Circular avoiding sequences with prescribed sum

Dean S. Clark and James T. Lewis
Department of Mathematics, The University of Rhode Island, Kingston, RI 02881, USA
Received 21 June 1990
Revised 19 March 1991

Abstract

Clark, D.S. and J.T. Lewis, Circular avoiding sequences with prescribed sum, Discrete Applied Mathematics 43 (1993) 27-36.

For given positive integers x, n, and s an x-avoiding circular sequence (of positive integers) of length n and sum s has no set of consecutive terms summing to x, even if wraparound is allowed. A necessary and sufficient condition for the existence of such a sequence is obtained. An effective method to construct avoiding sequences is given. For the cases of most interest the number of avoiding sequences is found.

1. Introduction

In [2-4] we introduced circular avoiding sequences and investigated the minimum sum of such a sequence. Given positive integers x, n, s, the finite sequence $a_{1}, a_{2}, \ldots, a_{n}$ of positive integers is an x-avoiding circular sequence of length n with sum s if $a_{1}+\cdots+a_{n}=s$ and if no set of consecutive terms of the periodically extended sequence $a_{1}, \ldots, a_{n}, a_{1}, \ldots, a_{n}, \ldots$ sums to x; i.e., letting $a_{n+k}=a_{k}, k=1,2, \ldots$, we have $a_{i}+a_{i+1}+\cdots+a_{j} \neq x$ whenever $1 \leq i \leq j$. If the terms a_{1}, \ldots, a_{n} are arranged in a circle, then no arc of terms sums to x, even if wraparound is allowed. For example the sequence $2,2,2$ avoids every odd integer x but does not avoid any even integer x. For a nontrivial example expressed in the language of graphs, if a_{1}, \ldots, a_{89} denote the edge weights of a cycle with total weight 187 , then the results below ensure the existence of a path with total weight 143.

[^0]Let $\sigma(n, x)=\min \left\{s: a_{1}, \ldots, a_{n}\right.$ is an x-avoiding circular sequence of length n with sum $s\}$. Some known results (to which we will refer later) for an x-avoiding circular sequence of length n with sum s :
(1) [2, p. 105] We have $s \geq 2 n$ (hence $\sigma(n, x) \geq 2 n)$. Furthermore $\sigma(n, x)=2 n$ if and only if $x / \operatorname{gcd}(x, n)$ is odd.
(2) $[3$, p. 202] If $\operatorname{gcd}(x, 2 n+1)>1$ then $s \neq 2 n+1$.
(3) [3, p. 200] The sequence a_{1}, \ldots, a_{n} with sum $s>x$ is an x-avoiding circular sequence if and only if $a_{i}+a_{i+1}+\cdots+a_{j} \neq x$ and $a_{i}+a_{i+1}+\cdots+a_{j} \neq s-x$ whenever $1 \leq i \leq j \leq n$.

Here, as usual, $\operatorname{gcd}(x, n)$ denotes the greatest common divisor of x and n. We will later write $d \mid n$ when d divides n. Also $\lfloor k\rfloor$ will denote the greatest integer $\leq k$ and $\lceil k\rceil$ will denote the least integer $\geq k$.
Theorem 2.1 of Section 2 gives a necessary and sufficient condition for the existence of an x-avoiding circular sequence of length n with sum s. Its proof, which uses elementary graph concepts, suggests an efficient method to construct x avoiding circular sequences. Several examples are given illustrating the proof and using the method. In Section 3 consequences of Theorem 2.1 for $\sigma(n, x)$ are explored. In Section 4 we investigate the number, up to rotation, of x-avoiding circular sequences of length n with sum s and give uniqueness results.

2. Existence theorem and examples

This fundamental theorem and its proof (for $s>x$) is due to Hickerson [6] and is included with his permission.

Theorem 2.1. Let x, n, s be positive integers. There exists an x-avoiding circular sequence of length n with sum sif and only if

$$
\begin{equation*}
n \leq \operatorname{gcd}(x, s)\left\lfloor\frac{s}{2 \operatorname{gcd}(x, s)}\right\rfloor . \tag{2.1}
\end{equation*}
$$

Proof. We first consider the main case $s>x$. Let a_{1}, \ldots, a_{n} be an x-avoiding circular sequence with sum s and set $s_{0}=0, s_{k}=a_{1}+\cdots+a_{k}, k=1, \ldots, n-1, S=\left\{s_{0}, \ldots, s_{n-1}\right\}$. Then
(a) $0 \in S$,
(b) $S \subseteq\{0,1, \ldots, s-1\}$,
(c) S has n elements,
(d) t, u in S implies $(t-u) \equiv x(\bmod s)$.

Property (d) follows from result (3) stated in the introduction. Conversely, a set S satisfying (a)-(d) determines an x-avoiding circular sequence of length n and sum s by ordering the elements of S as $0=s_{0}<s_{1}<\cdots<s_{n \cdot 1}$ and setting $a_{k}=s_{k}-s_{k-1}$, $k=1, \ldots, n-1$ and $a_{n}=s-s_{n-1}$. Hence an x-avoiding circular sequence of length n with sum s exists if and only if a set S satisfying (a)-(d) exists.

Let G be the graph with vertex set $\{0,1, \ldots, s-1\}$ in which vertices t and u are joined by an edge when $(t-u) \equiv \pm x(\bmod s)$. Then condition (d) means that S is an independent set in G; i.e., a set of vertices no two of which are adjacent. Hence an avoiding sequence of length n exists if and only if some independent set in G, which contains the vertex 0 , has cardinality at least n.

Each vertex t in G is adjacent only to $(t+x)(\bmod s)$ and $(t-x)(\bmod s)$. Hence G is a disjoint union of cycles (single edges when $s=2 x$). Further, t and u are in the same cycle (edge) if and only if $u \equiv(t+k x)(\bmod s)$ for some integer k, i.e., if and only if $\operatorname{gcd}(x, s) \mid(t-u)$. So the number of cycles (edges) is $\operatorname{gcd}(x, s)$ and each cycle (edge) has $s / \operatorname{gcd}(x, s)$ vertices.

Clearly the largest independent set in a cycle (edge) with k vertices has cardinality $\lfloor k / 2\rfloor$. Hence the largest independent set in G has cardinality $\operatorname{gcd}(x, s)\lfloor s /$ $(2 \operatorname{gcd}(x, s))\rfloor$. Adding the restriction that the vertex 0 be in the independent set does not change this. So an x-avoiding circular sequence of length n with sum s exists if and only if (2.1) is satisfied.

Next consider the case $s \leq x$ and set $x=q s+r$ with $0 \leq r<s$. If $r=0$ then no x avoiding sequence with sum s exists nor is (2.1) satisfied. For $r \geq 1, a_{1}, \ldots, a_{n}$ is an x-avoiding circular sequence if and only if it is an r-avoiding circular sequence. We can now use the first case of the proof and the fact that $\operatorname{gcd}(r, s)=\operatorname{gcd}(x, s)$ to complete the proof of this case.

Examples. (1) $x=8, n=6, s=2 n+1=13$. Here $\operatorname{gcd}(x, s)=1$, condition (2.1) is satisfied, and the graph G in the proof of Theorem 2.1 consists of the single cycle $0-8-3-11-6-1-9-4-12-7-2-10-5-0$ obtained by starting with 0 and successively adding $8(=x)$, modulo $13(=s)$. One choice of independent set S with cardinality $6(=n)$ containing the vertex 0 is $S=\{0,3,6,9,12,2\}$. Ordering the elements of S gives the sequence of partial sums $s_{i}: 0,2,3,6,9,12$ and then the x-avoiding circular sequence $a_{i}: 2,1,3,3,3,1$ as in the proof of Theorem 2.1.
(2) $x=6, n=7, s=2 n+2=16$. Here $\operatorname{gcd}(x, s)=2$ and G consists of the two cycles $0-6-12-2-8-14-4-10-0$ and 1-7-13-3-9-15-5-11-1. The choice $S=\{0,12,8,4,1,13,9\}$ gives $s_{i}: 0,1,4,8,9,12,13$ and $a_{i}: 1,3,4,1,3,1,3$.
(3) $x=16, n=4, s=9$. Here $s<x$ and so we write (as in the second case of the above proof) $x=q s+r$, or $16=1 \cdot 9+7$. We now construct a 7 -avoiding circular sequence. In forming the graph G we replace $x(=16)$ by $r(=7)$ and obtain the single cycle (since $\operatorname{gcd}(x, s)=\operatorname{gcd}(r, s)=1$) 0-7-5-3-1-8-6-4-2-0. Choosing $S=\{0,5,1,6\}$ gives $s_{i}: 0,1,5,6$ and $a_{i}: 1,4,1,3$. A final example where the graph G consists of vertex-disjoint edges is given in Section 4.

3. Implications for $\boldsymbol{\sigma}(\boldsymbol{n}, \boldsymbol{x})$

The next result gives a convenient formulation of condition (2.1). We use the notation

$$
e_{2}(k)=\max \left\{e: 2^{e} \mid k\right\} .
$$

Corollary 3.1. Let x, n, s be positive integers with $s=2 n+r, r \geq 0$. There exists an x-avoiding circular sequence of length n with sum $s=2 n+r$ if and only if either

$$
\begin{equation*}
\operatorname{gcd}(x, 2 n+r) \leq r \quad \text { or } \quad e_{2}(2 n+r)>e_{2}(x) . \tag{3.1}
\end{equation*}
$$

Proof. Since

$$
\left\lfloor\frac{s}{2 \operatorname{gcd}(x, s)}\right\rfloor= \begin{cases}\frac{s}{2 \operatorname{gcd}(x, s)}, & \text { if } e_{2}(s)>e_{2}(x) \\ \frac{s}{2 \operatorname{gcd}(x, s)}, 1 / 2, & \text { if } e_{2}(s) \leq e_{2}(x)\end{cases}
$$

the right-hand side of (2.1) equals

$$
\begin{cases}s / 2, & \text { if } e_{2}(s)>e_{2}(x) \\ \frac{s-\operatorname{gcd}(x, s),}{2} & \text { if } e_{2}(s) \leq e_{2}(x)\end{cases}
$$

Since $s=2 n+r$, the corollary now follows from Theorem 2.1.
Remark. Using (2.1) and (3.1), result (1) in the introduction is recovered. Also from (3.1) we see that there exists an x-avoiding circular sequence of length n with sum $s=2 n+1$ if and only if $\operatorname{gcd}(x, 2 n+1)=1$. This recovers result (2) of the introduction and proves its converse (conjectured in [3]).

Since the minimum sum $\sigma(n, x)$ satisfies $\sigma(n, x) \geq 2 n$, it is natural to consider the "excess" $\sigma(n, x)-2 n$. We define $m(x)=\max _{n \geq 1}(\sigma(n, x)-2 n)$. It follows easily from Corollary 3.1 that

$$
m(x)= \begin{cases}0, & \text { if } x \text { is odd } \\ 1, & \text { if } x=2^{k}, k \geq 1\end{cases}
$$

The next theorem contains a periodicity result for $\sigma(n, x)$ and further information on $m(x)$.

Theorem 3.2. Let x and n be positive integers. Then
(1) $\sigma(n+x, x)=\sigma(n, x)+2 x$,
(2) $m(x)=2$, if $x=4 k+2, k \geq 1$,
(3) $m(x) \geq 3$, if $4 \mid x$ and $x \neq 2^{k}$, all $k \geq 1$,
(4) $m(x) \leq 2^{e_{2}(x)+1}-2$.

Proof. Part (1) follows from the fact that n, x, s satisfy (2.1) if and only if $n+x$, $x, s+2 x$ do. To prove (2) we have $x=4 k+2, k \geq 1$. If k is odd take $n=k$ whereas if k is even, $k=2 j$ say, take $n=6 j+1$. In either case it follows from Corollary 3.1 that $\sigma(n, x) \geq 2 n+2$, i.e., $m(x) \geq 2$. But $m(x) \leq 2$ is known [3, p. 205]. To prove (3),
let $j \geq 3$ be an odd divisor of x. Since j and 8 are relatively prime, there exists $k \geq 0$ such that $j \mid(8 k+3)$. Setting $n=4 k+1$, it follows from Corollary 3.1 that $\sigma(n, x) \geq$ $2 n+3$. To prove (4), note that there is some s in the interval $2 n \leq s \leq 2 n+2^{e_{2}(x)+1}-2$ which is divisible by $2^{e_{2}(x)+1}$. For this $s, 2 \operatorname{gcd}(x, s) \mid s$ and condition (2.1) is satisfied.

Remarks. (1) The proof of part (4) of Theorem 3.2 is due to Hickerson [6], who also showed that for any integer $e \geq 0$, there exists x such that $e_{2}(x)=e$ and equality holds in (4).
(2) There does not exist a constant C such that $m(x) \leq C$ for all $x \geq 1$. To see this, if $x=k$! and $n=1$ then $s \leq k$ is impossible for an x-avoiding sequence and so $m(x) \geq k-1$.

4. The number of avoiding sequences

Any rotation $a_{i}, a_{i+1}, \ldots, a_{n}, a_{1}, \ldots, a_{i-1}$ of an x-avoiding circular sequence is one also. We are interested in formulas for the number, up to rotation, of x-avoiding circular sequences of length n with sum s, i.e., we do not count rotations as different sequences. The two cases of primary interest are $s=2 n$ and $s=2 n+1$. The latter case will be considered first; uniqueness was conjectured in [3] and proved in [6]. In Theorems 4.1 and 4.3 below $\phi(d)$ is Euler's function denoting the number of integers k with $1 \leq k \leq d$ and $\operatorname{gcd}(k, d)=1$.

Theorem 4.1. Let x, n, s be positive integers with $\operatorname{gcd}(x, s)=1$.
(1) The number, up to rotation, of x-avoiding circular sequences of length n with sum s is equal to the number of solutions, up to rotation, in positive integers g_{1}, \ldots, g_{n} of the equation $g_{1}+\cdots+g_{n}=s-n$. The number of these is

$$
(1 / n) \sum_{d \mid \operatorname{gcd}(n, s)} \phi(d)\binom{(s-n) / d-1}{n / d-1} .
$$

(2) When $\operatorname{gcd}(x, 2 n+1)=1$, there is a unique, up to rotation, x-avoiding circular sequence of length n with sum $s=2 n+1$.

Proof. To prove (1), when $\operatorname{gcd}(x, s)=1$ the graph G in the proof of Theorem 2.1 consists of a single cycle of length s. We temporarily revoke our agreement about rotations not being counted as different sequences. Then a solution of $g_{1}+\cdots+$ $g_{n}=s-n$, all $g_{i} \geq 1$, defines an independent set S containing the vertex 0 as follows. Proceeding from vertex 0 on the cycle, omit g_{1} vertices and select the next one for S. Then omit g_{2} vertices and select the next one for S. Continuing, the independent set S thus obtained can be ordered to give a sequence s_{i} of partial sums and then a circular avoiding sequence a_{i}. (In Example (1) of Section 2 the solution $g_{1}=$ $\cdots=g_{5}=1, g_{6}=2$ of $g_{1}+\cdots+g_{6}=7$ yields the S, s_{i}, a_{i} given there.) This process
gives a one-to-one correspondence between solutions of $g_{1}+\cdots+g_{n}=s-n$, all $g_{i} \geq 1$, and circular avoiding sequences. Now note that a rotation of g_{1}, \ldots, g_{n} gives a translation modulo s of the corresponding independent set S, which in turn leads to a rotation of the corresponding circular avoiding sequence a_{i}. Also, a rotation of a circular avoiding sequence a_{i} can arise only from a rotation of the corresponding g_{i} sequence. This establishes the first sentence of (1).

To prove the second sentence of (1), we use aspects of the Polya theory of counting; specifically, Burnside's lemma [1, p. 310]. Let C_{n} denote the cyclic group of order n generated by the permutation $\Pi=(12 \cdots n)$. If d is a divisor of n, each of the $\phi(d)$ permutations $\Pi^{k n / d}$ with $\operatorname{gcd}(k, d)=1$ fixes the solutions of $g_{1}+\cdots+g_{n}=$ $s-n$ which consist of a block of length n / d repeated d times. The number of solutions of this type is the number of solutions in positive integers of $g_{1}+\cdots+g_{n / d}=$ $(s-n) / d$. As is well known [5, p. 3] this number is

$$
\binom{(s-n) / d-1}{n / d-1}
$$

if $d \mid(s-n)$ and 0 otherwise. Hence by Burnside's lemma the number of orbits (solutions of $g_{1}+\cdots+g_{n}=s-n$ which are different under rotation) is

$$
\begin{aligned}
& (1 / n) \sum_{\Pi^{j} \in C_{n}}\left\{\text { number of solutions fixed by } \Pi^{j}\right\} \\
& =(1 / n) \sum_{d \mid \operatorname{gdd}(n, s-n)} \phi(d)\binom{(s-n) / d-1}{n / d-1}
\end{aligned}
$$

Since $\operatorname{gcd}(n, s-n)=\operatorname{gcd}(n, s)$, the formula in (1) is obtained.
Part (2) follows immediately from (1), since $g_{1}+\cdots+g_{n}=n+1$, all $g_{i} \geq 1$, has the unique, up to rotation, solution $g_{1}=\cdots=g_{n-1}=1, g_{n}=2$.

Example. $x=9, n=10, s=2 n+2=22$. Here $\operatorname{gcd}(x, s)=1$ and so the number, up to rotation, of 9 -avoiding circular sequences of length 10 with sum 22 equals the number, up to rotation, of solutions of $g_{1}+\cdots+g_{10}=12$, all $g_{i} \geq 1$. It is easy to see there are six such solutions. This is also the result of the formula in (1).

We now turn to the interesting case $s=2 n, n=x$. As we will see (Corollary 4.4) this will enable us to handle the case $s=2 n, n \neq x$ also.

Example. $n=x=6, s=12$. The graph G in the proof of Theorem 2.1 consists of six edges $0-6,1-7,2-8,3-9,4-10,5-11$. There are $2^{5}=32$ independent sets S which include the vertex 0 . These lead to the 6 -avoiding sequences 111117, 111252, 112143, 113412, 122322, 131313. Each of the first five of these sequences appears as six different rotations, whereas 131313 has minimum period 2 and only two different rotations.

In general, if a sequence has minimum period d, then $d \mid n$ and the sequence con-
sists of a block of length d repeated n / d times. The sequence has d different rotations.

Recall the classical Möbius function μ defined, for positive integer $m=p_{1}^{\alpha_{1}} \cdots p_{t}^{\alpha_{t}}$ (prime factorization) by

$$
\mu(m)= \begin{cases}1, & \text { if } m=1 \\ 0, & \text { if any } \alpha_{i}>1 \\ (-1)^{t}, & \text { if } \alpha_{1}=\cdots=\alpha_{t}=1\end{cases}
$$

A known property [5, p. 10] needed below is

$$
\sum_{d _{m}} \mu(d)= \begin{cases}1, & \text { if } m=1 \\ 0, & \text { if } m>1\end{cases}
$$

The next lemma, a modification of the classical Möbius Inversion Formula [5, p. 11], will be used in proving part (6) of Theorem 4.3 below.

Lemma 4.2. Let f, g be real functions defined on the set of positive integers.
If
then

$$
f(n)=\sum_{\substack{\left.d\right|_{n} \\ n / d \text { odd }}} g(d)
$$

$$
g(n)=\sum_{\substack{\left.d\right|_{n} \\ d \text { odd }}} \mu(d) f(n / d)
$$

Proof.

$$
\begin{aligned}
& \sum_{\substack{d \mid n \\
d \text { odd }}} \mu(d) f(n / d) \\
& \quad=\sum_{\substack{d \mid n \\
d \text { odd }}} \mu(d) \sum_{\substack{d^{\prime} \mid(n / d) \\
(n / d)^{\prime} / d^{\prime} \text { odd }}} g\left(d^{\prime}\right) \\
& \quad=\sum_{\left(d, d^{\prime}\right) \in D} \mu(d) g\left(d^{\prime}\right) \text { where } D=\left\{\left(d, d^{\prime}\right): d \mid n, d \text { odd, } d^{\prime} \mid(n / d),\right. \\
& \quad=\sum_{(\delta, e) \in E} \sum_{\left.(n / d) / d^{\prime} \text { odd }\right\}} \mu(\delta) g(e) \text { where } E=\{(\delta, e): e \mid n, n / e \text { odd, } \delta \mid(n / e)\} \\
& =\sum_{\substack{e \mid n \\
n / e \text { odd }}} g(e) \sum_{\delta \mid(n / e)} \mu(\delta)=g(n) .
\end{aligned}
$$

The third equation follows from the easily verified fact that $D=E$. The last equation follows from

$$
\sum_{\delta \mid(n / e)} \mu(\delta)= \begin{cases}1, & \text { if } n / e=1 \\ 0, & \text { if } n / e>1\end{cases}
$$

Theorem 4.3. For positive integer n, let $T(n)$ be the number, up to rotation, of n avoiding circular sequences of length n with sum $s=2 n$. Let $N(n)$ be the number, up to rotation, of such sequences with minimum period n. Then

$$
\begin{equation*}
T(n) \geq\left\lceil 2^{n-1} / n\right\rceil \tag{1}
\end{equation*}
$$

(4) For odd prime $p, N(p)=\left(2^{p-1}-1\right) / p$ and $T(p)=N(p)+1$.
(5) $\quad T\left(2^{k}\right)=N\left(2^{k}\right)=2^{2^{k} \cdots}{ }^{1}, k \geqq 1$.

$$
\begin{equation*}
N(n)=(1 / n) \sum_{\substack{d \mid n \\ d \text { odd }}} \mu(d) 2^{n / d-1} . \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
T(n)=(1 / n) \sum_{\substack{d \mid n \\ d \text { odd }}} \phi(d) 2^{n / d-1} . \tag{7}
\end{equation*}
$$

Proof. To prove (1), note that the graph G in the proof of Theorem 2.1 consists of n vertex-disjoint edges; hence there are 2^{n-1} independent sets S containing the vertex 0 . There is a one-to-one correspondence between these and avoiding sequences (with rotations considered as different sequences). But each sequence has at most n different rotations. To prove (2), note that each avoiding sequence counted in $T(n)$ having minimum period d, where $d \mid n$, consists of a block of length d repeated n / d times. This block must sum to $2 d$ and be a d-avoiding circular sequence (since $n=d(n / d)$ is avoided), i.e., the block is a sequence counted in $N(d)$. Also n / d must be odd since n is avoided. Conversely, each d-avoiding sequence counted in $N(d)$, where $d \mid n$ and n / d is odd, can be periodically extended to an $n-$ avoiding sequence of length n counted in $T(n)$. Part (3) is proved similarly, noting that a sequence with minimum period d has d different rotations. The first equation of (4) is immediate, since (3) gives $N(1)+p N(p)=2^{p-1}$ and we have $N(1)=1$. The second equation of (4) follows from (2). The first equation of (5) also follows from (2), since $d \mid 2^{k}, 2^{k} / d$ odd implies $d=2^{k}$. For the second equation in (5), we have only $d=2^{k}$ in (3) and so $2^{k} N\left(2^{k}\right)=2^{2^{k}-1}$. Using (3) and the lemma (with $f(n)=$ $2^{n-1}, g(n)=n N(n)$) we obtain (6). To prove (7), we substitute (6) into (2), collect terms with the same power of 2 displayed, and use the well-known formula [1, p. 77]

$$
\sum_{d^{\prime} \mid \delta} \mu\left(d^{\prime}\right) / d^{\prime}=\phi(\delta) / \delta
$$

as follows:

$$
T(n)=\sum_{\substack{d \mid n \\ n / d \text { odd }}}(1 / d)\left[\sum_{\substack{d^{\prime} \mid d d \\ d^{\prime} \text { odd }}} \mu\left(d^{\prime}\right) 2^{d / d^{\prime}-1}\right]
$$

$$
\begin{aligned}
& =\sum_{\substack{\delta \mid n \\
\delta \text { odd }}}\left[\sum_{d^{\prime} \mid \delta} \frac{\mu\left(d^{\prime}\right)}{(n / \delta) d^{\prime}}\right] 2^{n / \delta-1} \\
& =(1 / n) \sum_{\substack{\delta \mid n \\
\delta \text { odd }}} \phi(\delta) 2^{n / \delta-1}
\end{aligned}
$$

Remark. $T\left(2^{k}\right)=N\left(2^{k}\right)=2^{2^{k}-k-1}$ is also the number of DeBruijn sequences of length 2^{k+1}, cf. [5, p. 110]. It would be interesting to exhibit a one-to-one correspondence.

Corollary 4.4. Let x and n he positive integers with $d=\operatorname{gcd}(x, n)$. Then the number, up to rotation, of x-avoiding circular sequences with sum $s=2 n$ equals

$$
\begin{cases}T(d), & \text { if } x / d \text { is odd } \\ 0, & \text { if } x / d \text { is even }\end{cases}
$$

where $T(d)$ is defined in Theorem 4.3.
Proof. By [3, p. 200] such a sequence consists of a block of length d, summing to $2 d$ and avoiding d, repeated n / d times. (The minimum period of the sequence need not be d.) There are, up to rotation, $T(d)$ such sequences when x / d is odd. When x / d is even there are no such sequences (result (1) in the introduction).

Example. $x=100, n=140$. Using Corollary 4.4 and Theorem 4.3, the number, up

Table 1
Number of n-avoiding circular sequences of length n with sum $2 n$

n	$N(n)$	$T(n)$
1	1	1
2	1	1
3	1	2
4	2	2
5	3	4
6	5	6
7	9	10
8	16	16
9	28	30
10	51	52
16	2,048	2,048
20	26,214	26,216

to rotation, of 100 -avoiding circular sequences of length $n=140$ with sum $s=2 n=280$ is (since $d=\operatorname{gcd}(100,140)=20)$

$$
T(20)=(1 / 20) \sum_{\substack{d \mid n \\ d \text { odd }}} \phi(d) 2^{n / d-1}=(1 / 20)\left[2^{19}+4 \cdot 2^{3}\right]=26,216
$$

Using Theorem 4.3 we can easily compute the entries in Table 1. We note that the smallest valuc of n for which the incquality (1) of Theorem 4.3 is strict is $n=9$.

Remark. We have uniqueness, up to rotation, of x-avoiding circular sequences of length n with sum s in these cases:
(1) $s=2 n+1, \operatorname{gcd}(x, 2 n+1)=1$ (Theorem 4.1),
(2) $s=2 n, x / \operatorname{gcd}(x, n)$ odd, $\operatorname{gcd}(x, n)=1$ or 2 (Corollary 4.4 and Table 1).

It can be shown that, when $n>1$, these are the only instances of uniqueness.

Acknowledgement

We are deeply indebted to Dean Hickerson for his generosity in allowing us to use his work. Thanks also to a referee for nice additions.

References

[1] N.L. Biggs, Discrete Mathematics (Oxford University Press, Oxford, 1985).
[2] D.S. Clark and J.T. Lewis, Avoiding-sequences with minimum sum, Discrete Appl. Math. 22 (1988/89) 103-108.
[3] D.S. Clark and J.T. Lewis, Circular avoiding-sequences with minimum sum, Congr. Numer. 70 (1990) 199-206.
[4] D.S. Clark and J.T. Lewis, Herbert and the Hungarian mathematician, College Math. J. 21 (1990) 100-104.
[5] M. Hall, Combinatorial Theory (Wiley, New York, 2nd ed., 1986).
[6] D. Hickerson, Private communication.

[^0]: Correspondence to: Professor J.T. Lewis, Department of Mathematics, University of Rhode Island, Kingston, RI 02881, USA.

