 nm to that at 380.5 nm and the 
ratio of emission intensity at 371.1 nm to that at 380.5 nm for calculating temporal and spatial averaged electron tempera-
tures and densities. Under one atmosphere pressure, the electron temperature and density are on the order of 1.6 eV and 1011 
cm-3 respectively. The body force induced by the plasma aerodynamic actuation is on the order of tens of mN while the in-
duced flow velocity is around 1.3 m/s. Starting vortex is firstly induced by the actuation; then it develops into a near-wall jet, 
about 70 mm downstream of the actuator. Unsteady plasma aerodynamic actuation might stimulate more vortexes in the flow 
field. The induced flow direction by nanosecond discharge plasma aerodynamic actuation is not parallel, but vertical to the 
dielectric layer surface. 

Keywords: plasma aerodynamic actuation; dielectric barrier discharge; optical emission spectroscopy; particle image veloci-
metry 

1. Introduction1

Developed on the basis of the plasma aerodynamic 
actuation, the plasma flow control is a novel active 
technique to improve aircraft aerodynamic character-
istics and propulsion efficiency[1]. It has drawn con-
siderable attention and found wider and wider appli-
cations in boundary layer acceleration[2], airfoil 
separation control[3-6], forebody separation control[7], 
turbine blade separation control[8], axial compressor 
stability extension[9], heat transfer[10] and high-speed 
jet control[11]. The plasma aerodynamic actuators 
have a number of merits, such as robustness, simplic-
ity, low power consumption and ability in real-time 
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control at high frequencies. 
In order to better understand the underlying 

physical mechanism of plasma flow control and op-
timize the geometric configuration of the actuator, it 
is essential to investigate the characteristics of the 
plasma aerodynamic actuation including gas tem-
perature, electron density and temperature, induced 
body force, velocity and vorticity. J. R. Roth[12] 

measured and analyzed the aerodynamic flow accel-
eration through paraelectric and peristaltic electrohy-
drodynamic effects. C. L. Enloe, et al.[13]obtained the 
emission characteristics of a surface dielectric barrier 
discharge plasma by means of a photomultiplier and 
measured the induced thrust with a mass balance. J. 
Pons, et al.[14] investigated electric properties and 
induced airflow characteristics of an asymmetric sur-
face barrier discharge plasma aerodynamic actuator 
by using electric probes and a Pitot tube. T. N. Jukes, 
et al.[15]studied the velocity and temperature distribu-
tion around the plasma aerodynamic actuator by us-
ing a hot-wire and cold-wire anemometry. C. O. Por-Open access under 
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ter, et al.[16]conducted temporal and averaged body 
force measurements with a momentum balance, a 
pendulum and an accelerometer. T. Abe, et 
al.[17]elucidated the effects of ambient-gas pressure, 
ambient gas species and electrode configuration 
through investigation of the momentum transfer in a 
dielectric barrier discharge plasma aerodynamic ac-
tuator. C. A. Borghi, et al.[18] measured the boundary 
layer, plasma sheath, rotational and vibrational tem-
peratures making use of a Pitot probe, Schlieren im-
aging and spectroscopic techniques. S. A. Stanfield, 
et al.[19] examined vibrational temperatures and rela-
tive concentrations of N2(C3

u) and N2
+(B2 u) for an 

asymmetric surface dielectric barrier discharge util-
izing the optical emission spectroscopic technique. 
C.Q.Nie, et al.[20] investigated the characteristics of 
the flow induced by the plasma aerodynamic actua-
tion with particle image velocimeter and laser dop-
pler velocimeter. Y. H. Li, et al. [21] investigated the 
optical emission spectroscopy of a surface dielectric 
barrier discharge plasma aerodynamic actuator by 
varying electrode configuration, applied voltage and 
driving frequency. Y. Wu, et al. [22] studied the elec-
trical, optical, and mechanical characteristics of sur-
face dielectric barrier discharge plasma aerodynamic 
actuation at different operating pressures ranging 
from 2 Torr to 760 Torr(1 Torr=133.3 Pa). 

This article is aimed at experimentally exploring 
the characteristics of the asymmetric surface dielec-
tric barrier discharge plasma aerodynamic actuation, 
which include rotational and vibrational temperatures, 
electron density and temperature, induced body force, 
velocity and vorticity. 

2. Experimental 

2.1. Plasma aerodynamic actuator 

Fig.1 shows the schematic diagram of an asym-
metric surface dielectric barrier discharge plasma 
aerodynamic actuator. The dielectric layer used is a 
plate RO4350B from Rogers Corporation with a rela-
tive permittivity of 3.48. The electrodes are made of 
copper lagged with a lead-tin film. In Fig.1,  
d1=2 mm, d2=2 mm, d=0 mm, hd=0.5 mm, he= 
0.035 mm. 

The plasma aerodynamic actuator is driven by a 
high-frequency high-voltage power supply CTP- 
2000K from Suman electronics. The output voltage 
ranges from 0 to 40 kV and the frequency from 6 
kHz to 40 kHz. 

 
Fig.1  A schematic of an asymmetric surface dielectric 

barrier discharge plasma aerodynamic actuator. 

2.2.  Diagnostics system 

Fig.2 shows the experimental arrangement. Both 
the plasma and the induced flow characteristics of the 
plasma aerodynamic actuation are measured syn-
thetically.  

 

 
 

Fig.2  Schematic diagram of experimental arrangement.  
 

A high voltage probe P6015A and a current probe 
TCP312+TCPA300 from Tektronix Inc. are used to 
measure the applied voltage and the total discharge 
current respectively. Signals are recorded by an os-
cilloscope DPO4104 from Tektronix Inc. Optical 
emission spectroscopy (OES) is fomulated with a 0. 5 
m monochrometer TRIAX550 from Jobin Yvon Inc. 
through an optical fiber collector located 1 cm over 
the surface of the dielectric layer. The detector of the 
monochrometer is a set of photon counting system 
Model 76915 from Oriel Inc. with a slit width of 20 

m and a calibrated resolution of 0.05 nm. The emis-
sion intensity is averaged on time domain and space 
domain. The body force induced by the plasma aero-
dynamic actuation is measured with an electronic 
balance ABS 204-S from Mettler Toledo Inc. Veloc-
ity and vorticity induced by the plasma aerodynamic 
actuation is measured with a particle image veloci-
meter from Lavision. The air is seeded by vaporiza-
tion of mineral oil with a mean size of about 0. 3 m. 

3.  Results and Discussion 

With an enough large alternating current (AC) am-
plitude on the electrodes, the air is weakly ionized in 
the region with the largest electric potential. Cou-
lomb force acting on the charged species in the 
plasma causes momentum transfer between ions and 
neutral molecules. An air flow is stimulated by the 
body force. The characteristics of both the plasma 
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and the induced flow are measured and analyzed. 

3.1.  Characteristics of plasma 

As a simple and non-intrusive diagnostic method, 
the OES assumes a key role in providing qualitative 
and quantitative information about plasma properties 
under atmospheric pressure. Several plasma parame-
ters inclusive of gas temperature, vibrational tem-
perature, electron temperature and density can be 
successfully identified with the OES method in this 
study. 

The major spectra come from the second positive 
system (SPS) of N2(C3

u B3
g) , and the first nega-

tive system(FNS) of N2
+ (B2

u
+ X2

g
+)[21] with the 

relative concentration of N2(C3
u) much greater than 

that of N2
+(B2

u
+). The emitting species of N2(C3

u) 
and N2

+ (B2
u

+) mainly come from the following 
excitation processes out of the ground state of N2 

[23]. 

2 2N (X) N (C)   ( =11 eV)the e E     (1) 
+

2 2+ N (X) + + N (B)  e e e  
 ( 19 eV)thE             (2) 

where e is electron, Eth the transition energy, 1 
eV=11605 K. 

Other main dynamic/kinetic processes in this sur-
face discharge include[24-28] 

2 2N (X, ) N (X, )e e        (3) 

2 2

2 2

N (X, ) N (X, )
N (X, 1) N (X, 1)       (4) 

2 2 2 2N (X, ) N N (X, 1) N     (5) 

2 2 2 2 2N (C) N ,O N ,O product    (6) 

2 2N (C) N (B) h           (7) 

2 2 2 2 2N (B) N ,O N ,O product   (8) 

2 2N (B) N (X) h           (9) 
 

where  and  are the vibrational quantum numbers, 
h is the Planck constant.  

With the amplitude of applied voltage rising, the 
emission intensity increases thanks to the electric 
field strength augmenting. So does it with the driving 
frequency going up. 

Fig.3 illustrates the emission intensity that varies at 
337.1 nm in the x direction. The voltage waveform is 
sinusoidal. The applied voltage is 10 kV (peak to 
peak) and the driving frequency 23 kHz. A maximum 
can be observed in the vicinity of the upper electrode 

where the strength of electric field is the largest. 
 

 
Fig.3  Variation of emission intensity at 337.1 nm in x 

direction. 
 
During atmospheric discharge, the gas temperature 

can be estimated with the rotational temperature of a 
molecular because the rotational energy levels are 
closely spaced (10-3 eV) and allow for rapid energy 
transfer between the two energy modes[29]. The popu-
lation distribution at the rotational energy level of N2 
is also believed to comply with Boltzmann distribu-
tion due to dense collision between molecules. Here, 
the rotational temperature of N2 is acquired through 
fitting the N2 second positive system band from 378 
nm to 381 nm for the 380.5 nm ( =0, =2) N2 
line[30]. By assuming a rotational temperature and 
taking into account the dipole radiation probability 
and the response function of the monochrometer, the 
profile of a certain emission band can be calculated. 
Thus the actual rotational temperature(Tr) can be de-
termined by comparing the experimentally measured 
data to the theoretically calculated data. 

In the present atmospheric surface discharge, the 
vibrational excitation of nitrogen seems to be of the 
utmost importance. N2(C3

u) , which is not in a me-
tastable state, generates out of the ground-state elec-
tron impact excitation and the cascading effect is not 
important for the N2(C3

u) state population. There-
fore, the vibrational temperature can be determined 
according to the ratio of two lines in the N2(C) sec-
ond positive system[31]. The spectra lines at 371.1 nm 
and 380.5 nm are selected to be the base for calcu-
lating the vibrational temperature (Tv) as follows: 

371.1nm

380.5nm
1.138 4exp( 0.495 2 / )v

I
T

I
    (10) 

Given the amplitude of applied voltage equal to 10 
kV(peak to peak) and the driving frequency 23 kHz, 
the rotational and vibrational temperatures of 
N2(C3

u) are 0.043 eV and 0.22 eV respectively. The 
rotational temperature is insensitive to the applied 
voltage and the driving frequency[21] so is the vibra-
tional temperature (see Fig.4) . 
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Fig.4  Vibrational temperature vs applied voltage at dif-

ferent driving frequencies. 
 
The zero-dimensional rate balance equation in 

terms of the concentration, n , of molecules (where  
means the th vibrational level of the ground state) is 
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where Q and C are rate coefficients of collision. 

The rate balance equation for each excited state is:
For state N2(C), 
 

2 2 2

2 2

C
e N C C C C N N

C O O

d
d
n

n n Q A n n n Q
t

n n Q  (12) 
 
For state N2

+(B), 

2

2 2 2 2

B
e N B B B

B N N B O O

d
d
n n n Q A n

t
n n Q n n Q

     
(13) 

 
where A is the Einstein coefficient. 

The intensity ratio of optical emission line from 
FNS to SPS strongly depends on the electron tem-
perature or the energy distribution function for the 
electrons with the energy more than 11 eV because 
the excited thresholds of the two processes have a 
difference of about 8 eV[23]. According to Eq. (12) 
and Eq. (13) , the electron temperature (Te) can be 
calculated using the intensity ratio of 391.4 nm and 
380.5 nm: 

0391.4 0
0

380.5
( ) exp( )Cnm

e
nm e

I E
K T

I T
        (14) 

where K0, C0 and E0 are constants by fitting experi-
mental data. 

Eq.(12) and Eq.(13) evince that the relative inten-
sity of different vibrational levels of N2(X) is mainly 
determined by the electron density. According to the 
Frank-Condon principle, the distribution of vibra-
tional energy level of N2(C) can be found by using 
the changes in that of N2(X). Therefore, the ioniza-
tion rate n can be calculated through the ratio of the 
intensity at 371.1 nm to that at 380.5 nm: 

2371.1nm
0 1 2

380.5nm
lg( ) (lg )

I
C C n C n

I
  (15) 

The electron temperature is 1.63 eV and the elec-
tron density is 1.1×1011 cm-3 under the applied volt-
age of 10 kV. The driving frequency is 23 kHz. Un-
der one atmospheric pressure, the electron tempera-
ture is usually 1-2 eV because of frequent collision 
between electrons and molecules.

The variation of average electron temperature and 
density with the applied voltage is shown in Fig.5, 
which displays a slight dependence of the former two 
upon the latter with its frequency. The electron tem-
perature of a dielectric barrier discharge is strongly 
affected by the gas pressure because the colli-
sion-free path of the electrons mainly determines the 
energy obtainable by the electrons in the electric field. 
The frequent collision between electrons and mole-
cules governs the discharge process under one at-
mosphere pressure. 

 

 
 

Fig.5  Electron temperature and density vs applied volt-
age.

3. 2.  Characteristics of induced flow 

Fig.6 shows the induced body force in x direction 
vs the applied voltage with the driving frequency of 
23 kHz. From Fig.6, it can be seen that the body 
force increases from 11 mN to 65 mN, when the ap-
plied voltage rises from 8 kV to 12 kV. 



No.1 Wu Yun et al. / Chinese Journal of Aeronautics 23(2010) 39-45 · 43 · 

 

 
Fig.6  Body force in x direction induced by plasma aero-

dynamic actuation. 
 

Fig.7(a) shows the starting vortex induced by the 
steady plasma aerodynamic actuation in static 

 

 
Fig.7  Velocity and vorticity of starting vortex and di-

rected wall jet induced by steady plasma aerody-
namic actuation. 

air and Fig.7 (b) the equally induced directed wall jet. 
The starting vortex exists for about 1 s only and then 
changes into the directed wall jet about 70 mm 
downstream of the upper electrode. The induced flow 
velocity is 1.3 m/s at the applied voltage of 10 kV 
and the driving frequency of 23 kHz.

When the unsteady plasma aerodynamic actuation 
begins, the starting vortex seems stronger and lives 
longer for about 2 s; then it turns into a directed wall 
jet involving lots of tiny vortexes, about 50 mm 
downstream of the upper electrode (see Fig.8). This 
takes place in a stretch amounting to 70% of the cy-
cle time and at an excitation frequency 190 Hz.  The 
unsteady plasma aerodynamic actuation induces 
much more vortexes in the flow field. 

 

 
Fig.8  Velocity and vorticity of starting vortex  and di-

rected wall jet induced by unsteady plasma aero-
dynamic actuation. 

 
When the voltage waveform is a nanosecond pulse, 

not the sinusoidal pulse, the induced flow direction 
changes remarkably. The induced flow direction by 
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nanosecond discharge plasma aerodynamic actuation 
is not parallel, but vertical to the dielectric layer sur-
face (see Fig.9). The voltage pulse has a full wave at 
half maximum (FWHM) of 190 ns and a rise time of 
450 ns. The peak voltage and frequency are 10 kV 
and 1 kHz, respectively. 

 

 

 
 

Fig.9  Velocity and vorticity of starting vortex and di-
rected jet induced by nanosecond discharge plasma 
aerodynamic actuation. 

4. Conclusions 

In conclusion, the characteristics of both plasma 
and induced flow of the asymmetric surface dielectric 
barrier discharge plasma aerodynamic actuation has 
been experimentally investigated by optical emission 
spectroscopy diagnosis and measuring body force, 
velocity and vorticity.  

The rotational temperature is around 0.043 eV and 

the vibrational temperature 0.22 eV while the elec-
tron temperature is about 1.6 eV and the electron 
density 1.1×1011 cm-3. The applied voltage and the 
driving frequency do exert little effect on the vibra-
tional temperature, electron temperature and density. 
The body force induced by the plasma aerodynamic 
actuation is on the order of tens of mN. Starting vor-
texes do form once the actuation begins and then 
develop into a near-wall jet, about 70 mm down-
stream of the actuator. The unsteady actuation in-
duces much more vortexes in the flow field. The in-
duced flow direction by nanosecond discharge 
plasma aerodynamic actuation is vertical to the di-
electric layer surface. 
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