A Characterization of Clique Graphs*

FRED S. ROBERTS AND JOEL H. SPENCER

The RAND Corporation, Santa Monica, California 90406

Communicated by Gian-Carlo Rota

Received February 1969

ABSTRACT

In a recent paper [3], Hamelink obtains an interesting sufficient condition for a graph to be a clique graph. In this paper, we give related conditions which are necessary as well as sufficient. As an application of our result we show that Hamelink's condition is also necessary in certain special cases and that here it can be greatly simplified. As another application, we derive certain theorems useful in practice in reducing the question of whether a given graph is a clique graph to whether certain smaller or simpler graphs are.

1. INTRODUCTION

Our graphs will all be finite, non-directed, with no loops or multiple edges. If \(G \) is a graph, \(V(G) \) will denote the set of vertices of \(G \) and \(E(G) \) the set of edges. We denote the adjacency relation by \(I \), i.e., if \(x, y \in V(G) \), then \(xIy \) iff \((x, y) \in E(G) \). A clique of \(G \) is a maximal complete subgraph. (Some authors use the terminology dominant clique.) Given \(G \), let \(K_1, K_2, \ldots, K_n \) be its cliques. Define \(H \) by \(V(H) = \{K_1, K_2, \ldots, K_n\} \) and \((K_i, K_j) \in E(H) \) iff \(i \neq j \) and \(K_i \cap K_j \neq \emptyset \). Then we call \(H \) the clique graph of \(G \) and write \(H = K(G) \). The main problem we are concerned with is this: Given a graph \(H \), is it the clique graph of some \(G \)?

2. THE CHARACTERIZATION

Let \(\mathcal{H} \) be a collection of complete subgraphs of a graph \(H \). We shall say \(\mathcal{H} \) has property \(\mathcal{I} \) (for intersection) if whenever \(L_1, L_2, \ldots, L_p \) are in \(\mathcal{H} \)

* The authors would like to acknowledge the helpful comments of Jon Folkman and Ray Fulkerson.
A CHARACTERIZATION OF CLIQUE GRAPHS

and \(L_i \cap L_j \neq \emptyset \) for all \(i, j \) then the total intersection is nonempty, i.e.,

\[
\bigcap_{i=1}^{p} L_i \neq \emptyset.
\]

We say \(\mathcal{K} \) has property \(J_m \) if the above holds whenever \(p \leq m \). Finally, let \(\mathcal{K}(H) \) be the collection of all cliques of the graph \(H \).

Theorem 1 (Hamelink). If \(\mathcal{K}(H) \) satisfies property \(J \) then \(H \) is a clique graph.

Note how the condition that the points of \(H \) represent cliques is reflected in the cliques of \(H \) itself. The converse of Theorem 1 is not true. To give an example, let \(H \) and \(G \) be the graphs shown in Figure 1. Then \(H = K(G) \), but the set \(\mathcal{K}(H) \) does not satisfy property \(J \). For, take

\[
L_1 = \{A, B, C, D\}, \quad L_2 = \{E, B, F, G\} \quad \text{and} \quad L_3 = \{I, D, G, H\}.
\]

![Figure 1](image_url)

Theorem 2 (Characterization of Clique Graphs). A graph \(H \) is a clique graph iff there is a collection \(\mathcal{K} \) of complete subgraphs of \(H \) which satisfies the following two properties:

1. \(\mathcal{K} \) covers all the edges of \(H \), i.e., if \(x, y \in H \) and \(xLy \), then \(\{x, y\} \) is contained in some element of \(\mathcal{K} \).
2. \(\mathcal{K} \) satisfies property \(J \).

* We shall describe a simple test for property \(J \) in Sec. 5.
PROOF. The proof of sufficiency is essentially Hamelink's proof of Theorem 1. Let $\mathcal{N} = \{L_1, L_2, \ldots, L_n\}$. Define the graph G as follows:

$$V(G) = V(H) \cup \mathcal{N}.$$

If $h \in V(H)$, then hL_i iff $h \in L_i$.

L_iL_j iff $i \neq j$ and $L_i \cap L_j \neq \emptyset$.

If $h, h' \in V(H)$, then not hh'.

The claim is that $H = K(G)$. To prove this, let $C(h) = \{h\} \cup \{L_i : h \in L_i\}$. It is easy to see that each $C(h)$ is a clique of G. Moreover, these are the only cliques of G. For, let C be a complete subgraph of G. Then, if C contains an element h of $V(H)$, we have $C \subseteq C(h)$. And, otherwise, C is contained in some $C(h)$ by property \mathcal{J}.

To prove the necessity of the conditions, suppose $H = K(G)$. Let $V(G) = \{g_1, g_2, \ldots, g_n\}$, let $V(H) = \{h_1, h_2, \ldots, h_m\}$, and let K_1, K_2, \ldots, K_m denote the cliques of G, labeled in such a way that h_iL_j iff $K_i \cap K_j \neq \emptyset$. For $i = 1, 2, \ldots, n$, define $L_i = \{h_j : g_i \in K_j\}$. Each L_i is complete because, if g_i and g_k are in L_i, then $g_i \in K_j \cap K_k$ and so h_iL_k. The claim is that $\mathcal{N} = \{L_1, L_2, \ldots, L_n\}$ satisfies properties (1) and (2). Property (1) is satisfied because if h_iL_j then $K_j \cap K_i \neq \emptyset$. Finally, \mathcal{N} satisfies property \mathcal{J}. For, suppose $L_i \cap L_j \neq \emptyset$, pairwise intersect. Then, for all j, k, there is a point h_{jk} in $L_{ij} \cap L_{ik}$. Thus $g_{ij} \in K_{jk}$ and therefore we have $g_{ij}L_k$. It follows that $\{g_{i_1}, g_{i_2}, \ldots, g_{i_r}\}$ is contained in some clique K_s of G and thus $h_s \in \bigcap_{i=1}^{r} L_{i}$. Q.E.D.

3. THE CASE OF CLIQUE NUMBER ≤ 3

There are certain situations in which the conditions of Theorem 2 may be simplified, i.e., where the conditions of Hamelink become necessary as well as sufficient. This fact will follow by a simple application of Theorem 2. We first require one lemma.

LEMMA 1. Suppose \mathcal{N} is a collection of complete subgraphs of a graph H, \mathcal{N} satisfies (1) and (2) of Theorem 2, and suppose no member of \mathcal{N} is contained in any other. Then \mathcal{N} contains a 2-element set iff this set is a clique of H.
Proof. Every 2-element clique is contained in \mathcal{K} by property (1). Conversely, suppose $L_1 = \{h, h'\} \in \mathcal{K}$ and there is a point $h'' \neq h, h'$ which is adjacent to both h and h'. Then there are sets L_2 and L_3 in \mathcal{K} such that $\{h, h''\} \subseteq L_2$ and $\{h', h''\} \subseteq L_3$. It follows that L_1, L_2, L_3 pairwise intersect but have no point in common, violating property \mathcal{J}. Q.E.D.

Definition. $\omega(H) = \text{clique number of } H = \max\{|L| : L \text{ is a clique of } H\}$.

Theorem 3. If $\omega(H) \leq 3$, then H is a clique graph iff $\mathcal{K}(H)$ satisfies property \mathcal{J}.

Proof. If H is a clique graph then there is some collection \mathcal{K} of complete subgraphs satisfying properties (1) and (2) of Theorem 2. Let \mathcal{K}' be the collection of all (setwise) maximal elements of \mathcal{K} together with all one-element cliques of H. This collection still satisfies properties (1) and (2). We shall show that $\mathcal{K}' = \mathcal{K}(H)$. $\mathcal{K}' \subseteq \mathcal{K}(H)$ follows directly by Lemma 1 since $\omega(H) \leq 3$. To show $\mathcal{K}(H) \subseteq \mathcal{K}'$, suppose $L \in \mathcal{K}(H)$. That $L \in \mathcal{K}'$ follows easily if $|L| < 3$. Thus, let $L = \{h_1, h_2, h_3\}$. By property (1), \mathcal{K}' has elements L_1, L_2, L_3 containing $\{h_1, h_3\}, \{h_1, h_3\}$ and $\{h_2, h_3\}$, respectively. Since \mathcal{K}' satisfies property (2), there is a point h in $L_1 \cap L_2 \cap L_3$. Since h is in each L_i, it is adjacent to or equal to each point h_i. Thus $\{h_1, h_2, h_3, h\}$ is complete in H and $\omega(H) \leq 3$ implies that $h = h_i$, some i. If $i = 1$, say, then $L_3 = \{h_1, h_2, h_3\}$ and so $L \in \mathcal{K}'$.

The converse follows by Theorem 2. Q.E.D.

Actually it turns out that, if $\omega(H) \leq 3$, property \mathcal{J} is equivalent to the much weaker property \mathcal{J}_3. This will follow from the next lemma, and will give us a very simple criterion for clique graphs if $\omega(H) \leq 3$.

Lemma 2. Suppose $\omega(H) \leq m$ and \mathcal{K} is a collection of complete subgraphs of H. Then \mathcal{K} satisfies property \mathcal{J} iff it satisfies property \mathcal{J}_m.

Proof. The case $m = 1$ is trivial. Suppose $m > 1$ and suppose \mathcal{K} satisfies \mathcal{J}_m but not \mathcal{J}. Then there are distinct L_1, L_2, \ldots, L_p in \mathcal{K} which pairwise intersect but have no point in common. We may assume that $L_i \not\subseteq L_j$ for $i \neq j$. For the collection of all minimal elements among L_1, L_2, \ldots, L_p has this property. Note first that $|L_i \cap L_j| = m - 1$, all $i \neq j$. For, $|L_i \cap L_j| < |L_i| \leq m$. Suppose $|L_i \cap L_j| = r < m - 1$. Let $L_i \cap L_j = \{k_1, k_2, \ldots, k_t\}$. Then for each u there is L_u such that $k_u \notin L_u$. Hence $\{L_i, L_j, L_{i_2}, L_{i_3}, \ldots, L_{i_t}\}$ consists of $\leq m$ elements of \mathcal{K} which pairwise intersect but have no point in common, violating property \mathcal{J}_m.
Since $|L_i \cap L_j| = m - 1$, all $i \neq j$, since $|L_i| \leq m$, all i, and since $\bigcap_{i=1}^p L_i = \emptyset$, it follows that there are distinct points $h_1, h_2, \ldots, h_{m+1}$ in H so that

$$L_i = \{h_1, h_2, \ldots, h_{i-1}, h_i, h_{i+1}, \ldots, h_{m+1}\},$$

where the symbol h_i means h_i is omitted. But now the points h_j and h_k are adjacent in H for all $j \neq k$, because h_j, h_k are in the complete subgraph L_i for $i \neq j, k$. Thus $\{h_1, h_2, \ldots, h_{m+1}\}$ is a complete subgraph of H, and this violates $\omega(H) \leq m$. Q.E.D.

Theorem 4. If $\omega(H) \leq 3$, then H is a clique graph iff $\mathcal{K}(H)$ satisfies property \mathcal{J}_3.

Proof. Theorem 3 and Lemma 2. Q.E.D.

Definition. A graph H_1 is a partial subgraph of a graph H_2 if $V(H_1) \subseteq V(H_2)$ and $E(H_1) \subseteq E(H_2)$.

Corollary. If $\omega(H) \leq 3$, then H is a clique graph iff it has no partial subgraph isomorphic to the graph of Figure 2.

![Figure 2](image)

Proof. Suppose H has such a partial subgraph. Since $\omega(H) \leq 3$, the three outer triangles are cliques. These pairwise intersect but have no point in common, violating property \mathcal{J}_3 for $\mathcal{K}(H)$. Conversely, suppose $\mathcal{K}(H)$ does not satisfy property \mathcal{J}_3. Let K_1, K_2, K_3 be three cliques which pairwise intersect but have no point in common. Using $\omega(H) \leq 3$, it is easy to prove that each K_i is a triangle. Moreover, $|K_i \cap K_j| = 1$, $i \neq j$. For suppose, for example, $|K_1 \cap K_2| = 2$. Let $K_1 = \{h_1, h_2, h_3\}$ and let $K_2 = \{h_1, h_2, h_4\}$. Then, since $K_1 \cap K_3 \neq \emptyset$, $K_2 \cap K_3 \neq \emptyset$, and $K_1 \cap K_2 \cap K_3 = \emptyset$, we conclude $K_3 = \{h_3, h_4, h_5\}$, some h_5. It follows that $\{h_1, h_2, h_3, h_4\}$ is complete, violating $\omega(H) \leq 3$. Thus, K_1, K_2, K_3 are triangles with no common point, each pair of which has exactly one point in common. This implies that the vertices of K_1, K_2, K_3 are the vertices of a partial subgraph isomorphic to the graph of Figure 2. Q.E.D.
4. REDUCTION THEOREMS

As a further application of Theorem 2, we present some results which might be useful as tools in reducing the question of whether a given graph is a clique graph to whether certain smaller or simpler graphs are clique graphs. The proofs are straightforward using the characterization.

Theorem 5. Suppose H is disconnected and H_1, H_2, \ldots, H_p are its components. Then H is a clique graph iff each H_i is.

Proof. Trivial (even without the characterization).

Theorem 6. Suppose H is a connected graph with a cut-point h. Let $H - h = H_1' + H_2'$, $H_1' \cap H_2' = \emptyset$, and suppose there is no edge from H_1' to H_2'. If $H_i = H_i' + h$, then H is a clique graph iff H_1 and H_2 are.

Proof. If \mathcal{K}_i is a collection of complete subgraphs of H_i satisfying (1) and (2), then $\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2$ satisfies (1) and (2) for H. Conversely, if \mathcal{K}_i is a collection of complete subgraphs of H satisfying (1) and (2), then $\mathcal{K}_i = \{L \in \mathcal{K} : L \subseteq V(H_i)\}$ is a collection of complete subgraphs satisfying (1) and (2) for H_i. Q.E.D.

Corollary 6.1. Suppose H is a connected graph with a cut-point h. Let H_1', H_2', \ldots, H_n' be the components of $H - h$ and let H_i be the subgraph generated by H_i' plus the vertex h. Then H is a clique graph iff each H_i is.

Proof. The argument is similar.

Definition. Suppose H is a graph and S is a subset of $V(H)$ so that $h, h' \in S$ implies not hIh'. Then S is a **independent set**. If in addition S is a cut set, S will be called an **independent cut-set**.

Corollary 6.2. Suppose H is a connected graph and S is an independent cut-set of H. Let $H - S = H_1' + H_2'$, $H_1' \cap H_2' = \emptyset$ and suppose that there is no edge from H_1' to H_2'. If H_i is the subgraph of H generated by H_i' plus S, then H is a clique graph iff H_1 and H_2 are.

Proof. The argument is again similar.

Corollary 6.3. Suppose H is a connected graph and for some h, $\{h' : hIh'\}$ is an independent set. Then H is a clique graph iff $H - h$ is.
5. A Test for Property \mathcal{J}

One of the weaknesses of the clique graph criterion given in Theorem 2 is that property \mathcal{J} is not easy to verify. To verify that a collection of sets has this property, one needs to look at all subsets.

To improve on this, suppose $\mathcal{F} = \{E_1, E_2, \ldots, E_n\}$ is a family of sets and for all points x, y, z in $E = \bigcup E_i$, define $\mathcal{F}(x, y, z)$ to be the subfamily of all sets containing at least two of the points x, y, z. Then we note that the family \mathcal{F} has property \mathcal{J} iff for all x, y, z in E,

$$\bigcap \{E_i: E_i \in \mathcal{F}(x, y, z)\} \neq \emptyset.$$

This intersection property follows directly from property \mathcal{J}. The converse is proved by induction. If the sets E_1, E_2, \ldots, E_r pairwise intersect, we find x_1, x_2, x_3 so that for $j \leq 3$, $x_j \in \bigcap_{k \neq j} E_{ik}$. Then each E_{ik} is in $\mathcal{F}(x_1, x_2, x_3)$.

Another way of stating this result is that the family \mathcal{F} has property \mathcal{J} iff for all points x, y, z in E, there is a point w in E with the property that each set E_i containing two of the points x, y, z also contains w. This result was pointed out to us by Claude Berge (personal communication). He proved it by noting that a family \mathcal{F} has property \mathcal{J} iff its dual family \mathcal{F}^* has a so-called faithful graph representation (see Berge [1] for definitions) and by using a criterion due to Gilmore [2] for a family of sets to have a faithful graph representation.

References