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Abstract 

Clark, D.S. and J.T. Lewis, Circular avoiding sequences with prescribed sum, Discrete Applied Mathe- 

matics 43 (1993) 27-36. 

For given positive integers x, n, and s an x-avoiding circular sequence (of positive integers) of length n 

and sum s has no set of consecutive terms summing to x’, even if wraparound is allowed. A necessary 

and sufficient condition for the existence of such a sequence is obtained. An effective method to 

construct avoiding sequences is given. For the cases of most interest the number of avoiding sequences 

is found. 

1. Introduction 

In [2-41 we introduced circular avoiding sequences and investigated the minimum 
sum of such a sequence. Given positive integers X, n, S, the finite sequence 
a,, a2, . . . , a, of positive integers is an x-avoiding circular sequence of length n with 
sum s if a, + .a. + a, =s and if no set of consecutive terms of the periodically ex- 
tended sequence al, . . . . a,,a,, . . . . a,, . . . sums to x; i.e., letting a,,+k=ak, k= 1,2, . . . , 
we have ai+ai+l +*a* + aj#X whenever 1 I isj. If the terms a,, . . . , a, are arranged 
in a circle, then no arc of terms sums to x, even if wraparound is allowed. For exam- 
ple the sequence 2,2,2 avoids every odd integer x but does not avoid any even integer 
x. For a nontrivial example expressed in the language of graphs, if a,, . . . , as9 
denote the edge weights of a cycle with total weight 187, then the results below en- 
sure the existence of a path with total weight 143. 
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Let a(n,x)=min{s: al,..., a,, is an x-avoiding circular sequence of length n with 

sum s}. Some known results (to which we will refer later) for an x-avoiding circular 

sequence of length n with sum s: 

(1) [2, p. 1051 We have s? 2n (hence a(n,x) 2 2n). Furthermore o(n,x) = 2n if 

and only if x/gcd(x,n) is odd. 

(2) [3, p. 2021 If gcd(x,2n+ l)> 1 then s#2n+ 1. 

(3) [3, p. 2001 The sequence al, . . . . a, with sum s>x is an x-avoiding circular se- 

quence if and only if a;+ai+i+**e+aj#x and a,+a;+,+*..+aj#s-x whenever 

1 Sisjln. 
Here, as usual, gcd(x, n) denotes the greatest common divisor of x and n. We will 

later write d 1 n when d divides n. Also Lkj will denote the greatest integer ‘: k and 

rkl will denote the least integer r k. 
Theorem 2.1 of Section 2 gives a necessary and sufficient condition for the 

existence of an x-avoiding circular sequence of length n with sum s. Its proof, which 

uses elementary graph concepts, suggests an efficient method to construct x- 

avoiding circular sequences. Several examples are given illustrating the proof and 

using the method. In Section 3 consequences of Theorem 2.1 for o(n,x) are ex- 

plored. In Section 4 we investigate the number, up to rotation, of x-avoiding circular 

sequences of length n with sum s and give uniqueness results. 

2. Existence theorem and examples 

This fundamental theorem and its proof (for s>x) is due to Hickerson [6] and 

is included with his permission. 

Theorem 2.1. Let x, n, s be positive integers. There exists an x-avoiding circular se- 
quence of length n with sum s if and only if 

(2.1) 

Proof. We first consider the main case s>x. Let a,, . . . , a, be an x-avoiding circular 

sequencewithsumsandsets,=O,sk=a,+~~~+ak,k=1,...,n-1,S={sg,...,s,_I}. 

Then 

(a) OES, 
(b) Sc{O,l,..., s-l}, 

(c) S has n elements, 

(d) t, u in S implies (t - U) fx (mod s). 

Property (d) follows from result (3) stated in the introduction. Conversely, a set S 

satisfying (a)-(d) determines an x-avoiding circular sequence of length n and sum 

s by ordering the elements of S as 0 = so<si < . ..<s._i and setting ak=sk-Sk-i, 

k= 1, . . . . n - 1 and a, =s -s,_, . Hence an x-avoiding circular sequence of length n 

with sum s exists if and only if a set S satisfying (a)-(d) exists. 
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Let G be the graph with vertex set (91, . . . , s- l> in which vertices t and u are 

joined by an edge when (t - u) = +x (mods). Then condition (d) means that S is an 

independent set in G; i.e., a set of vertices no two of which are adjacent. Hence an 

avoiding sequence of length n exists if and only if some independent set in G, which 

contains the vertex 0, has cardinality at least n. 

Each vertex t in G is adjacent only to (t +x) (mod s) and (t-x) (mods). Hence 

G is a disjoint union of cycles (single edges when s=2x). Further, t and u are in the 

same cycle (edge) if and only if u = (t + kx) (mod s) for some integer k, i.e., if and 

only if gcd(x,s) 1 (t-u). So the number of cycles (edges) is gcd(x,s) and each cycle 

(edge) has s/gcd(x, s) vertices. 

Clearly the largest independent set in a cycle (edge) with k vertices has cardinality 

Lk/2]. Hence the largest independent set in G has cardinality gcd(x,s) Ls/ 

(2 gcd(x,.s))j . Adding the restriction that the vertex 0 be in the independent set does 

not change this. So an x-avoiding circular sequence of length n with sum s exists if 

and only if (2.1) is satisfied. 

Next consider the case SIX and set x=qs+r with Osr<s. If r=O then no x- 

avoiding sequence with sum s exists nor is (2.1) satisfied. For rz 1, aI, . . . , a, is an 

x-avoiding circular sequence if and only if it is an r-avoiding circular sequence. We 

can now use the first case of the proof and the fact that gcd(r,s) =gcd(x,s) to com- 

plete the proof of this case. 0 

Examples. (1) x=8, n=6, s=2n+ l= 13. Here gcd(x,s)= 1, condition (2.1) is 

satisfied, and the graph G in the proof of Theorem 2.1 consists of the single cycle 

O-8-3-1 1-6-1-9-4-12-7-2-10-5-O obtained by starting with 0 and successively ad- 

ding 8(=x), modulo 13(=s). One choice of independent set S with cardinality 6(=n) 

containing the vertex 0 is S= {0,3,6,9,12,2}. Ordering the elements of S gives the 

sequence of partial sums s,: 0,2,3,6,9,12 and then the x-avoiding circular sequence 

a;: 2,1,3,3,3,1 as in the proof of Theorem 2.1. 

(2) x = 6, n = 7, s = 2n + 2 = 16. Here gcd(x, s) = 2 and G consists of the two cycles 

0-6-12-2-8-14-4-10-O and 1-7-13-3-9-15-5-11-1. Thechoice S={O, 12,8,4,1,13,9} 

givessj:0,1,4,8,9,12,13andai: 1,3,4,1,3,1,3. 

(3) x= 16, n=4, s=9. Here s<x and so we write (as in the second case of the 

above proof) x= qs+ r, or 16 = 1 .9 + 7. We now construct a 7-avoiding circular se- 

quence. In forming the graph G we replace x(=16) by r(=7) and obtain the single 

cycle (since gcd(x, s) = gcd(r, .s) = 1) O-7-5-3-1-8-6-4-2-0. Choosing S = { 0,5,1,6} 

gives s;: 0, 1,5,6 and a, : I, 4, I, 3. A final example where the graph G consists of 

vertex-disjoint edges is given in Section 4. 

3. Implications for a(n,x) 

The next result gives a convenient formulation of condition (2.1). We use the 

notation 

ez(k) = max{e: 2e ) k}. 
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Corollary 3.1. Let x, n, s be positive integers with s = 2n + r, rz 0. There exists an 
x-avoiding circular sequence of length n with sum s = 2n + r if and only if either 

gcd(x, 2n + r) I r or e2(2n + r) > e2(x). (3.1) 

Proof. Since 

! S 

2 gcd(x, s) ’ 
if eM> e2(x), 

S 

2 gcd(x, s) 
-l/2, if e,(s)ie2(x), 

the right-hand side of (2.1) equals 

i- 
s/2, if &) > e2@), 

I s-gcdks), 
2 

if e2(s) 5 ez(x). 

Since s = 2n + r, the corollary now follows from Theorem 2.1. q 

Remark. Using (2.1) and (3. l), result (1) in the introduction is recovered. Also from 

(3.1) we see that there exists an x-avoiding circular sequence of length n with sum 

s = 2n + 1 if and only if gcd(x, 2n + 1) = 1. This recovers result (2) of the introduction 

and proves its converse (conjectured in [3]). 

Since the minimum sum a(n,x) satisfies o(n,x)>2n, it is natural to consider the 

“excess” o(n,x) - 2n. We define m(x) = max,, 1 (o(n,x) - 212). It follows easily 

from Corollary 3.1 that 

m(x) = 
l 

0, if x is odd, 

1, if x=2k, k21. 

The next theorem contains a periodicity result for o(n,x) and further information 

on m(x). 

Theorem 3.2. Let x and n be positive integers. Then 
(1) a(n+x,x)=a(n,x)+2x, 

(2) m(x)=2, if x=4k+2, krl, 

(3) m(x)23, $41 x and ~#2~, all k> 1, 

(4) m(x)12e2(x)+‘-2. 

Proof. Part (1) follows from the fact that n, x, s satisfy (2.1) if and only if n+x, 

x, s+2x do. To prove (2) we have x=4k+2, kzl. If k is odd take n=k whereas 

if k is even, k = 2 j say, take n = 6 j + 1. In either case it follows from Corollary 3.1 

that o(n,x)z2n+2, i.e., m(x)>2. But m(x)52 is known [3, p. 2051. To prove (3), 
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let jz 3 be an odd divisor of x. Since j and 8 are relatively prime, there exists kr 0 

such that j 1 (8k + 3). Setting n = 4k + 1, it follows from Corollary 3.1 that a(n, x) 2 

2n + 3. To prove (4), note that there is some s in the interval 2n I SI 2n + 2e2(x)+ ’ - 2 

which is divisible by 2e2(X)+1. For this s, 2 gcd(x,s) [ s and condition (2.1) is 

satisfied. 0 

Remarks. (1) The proof of part (4) of Theorem 3.2 is due to Hickerson [6], who 

also showed that for any integer e? 0, there exists x such that e2(x) = e and equality 

holds in (4). 

(2) There does not exist a constant C such that m(x) 5 C for all x1 1. To see this, 

if x= k! and n = 1 then slk is impossible for an x-avoiding sequence and so 

m(x)zk-- 1. 

4. The number of avoiding sequences 

Any rotation aj, a;, i, . . . , a,, a,, . . . , ai_, of an x-avoiding circular sequence is one 

also. We are interested in formulas for the number, up to rotation, of x-avoiding 

circular sequences of length n with sum s, i.e., we do not count rotations as different 

sequences. The two cases of primary interest are s = 2n and s = 2n + 1. The latter case 

will be considered first; uniqueness was conjectured in [3] and proved in [6]. In 

Theorems 4.1 and 4.3 below @(d) is Euler’s function denoting the number of in- 

tegers k with 1 zzkld and gcd(k,d) = 1. 

Theorem 4.1. Let x, n, s be positive integers with gcd(x,s) = 1. 

(1) The number, up to rotation, of x-avoiding circular sequences of length n with 
sum s is equal to the number of solutions, up to rotation, in positive integers 

g,, ..*, g, of the equation g, + ... +g, =s- n. The number of these is 

(2) When gcd(x, 2n + 1) = 1, there is a unique, up to rotation, x-avoiding circular 
sequence of length n with sum s = 2n + 1. 

Proof. To prove (l), when gcd(x,s) = 1 the graph G in the proof of Theorem 2.1 

consists of a single cycle of length s. We temporarily revoke our agreement about 

rotations not being counted as different sequences. Then a solution of g, + ... + 

g, =s - n, all gir 1, defines an independent set S containing the vertex 0 as follows. 

Proceeding from vertex 0 on the cycle, omit g1 vertices and select the next one for 

S. Then omit g2 vertices and select the next one for S. Continuing, the independent 

set S thus obtained can be ordered to give a sequence si of partial sums and then 

a circular avoiding sequence a,. (In Example (1) of Section 2 the solution g, = 

.*.=g,=l, g,=2 of g,+ ... + g6 = 7 yields the S, si, ai given there.) This process 
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gives a one-to-one correspondence between solutions of g, + a.. + g, =s- n, all 

gill, and circular avoiding sequences. Now note that a rotation of g,, . . . , g, gives 

a translation modulo s of the corresponding independent set S, which in turn leads 

to a rotation of the corresponding circular avoiding sequence ai. Also, a rotation 

of a circular avoiding sequence ai can arise only from a rotation of the correspon- 

ding g; sequence. This establishes the first sentence of (1). 

To prove the second sentence of (l), we use aspects of the Polya theory of coun- 

ting; specifically, Burnside’s lemma [ 1, p. 3 lo]. Let C, denote the cyclic group of 

order n generated by the permutation I7=(1 2.e.n). If d is a divisor of n, each of 

the Q(d) permutations Z7kn’d with gcd(k, d) = 1 fixes the solutions of gl + ... + g, = 

s - n which consist of a block of length n/d repeated d times. The number of solu- 

tions of this type is the number of solutions in positive integers of g, + ... + g,,/d = 

(S - n)/d. As is well known [5, p. 31 this number is 

( 

(s-n)/d- 1 

n/d- 1 > 

if d 1 (s - n) and 0 otherwise. Hence by Burnside’s lemma the number of orbits (solu- 

tions of g, + .a+ + g, =s- n which are different under rotation) is 

(l/n) c {number of solutions fixed by Z7j) 
IZ’EC” 

= (l/n) 
d , g&-n) ‘(d) (@i;:; ’ ) * 

Since gcd(n, s - n) = gcd(n, s), the formula in (1) is obtained. 

Part (2) follows immediately from (l), since gl + *a* + g, = n + 1, all gi> 1, has the 

unique, up to rotation, solution gl = **. = g, _ 1 = 1, g, = 2. 0 

Example. x= 9, n = 10, s = 2n + 2 = 22. Here gcd(x,s) = 1 and so the number, up to 

rotation, of 9-avoiding circular sequences of length 10 with sum 22 equals the 

number, up to rotation, of solutions of g, + **.+gr,= 12, all gi? 1. It is easy to see 

there are six such solutions. This is also the result of the formula in (1). 

We now turn to the interesting case s = 2n, n =x. As we will see (Corollary 4.4) 

this will enable us to handle the case s=2n, n #X also. 

Example. n =x= 6, s= 12. The graph G in the proof of Theorem 2.1 consists of six 

edges O-6, l-7, 2-8, 3-9, 4-10, 5-l 1. There are 25 = 32 independent sets S which in- 

clude the vertex 0. These lead to the 6-avoiding sequences 111117, 111252, 112143, 

113412, 122322, 131313. Each of the first five of these sequences appears as six dif- 

ferent rotations, whereas 131313 has minimum period 2 and only two different 

rotations. 

In general, if a sequence has minimum period d, then d 1 n and the sequence con- 
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sists of a block of length d repeated n/d times. The sequence has d different 

rotations. 

Recall the classical Mobius function ,Y defined, for positive integer m =ppl-..pp’ 
(prime factorization) by 

II 

1, if m=l, 

p(m)= 0, if any ai> 1, 

(-I)‘, if a, = . ..=o.=l* 

A known property [5, p. lo] needed below is 

dyn Ad) = 
1, ifm=l, 

, 0, if m>l. 

The next lemma, a modification of the classical Mobius Inversion Formula [5, 

p. 111, will be used in proving part (6) of Theorem 4.3 below. 

Lemma 4.2. Let f, g be real functions defined on the set of positive integers. 

If 
f(n) = dc g(d) 

then 

n 
n/d odd 

Proof. 

g(n) = dy M)fWO 

dodnd 

dyn &Of (n/d) 

dodd 

= dT,l pu(4 d ,&dj g(d’) 
’ n 

dodd (n/d)/d’odd 

= cd;,i’D NMd’) where D={(d,d’): d 1 n, dodd, d’ 1 (n/d), 
(n/d)/d’ odd) 

where E = { (6, e): e ) n, n/e odd, 6 1 (n/e)} 

= eTn g(e) 6 ,FieJ ~(6) = g(n). 
n 

n/e odd 

The third equation follows from the easily verified fact that D = E. The last equa- 

tion follows from 

fY if n’e=1, 
0, if n/e>l. Cl 
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Theorem 4.3. For positive integer n, let T(n) be the number, up to rotation, of n- 
avoiding circular sequences of length n with sum s = 2n. Let N(n) be the number, 
up to rotation, of such sequences with minimum period n. Then 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

T(n)> r2”-l/nl. 

T(n) = c N(d). 
din 

n/d odd 

c dN(d) = 2”-‘. 
din 

n/d odd 

For odd prime p, N(p) = (2p-’ - 1)/p and T(p) = N(p) + 1. 

T(2k)=N(2k)=22k-k-1, h>l. 

N(n)=(l/n) dT ,u(d)2”‘d-‘. 
n 

d odd 

T(n) = (l/n) c @(d)2”‘d-‘. 
din 
d odd 

Proof. To prove (l), note that the graph G in the proof of Theorem 2.1 consists 

of n vertex-disjoint edges; hence there are 2”-’ independent sets S containing the 

vertex 0. There is a one-to-one correspondence between these and avoiding se- 

quences (with rotations considered as different sequences). But each sequence has 

at most n different rotations. To prove (2), note that each avoiding sequence 

counted in T(n) having minimum period d, where d 1 n, consists of a block of length 

d repeated n/d times. This block must sum to 2d and be a d-avoiding circular se- 

quence (since n = d(n/d) is avoided), i.e., the block is a sequence counted in N(d). 
Also n/d must be odd since n is avoided. Conversely, each d-avoiding sequence 

counted in N(d), where d / n and n/d is odd, can be periodically extended to an n- 
avoiding sequence of length n counted in T(n). Part (3) is proved similarly, noting 

that a sequence with minimum period d has d different rotations. The first equation 

of (4) is immediate, since (3) gives N(1) +pN(p) = 2p- ’ and we have N(1) = 1. The 

second equation of (4) follows from (2). The first equation of (5) also follows from 

(2), since d ) 2k, 2k/d odd implies d = 2 k. For the second equation in (5), we have 

only d = 2k in (3) and so 2kN(2k) = 22k- ‘. Using (3) and the lemma (with f(n)= 
2”-l, g(n)=nN(n)) we obtain (6). To prove (7), we substitute (6) into (2), collect 

terms with the same power of 2 displayed, and use the well-known formula [ 1, p. 771 

,;, /M’)/d’ = @@)/a 

as follows: 

T(n) = dT 
n 

n/d odd 

c u(d’)2d’d’-’ 
d’ Id 1 
d’ odd 
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6 ddd 

= (l/n) c @(8)2+i. 
dlfl 
6 odd 

Remark. T(29 =N(2k) =22k-k-1 is also 

length 2kt ‘, cf. [5, p. 1101. It would be 

respondence. 

the number of DeBruijn sequences of 

interesting to exhibit a one-to-one cor- 

Corollary 4.4. Let x and n be positive integers with d = gcd(x, n). Then the number, 
up to rotation, of x-avoiding circular sequences with sum s=2n equals 

I 

T(d), if x/d is odd, 

0, $x/d is even 

where T(d) is defined in Theorem 4.3. 

Proof. By [3, p. 2001 such a sequence consists of a block of length d, summing to 

2d and avoiding d, repeated n/d times. (The minimum period of the sequence need 

not be d.) There are, up to rotation, T(d) such sequences when x/d is odd. When 

x/d is even there are no such sequences (result (1) in the introduction). 0 

Example. x= 100, n= 140. Using Corollary 4.4 and Theorem 4.3, the number, up 

Table 1 
Number of n-avoiding circular sequences of 

length n with sum 2n 

n N(n) T(n) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

16 

20 

1 

1 
1 

2 

3 

5 

9 

16 

28 

51 

2,048 

26,214 

1 

2 

2 

4 

6 

10 

16 

30 

52 

2,048 

26,216 
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to rotation, of lOO-avoiding circular sequences of length n = 140 with sum s = 2n = 280 

is (since d= gcd(100,140) = 20) 

T(20) = (l/20) c @(d)2”‘d-1 = (1/20)[2’9+4.23] = 26,216. 
din 

dodd 

Using Theorem 4.3 we can easily compute the entries in Table 1. We note that 

the smallest value of n for which the inequality (1) of Theorem 4.3 is strict is n = 9. 

Remark. We have uniqueness, up to rotation, of x-avoiding circular sequences of 

length n with sum s in these cases: 

(1) s=2n+l, gcd(x,2n+l)=l (Theorem 4.1), 

(2) s= 2n, x/gcd(x, n) odd, gcd(x, n) = 1 or 2 (Corollary 4.4 and Table 1). 

It can be shown that, when n> 1, these are the only instances of uniqueness. 
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