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Abstract

In this paper we study nonlinear elliptic differential equations driven bygHeaplacian with
unilateral constraints produced by the combined effects of a monotone term and of a nonmonotone
term (variational-hemivariational inequality). Our approach is variational and uses the subdifferential
theory of nonsmooth functions and the theory of accretive and monotone operators. Also using these
ideas and a special choice of the monotone term, we prove the existence of a strictly positive smooth
solution for a class of nonlinear equations with nonsmooth potential (hemivariational inequality).
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1. Introduction

In this paper we prove an existence result for variational-hemivariational inequalities
driven by thep-Laplacian. Then using the argument of the existence theorem and with
a particular choice of the monotone (convex) component of the problem, we prove the
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existence of positive smooth solutions for a class of hemivariational inequalities involving
the p-Laplacian differential operator.

So letZ c RN be a bounded domain with@?-boundaryd Z. The problem under con-
sideration is the following:

{ —div(|| Dx(2)IP2Dx(2)) € 3j(z, x(z)) — 3G (x(z)) a.e.onz, (1.1)
xlagz=0, 2<p<oo. '

Here j(z, x) is a measurable function which is locally Lipschitz in thevariable and
dj(z, x) denotes the generalized subdifferential of the locally Lipschitz functicn

j(z,x) (see Section 2). Als@ : X — R, =R, U {+o0} is proper, convex, lower semi-
continuous and G (x) stands for the subdifferential in the sense of convex analysis of the
convex functionc — G(x). So in problem (1.1) we have the combined effects of the unilat-
eral constraints imposed by a monotone (convex) term and by a nonmonotone (nonconvex)
term. The presence of tl3& (x)-term (the monotone term), classifies the problem as a vari-
ational inequality, while the presence of thaz, x)-term (the nonmonotone term) makes

the problem a hemivariational inequality. This explains the nomenclature “variational—
hemivariational inequality.”

Hemivariational inequalities (i.e = 0), have been studied recently by many au-
thors, primarily in the context of semilinear problems (i2.+= 2) and already there is
a substantial literature on the subject. For a detailed bibliography, we refer to Gasinski—
Papageorgiou [5]. Hemivariational inequalities (as the generalization of variational in-
equalities, see Showalter [14]), turned out to be a very useful model in describing many
problems in mechanics and engineering involving nonconvex and nonsmooth energy func-
tionals. For various applications, we refer to the book of Naniewicz—Panagiotopoulos [13].

In contrast the study of variational-hemivariational inequalities is lagging behind. There
are only the works of Goeleven—Motreanu [6] (semilinear problems @ithbeing an
indicator function) and Kyritsi-Papageorgiou [8], Marano—Motreanu [12] and Filippakis—
Papageorgiou [4] (problems involving theLaplacian and withG being an indicator
function).

Our approach is variational and combines notions and techniques from nonsmooth
analysis and from nonlinear analysis. In the next section, for the convenience of the reader,
we review the basic definitions and results from these areas, which we will be using in our
analysis. Our main references are the books of Denkowski—Migorski—Papageorgiou [2,3]
and of Showalter [14].

2. Mathematical background

Let X be a Banach space. BY* we denote its topological dual and by-) we denote
the duality brackets for the pafX, X*). A function¢ : X — R is said to bdocally Lip-
schitz, if for everyx € X we can findU a neighborhood af and a constanty > 0 such
that

lo(») — )| <kylly —v| forally,veU.

Recall that ifyy : X — R = R U {+o0} is a proper (i.e., not identically-oo), convex and
lower semicontinuous function, theh is locally Lipschitz in the interior of its effective
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domain domy = {x € X: ¥ (x) < +oo}. In particular, then a continuous convex function
¥ : X — Ris in fact locally Lipschitz. Given a locally Lipschitz functign: X — R, the
generalized directional derivative of ¢ atx € X in the direction: € X ¢°(x; h), is defined

by
g(x' +21h) —p(x')

o°C; ) Llimsup -

x'—x

A0

It is easy to check that®(x; -) is sublinear continuous. So it is the support function of a
nonempty, convex ana*-compact convex seélp(x) defined by

dp() L {x* € X*: (x*, h) <¢Ox; h) forall h € X},

The multifunctionx — d¢(x) is known as theeneralized (or Clarke) subdifferential of ¢.
If ¢ is also convex, then the generalized subdifferentiat obincides with the subdiffer-
ential in the sense of convex analysis, defined by

dp(x) el {x*eX* (x*,y—x) <oy —ex) forally e X}.

Moreover, ifp € C1(X), thendp(x) = {¢’(x)}. If ¢, ¥ : X — R are two locally Lipschitz
functions and. € R, then we have

dp+y¥)Cadp+0y and d(hp) = Ade.

Also the generalized subdifferential satisfies a mean value rule. Namely Xf — R is
Lipschitz on an open set containing the line segnient], we can findc =Ax + (1 — 1)y
with A € (0, 1) andz* € d¢(z) such that

() —p(x) = (", y — x).
In our analysis, we will also use monotone and accretive operators. 8o fet— 2X. We
setD(A) ={x € X: A(x) # ¥} (the domain ofdA) and GrA = {(x,y) € X x X: y € A(x)}
(the graph ofd). We say thatA is accretive if for any(x;, y;) € GrA, i =1, 2, there exists
x* € F(x1 — x2) such that

(x*,x1—x2) > 0.

Here F : X — 2X" is the duality map ofX, i.e., F(x) = {x* € X*: (x*,x) = |x||2 =
|l x*||2} for eachx € X. An accretive operatod : X — 2X is said to bem-accretive, if
R(I+A)=X.

Given an accretive operatar: X — 2% anda > 0, we define the following two well-
known operators:

Jo=(I+1A)"L, theresolventofs and

1 . . .
A = X(l — J), the Yosida approximation of.

Note thatD(J,) = D(A,) = R(I + AA). Also J, is single-valued and nonexpansive, i.e.,
|7:() = By < llx =yl for everyx, y € R(I 4 2.A),
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while A, is single-valued accretive and Lipschitz continuous with Lipschitz con§tant
Moreover, we have/, (x) — x asA | 0 for eachx € D(A) N [();.oRU + AA)] and
A (x) € A(Jy(x)) for everyx € R(I + 1A). Finally, an accretive operatot : X — 2%

is m-accretive if and only ifR(/ + 1A) = X for all A > 0.

If the operator takes values ii*, then the corresponding notion is that of monotonicity.
SoletA: X — 2X". As beforeD(A) = {x € X: A(x) # ¥} (the domain ofd) and GrA =
{(x,x*) € X x X*: x* € A(x)} (the graph ofAd). We say thatd is monotone if for any
(xi,x)€GrA, i =1,2, we have

(xi‘ —x%‘,xl—x2>>0. (2.1)

We say thatd is strictly monotone, if equality in (2.1) implies that = x>. Moreover,A
is maximal monotone, if

(x*—y*,x —y)>0 forall(x,x*) eGraA

implies that(y, y*) € GrA. In other words, GA is not properly included in the graph
of another monotone operator, i.e., &is maximal with respect to inclusion among the
graphs of all monotone operators. An operatarX — 2X" is said to be coercive if either
D(A) is bounded oD (A) is unbounded and ifffx*|: x* € A(x)] = +oo as||x]| — oo,
x € D(A). Asingle-valued operatot : X — X* with D(A) = X, is said to be demicontin-
uous, ifx, — x in X impliesA(x,,) & A(x) in X* (i.e., A is strong-to-weak sequentially
continuous). An operatat : X — X* which is monotone demicontinuous, it is maximal
monotone. In addition a maximal monotone, coercive opetatok — 2X" is surjective
(i.e., R(A) = X*).

If X = H is a Hilbert space identified with its dual, then the duality nfapf H is
the identity operator. So the notions of accretivity and monotonicity coincide. Moreover,
A : H — 2H is maximal monotone if and only iR(I + A) = H. Therefore the notions of
maximal monotonicity and:-accretivity coincide.

Our analysis also involves the principal eigenvalu¢-of ,, Wol’p(Z)). So briefly letus
recall what is known about it. Consider the following nonlinear elliptic eigenvalue problem:

—div(]| Dx(2)I”7?Dx(2)) = Alx(2)|P"2x(z) a.e.onz,

(2.2)
x|az =0.

The least real number for which (2.2) has a nontrivial solution, is called the fiesgen-

value of (—A,, Wol”’(Z)). We know (see Gasinski-Papageorgiou [5] and the references

therein) thati1 is positive, isolated and simple (i.e., the associated eigenspace is one-

dimensional). Moreover, there is a variational characterizationjpfvia the Rayleigh

quotient, i.e.,

14
IDxlp. 40 xe Wol’p(Z)i|. (2.3)

A1 =min
' [ Il
The minimum in (2.3) is realized at the normalized eigenfunctiprNote that ifu1 mini-

mizes the Rayleigh quotient, then so d@eg and so we infer that; does not change sign

on Z. Hence we may assume that(z) > 0 a.e. onZ. In fact, using the nonlinear regu-
larity theory and the nonlinear strong maximum principle (see Gasinski—Papageorgiou [5,
Section 1.5.3]), we can say that € C1#(Z) with 0 < 8 < 1 andu1(z) > 0 forall z € Z.
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Finally by I'5(X) we denote the cone of all functiogs: X — R = R U {+o0c} which
are proper (i.e., not identicallftco), convex and lower semicontinuous.

3. Existencetheorem

In this section we prove the existence of a solution for problem (1.1). For this purpose
our hypotheses on the data of (1.1) are the following:

H(j)1: j:Z x R— Ris a function, such that(-,0) € L1(Z) and
(i) forall x e R, z — j(z,x) is measurable;
(i) foralmostallz € Z, x — j(z, x) is locally Lipschitz;
(iif) foralmostallz € Z, all x e R and allu € 9 (z, x) we have

lul <az)+clx|P™t withae L®(Z)4, ¢ > 0;

(iv) there exist®) € L*>°(Z), such thab(z) < A1 a.e. onZ with strict inequality
on a set of positive measure and

limsup pjl(zl;x) <6(z) and lim supL_2 <0(2)
X

|x| =400 X |x]—4o00 |x|?

uniformly for almost all; € Z.

Remark 3.1. The following nonsmooth locally Lipschitz integrands satisfy hypotheses
H(j)1:

0 A
Ji(z, x) = max{ﬁlxl”, —1\/|x|} — x2In|x|
P 2p

A
with 6 € L>(z) 4 asinH(j1)(iv) andEl <0(z)a.e.onZz and

il 1 if x < -1,
jo(z, x) = { sin(5x) if x| <1,

0 ,p _ _ 0@
IR Inx +1 > if x>1,

with 0 € L*(Z) 4 as inH (j)1(iv).

H(G): G:R— R, =R, U{4o0} is a proper (i.e., not identically-oc), convex and
lower semicontinuous function (i.65 € I'p(R)) such thaiG(0) = 0 and there ex-
ists yp € LY(Z) (% + 51 = 1) such thatf, G*(yo(z))dz < +oo (here byG*(-)
we denote the conjugate (Fenchel transform)Gaf), i.e., G*(y) = sugyx —
G(x): x € R], see Denkowski—Migorski—-Papageorgiou [2, p. 536]).

We start with a simple lemma which clarifies the nonuniform nonresonance conditions
at +oo in hypothesisH (j)1(iv).
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Lemma3.2.I1f 6 € L*(Z)4, 6(z) < A1 a.e. on Z and the inequality is strict on a set of
positive measure, then there exists &€ > 0 such that

w(x)z||Dx||,’;—/e(z)|x(z)|”dz>s||Dx||£ for aIIer(}”’(Z).
VA

Proof. From (2.3) and the hypothesis &n we have thaty > 0. We argue indirectly.
Suppose the lemma is not true. Then exploiting phlkomogeneity ofys, we can find a

sequencéx, },>1 C W&’p(Z) such that
| Dxpll, =1 foralln>1 and v(x,)|0.

By virtue of the Poincare inequality, the sequefitg,>1 < Wol”’(Z) is bounded. So by
passing to a suitable subsequence if necessary, we may assumgthat in Wol"’(Z)

andx, — x in L?(Z) (recall thatW&’p(Z) is embedded compactly info” (Z)). Exploiting
the weak lower semicontinuity of the norm functional in a Banach space, in the limit as
n — 0o, we have

v =Dl ~ [0lxa) | dz <0
Z
N ||Dx||£</9(z>|x(z)|”dz<xlnx||z
VA

= IDx|h=xrllxl, (see (2.3). (3.1)

It follows thatx =0 or x = 4u4. If x =0, thenx, — 0 in Wol”’(Z), a contradiction to

the fact that|| Dx, ||, = 1 for alln > 1. Hencex = Fuj, and so|x(z)| = |u1(z)| > O for

all z € Z (see Section 2). Then from the first inequality in (3.1) and the hypothesis on
6 € L*(Z),, we obtain

IDxIlp < Aallxllp,
a contradiction to (2.3). This proves the lemman

Using this lemma and a variational method, we can prove the following existence theo-
rem for problem (1.1).

Theorem 3.3. If hypotheses H ()1 and H(G) hold, then problem (1.1) has a solution
1,p
x e Wyt (2).

Proof. Letgs: Wy'”(Z) — R andgz : Wy'”(Z) — Ry =R U {+o0} be defined by

wl(x)z—/j(z,x(z))dz and

V4
() = { LD+ [, G(x(@)dz if G(x()) € LY(2),
+o0 otherwise.
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We know thaty; is locally Lipschitz andp, is proper, convex and lower semicontinu-
ous, i.e.p € Fo(Wol’p(Z)) (see Denkowski—Migorski—Papageorgiou [2, pp. 617 and 589,

respectively]). We sep(x) = ¢1(x) + ¢2(x) for all x e Wol”’(Z).

Because of hypothesif (7)1 and using the mean value theorem for locally Lipschitz
functions (see Section 2) and the fact thiat 0) € L1(Z), we see that for almost alle Z
and allx € R,

j(z,x)| <&(2) +élx|P witha e LY(Z)4, ¢> 0. (3.2)
Using (3.2) and the first inequality in hypothegis j)1(iv), givene > 0 we can findy, €
LY(Z) such that for almost all € Z and allx € R, we have

J(z.x) < =(0(2) + &) x]” + e (2). (3.3)

1
p
Then for allx € W&”’(Z),
@(x) = @1(x) + ¢2(x)
> 1 IDx||h — / j(z.x(2)dz (sinceG >0, see hypothesi# (G))
p
1 1 )
> sl - [0@lx@)| dz - 2|
p Py p

IxIIh = el (see (3.3)
g
p
Chooses < A1&. We obtain

&
> = || Dx|| — manuﬁ — llaglls  (see Lemma 3.2 and (2)3)

@(x) > B1lIDx||, — B for somepi, B> > 0 and allx € W(}”’(Z).

From this inequality we infer thap is coercive. Note that the compact embedding of
Wé”’(Z) into L?(Z) implies thaty; is completely continuous. Heneeis weakly lower
semicontinuous and so we can apply the Weierstrass theorem and ganerﬁ@p(Z)
such that

¢(x) =ming.
Invoking the Ekeland variational principle (see Denkowski—Migorski—Papageorgiou [3,
p. 93]), we obtain a sequenée, },>1 < Wol’p(Z) such that

() L o(x) (e, {xplnz1C Wé”’(Z) is a minimizing sequenge and
1 1p

e(xn) < @) + —llv—x,| forallve Wy~ (Z).
n

Giveni € [0, 1] andh € Wol’p(Z), we setv = (1 — A)x, + Ah =x,, + A(h — x,,). Also let
Ig: W&”’(Z) — R =R U {+o0} be the integral functional defined by

[, Gx(@)dz if G(x(-) € LY(2),

Ig(x) = { .
+00 otherwise.
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We know thatl € To(Wy'”(Z)). We have

01(xp +A(h — x,)) — @1(xp)
A

1
+ o UD G + 2= ) [ = 1Dxal17] + 16 ) = T ()

1
——llh —xll <
n

(sincelg is convex),
1
= = =l =l < @Gt b= )+ {AG). = x) + 16 (h) = 16 ()
for all . € Wy'? (2). (3.4)

HereA : W&”’(Z) — W~14(Z7) is the nonlinear operator defined by

(A(x),y):/ | Dx||P~2(Dx, Dy)gndz forallx,y e WC}"’(Z),
Z
with (-,-) being the duality brackets for the paiwy”(Z), W—14(2)), % + ;} =11t

is easy to see that is monotone, demicontinuous hence it is maximal monotone (see
Section 2). In (3.4) we put = 0. We obtain

1 0
_;”xn” < @1 (xns —xp) + (A(xn)a _xn> — I (xn)

(sincels (0) = 0, see hypothesid (G)). (3.5)
Recalling thatog(xn; -) is the support function of the sét; (x,) which isw-compact in
w~—L4(z), we can find—u, € d¢1(x,) such that

908()@1; —Xn) = (Un, Xn).

From Proposition 3.5.36, p. 614, and Theorem 5.5.39, p. 617, of Denkowski—Migorski—
Papageorgiou [2], we have tha}, € ng(_’xn(_)) ={u e L1(Z): u(z) € 9j(z,x,(z)) a.e.

onZ} (3 +f=1foralln>1 So

(/)?(xn; —Xp) = / UpXpdz.
z
Using this in (3.5), we obtain

1
(A(xnxxn)—funxndz: ||Dxn||§—/unxndz< ol n>1 (3.6)
Z Z

We claim that{x,},>1 € W&”’(Z) is bounded. Suppose that this is not true. By passing
to a suitable subsequence if necessary, we may assumxttiat> +o0o0 asn — oo. Set
Vp = ”j—” n > 1. We may assume that

Wy InWeP(2),  yu—y INLP(Z),  yu() - y(k) ae.onZ and
|yn(z)| <k(z) ae.onz foralln>1withkeL?(Z)



170 M.E. Filippakis, N.S. Papageorgiou / J. Math. Anal. Appl. 311 (2005) 162—-181

(recall thatWé’p(Z) is embedded compactly ih?(Z) and see Denkowski—Migorski—
Papageorgiou [2, p. 147]). From hypothe&is; )4 (iii) we have

[t (2)] < a(z)

p—1
< +c|yn(2) a.e.onz,
X ll?=2 7 flx, |72 ‘ |

{ un() 1} C L9(Z) isbounded (3.7)
xn P72 ) =1

We may assume thaﬁ% Y f£in L9(Z). Givene > 0 andn > 1, we introduce the
following two sets:

un(z)
X (z)P~1
un(2)
X0 (2)1P~2x (2)

Remark that, (z) — +oo a.e. on{y > 0} andx, (z) - —oo a.e. on{y < 0}. So by virtue
of the second inequality in hypothedi& j)1(iv), we have

Z;Tn={Z€ZZ xn(z) >0, <9(z)+8} and

Zgnz{zez: xn(2) <0, G(Z)—i—e}

Xj,n(z) =Xz, (zy)>1 ae.ony>0} and
Xon(@=xz-, (@ —1 ae ony<O0}

Also we have

un(2)
xp ()P~ L

Taking weak limits inL? ({y > 0}), we obtain
f(@)<(0) +¢)y@"™t ae. ony>0}.
Lettinge | O, we finally have that
f@<0@y@P*t ae. ony>0). (3.8)

Arguing similarly, usingx,, this time, we infer that

1 (2)

o+
Pt = Xen@

X:,_n (2) Yn (Z)p_l < Xg‘ n(Z)(O(Z) + S)yn ()P~ L

F@)>0@)|y@|"*y@) ae. onfy<0}. (3.9)
Moreover, from (3.7) it is clear that

f(@=0 a.e.onfy=0} (3.10)
Because of (3.8)—(3.10), we can say that

f@y@ <0@|y@|" ae. onz. (3.11)

We return to (3.6) and we divide withx, ||”. We have

1
Dy, b / ynd ,
m [l x ||P 1 S il
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= IIDyllﬁéffydz,
Z

= |Dyll} </9|y|pdz (see (3.11), (3.12)
Z
= Dyl <Alyl, (see hypothesi# (j)1(iv)). (3.13)

From (2.3) and (3.13) it follows that
IDyllh =2llylly, = y=0o0ry=dus.

If y=0, theny, — 0in Wol”’(Z), a contradiction to the fact thdty,|| = 1,n > 1. So
y = tuj, hencely(z)| > 0 for all z € Z (see Section 2). From this, (3.12) and the hypoth-
esis o € L*°(Z)., we infer that

1Dyl < Aallyllp,
which contradicts (2.3). Spc,}n>1 < Wé”’(Z) is bounded and we may assume that
xS x in Wé”’(Z) and x, —x inL?(2).
Recall that
—%Ilh — Xnll < @9 Cns b — xn) +(AGoR), b — xn) + I (h) — I (xn)
forall h € Wy'?(Z), n>1. (3.14)

Seth = x and as earlier choosg, < Sg/(. ) = {fu e L1(Z2): u(z) € 9j(z,x,(z)) a.e.
on Z} such that '

<Pg(xn;x—Xn)=—/ﬁn(x—xn)d2, nz=1l
V4
So we can write that

1
—;”X — x| < (A(xn)ax _xn> _/ﬁn(x —xp)dz+ Ig(x) — Ig(xp). (315)
Z

Note that

/ﬁn(x —xp)dz— 0 and Ig(x) < Iimioréf Ig(x,) (sincelg € Fo(Wg’p(Z))).
z
So if we pass to the pass to the limitias> oo in (3.15), we obtain

0L Iiminf(A(xn),x —xn) = IimSU[iA()c,Z),x,Z —x)<0.
n—>0o0 n—00
BecauseA is maximal monotone, it is generalized pseudomonotone (see Denkowski—
Migorski—Papageorgiou [3, p. 58] and Showalter [14, p. 41]). So we have
(An), xn) = (Ax),x) = |IDxyllp = | Dx]l,.
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Also Dx, % Dx in L?(Z,RY). BecauseL”(Z,RY) is uniformly convex, it has the
Kadec—Klee property (see Denkowski—Migorski-Papageorgiou [2, p. 309]) abd,se>
D(x) in LP(Z, RY). Thereforex, — x in Wy'” (2).

Recall that from the choice ¢k, },>1 C Wé’p(Z), the choicev = x,, + A(h — x,;) made
earlier in the proof and from the convexity ¢, we have

01(xn +A(h — x,)) — @1(xp)
A

1
+ z[wz((l — W)X 4 k) — ¢2(x)]

< ©1(xy + A(h — X)) — @1(xy)
= A

1
——llh —xll <
n

+ @2(h) — p2(xp),

1
= =l =l < @20 h — x) + @2(h) — @2(x),
= 0<@d(x;h—x)+@2(h) —ga(x) forallh e Wy(2). (3.16)

To obtain (3.16) we have used the upper semicontinuityp%(f-;-) (see Denkowski—
Migorski—Papageorgiou [2, p. 602]), the lower semicontinuitypgfand the fact that
X, — x in Wol’p(Z) asn — oo.

We setyr1(h) = go?(x; h—x) andy(h) = @2(h) — @2(x) forall h € Wol”’(Z). Then we
have:

(a) vy is continuous convex andd); (x) = dp1(x), where the first subdifferential is in the
sense of convex analysis and the second is a generalized subdifferential.

(b) v € FO(W(}”’(Z)) andayo(x) = dgpo2(x), where both subdifferentials are in the sense
of convex analysis.

Sincey is continuous, the calculus rules for the convex subdifferential (see Denkowski—
Migorski—Papageorgiou [2, p. 549]), imply that

(Y1 + ¥2)(x) = dyY1(x) + dY2a(x)
= d¢1(x) + dp2(x) (see (a) and (b) aboye (3.17)
From the definition of the convex subdifferential (see Section 2), we have
W1+ Y2 (x) ={x* € W(Z): (x*, b — x) < Ya(h) + Ya(h) — Pa(x)
= @0 h—x) + g2(h) — pa(x)
forallh e Wy’(2)}.  (3.18)
So we obtain

0ed(y1+v2)(x) (see(3.16), (3.18)
= 0€dp1(x) +dp2(x) (see (3.17). (3.19)
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LetA: D C L9(Z) — L4(Z) be the nonlinear operator defined by
A)=A(x) forallxeD={xeWy"(2): Ax) e LU(Z)}.
Evidently C>(Z) < D. From Calvert [1, Lemma 3.1] (see also Li~Zhen [11, Proposi-

tion 2.1]), we have thad is m-accretive.
Also letS : D(S) € L1(Z) — 2L"(©) pe defined by

S() =816y =1v € LU(2): v(2) €3G (x(2)) a.e. onZ}
forallx € D(S) = {x € LU(Z): S§5 (), #9}-

We claim thatS is m-accretive. First we show tha§ is accretive. To this end let
(x1, v1), (x2, v2) € GrS. We set

y1(2) =x1(2) +va(z) and y2(z) = x2(z) + v2(2).
We have
11(2) = (I+0G() () and x2()=(I+8G() " (r2(2)).
Exploiting the nonexpansiveness of the resolvent operator corresponding(tp, we
obtain
x1(2) — x2(2)| < |y1() — y2(z)| a.e.onz,
= 1 —x2llg < llyr— y2llg = [x14 v1 — (24 v2)
= § isaccretive

"

To show then-accretivity of S, we need to show tha (I + §) = L4(Z). To this end let
h € L9(Z) and consider the multifunction

> L@ ={xeR: (1+3G() H(h(z)) ==x}.
BecauseG € I'p(R) (see hypothesi$l (G)), we have thab G(-) is maximal monotone.
From the maximal monotonicity of the operatd6 () we have thatlL(z) # @ for all
z € Z. Also from Hu—Papageorgiou [7, p. 362], we know that the function (I +
3G (-))"1(h(2)) is Lebesgue measurable. Therefore the function

(@) = £ x) = (1 +9G() " (h(@) — x

is a Caratheodory function, i.e., it is measurable nZ and continuous i € R, hence
it is jointly measurable. So we have

GrL={(z,x) € Z xR: £(z,x) =0} € Lz x B(R),

with £z being the Lebesgue-field of Z and B(R) the Borelo-field of R. We can apply
the Yankon—-von Neumann—Aumann selection theorem (see Hu—Papageorgiou [7, p. 158])
and obtain a Lebesgue measurable functioi — R such that

x(z) eL(z) forallzeZ.

Since(I +9G(-))~1(0) =0 a.e. onZ (recall that 0= 3G (0), see hypothesi#l (G)), from
the nonexpansiveness of the resolvent operator, we have

Ix(@)|<|h(x)| ae.onz = xelLi(2).
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Clearlyh € (I + S)(x) and becausk € L4(Z) was arbitrary, we conclude th&{(7 + S) =
L4(Z). This proves thaF is m-accretive.
Next letn : LP(Z) — L9(Z) be defined by

N () =[x ()P x .

We know thaty(x)(-) = ||x||§_2]—'(x)(-), whereF is the duality map of.?(Z) (see Hu—
Papageorgiou [7, p. 317] and Showalter [14, p. 93]). If(hy) ,, we denote the duality
brackets for the paifL? (Z), L1(Z)), for everyx € D and every. > 0, we have

(A). n($:.(1)) ,, = (AG), n(S.(x)))

=/||Dx||f’—2(Dx,Dn(an(x)))RN dz. (3.20)
VA

pPq

Here G, is the Moreau—-Yosida regularization 6f. We know thatG, is differentiable
(with the derivative denoted 3G, ) andS; (x)(-) = 3G, (x(-)) € LY(Z) forall x € LY(Z)

(see Hu—Papageorgiou [7, pp. 349-350] and Showalter [14, p. 162]). Beg6alse
(0G),., itis Lipschitz continuous and monotone. So using the chain rule for Sobolev func-
tions (see Denkowski—Migorski—Papageorgiou [2, p. 348]), we have

| Dx(@)| "2 (Dx(2), D(n(3G(x(2))))) g

_1f d
=(p— D]3G,.(x@)|" 1<d—xaG,\)(x(z))||Dx(z) |” ae.onz. (3.21)

Since(%aGk)(x) > 0 for all x € R (due to the monotonicity ad G, (-)), using (3.21) in
(3.20), we obtain

(A(x), n(SA(x)))I)q >0 forallxeD.
Applying Theorem 7.44, p. 394, of Hu—Papageorgiou [7], we conclude that

x — A(x) + S(x) ism-accretive. (3.22)
It is immediate from the definitions of, S andg» that

A+5SCagan (WyP(2) x LY(2)). (3.23)

Clearly 9g2 N (Wol”’(Z) x L9(Z)) is accretive inL9(Z) x L1(Z) (recall that 2<

p < oo which implies thatWOl’p(Z) C L1(Z)). Combining this with (3.22) and (3.23),
we conclude that

A+S=0dp2N (Wy?(2) x LI(Z)). (3.24)
Because of (3.19), we can finde d¢1(x) andw € d¢2(x) such that
O=u+w = w=-u (3.25)

Recall that—u e ng(,,x(_)). Thereforew € dgy(x) N L4(Z) and so from (3.24) we have
that

w=Ax)+v withveSx)= SgG(x(.)).



M.E. Filippakis, N.S Papageorgiou/ J. Math. Anal. Appl. 311 (2005) 162-181 175

Thus finally from (3.25), we have
AX)+v+u=0.

Let¢ € C°(Z). Taking duality brackets witk, we obtain

(AA(-x)’ é‘)pq = (_M, é‘)pq + (_U, g)pq9

= (A(x),§)=/(—u)§dz+/(—v)§dz,

V4 VA

= /IIDxllpfz(nyDé“)RNdZ=/(—M)Cdz+/(—v)§d1-
z z z

Note that di\||Dx||?~2Dx) € W—14(Z) (see Denkowski-Migorski—Papageorgiou [2,
p. 362]). Also the adjoint of the gradient operatre £(W§”’(Z), L?(Z)) is the oper-
ator—div e £(L4(Z), W~14(Z)). So we have

(—div(||Dx||P?Dx), ¢) = /(—u); dz + /(—v)gdz.
V4 z

Because~2°(Z) is dense inW()l”’(Z), we conclude that

—div(| Dx (@) " ?Dx (@) = —u(2) — v(2)
€9j(z.x(z)) —0G(x(z)) a.e.onZ andx|yz =0,

= x¢ Wg’p(Z) is a solution of problem (1.1) O

Remark 34. If fzj(z,O)dz < 0 and there existsxg € R,xg # 0 such that

fz j(z, x0)dz > 0, then we can guarantee that the solutioa Wé”’(Z) obtained in The-
orem 3.3 is nontrivial.

A case of special interest is when(x) = ic(x) with C C R being a closed, convex
subset, G C. Then Theorem 3.3, implies that there exists Wg’p(Z) andu € S5, ()
such that

/||Dx||p72(Dx,Dy—Dx)RNdZ>/u(y—x)dz
VA Z

forall y € C= {ye Wg”’(Z): y(z) € Ca.e. onZ}. For example, we can have=R in
which caseC = Wé”’(Z)Jr = the positive cone of the Sobolev spawé’p(Z).
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4, Positive solutions

In this section using the method of the proof of Theorem 3.3 and some additional hy-
potheses on the nonsmooth potenji@l, x), we prove the existence of a strictly positive,
smooth solution for the following hemivariational inequality:

{ —div(| Dx(2)[|P2Dx(2)) € 9j (2, x(z)) a.e.onZ, (4.1)
xlpz =0.
Now the hypotheses ofxz, x) are the following:

H(j)2 j:Z x R— Ris a function, such thafZ Jj(z,00dz<09j(z,0) C R4 a.e. onZ
and
(i) forall x e R, z — j(z,x) is measurable;
(iiy foralmostallz € Z, x — j(z, x) is locally Lipschitz;
(i) foralmostallz € Z, all x e R and allu € 9j(z, x) we have

lul <a(z)+clx/P~t withae L®(Z)4, ¢ > 0;

(iv) there exist® € L°°(Z)4 such thab(z) < A1 a.e. onZ with strict inequality
on a set of positive measure and

. i (z,x
I|msupM
x—+00 xP x—+o0 X

<0 and limsup—— <6()

uniformly for almost all; € Z;
(v) foralmostallz € Z, all x > 0 and allu € 3j (z, x) we have

—coxP < u;

(vi) there existsM > 0 such that for almost alt € Z, all x > M and allu €
9j(z, x), we have

u>0 or u<oO
and there existsp > 0 such that/,, j(z, xo) dz > 0.

Remark 4.1. Let 6 € L*°(Z)+ be as in hypothesi# (j)2(iv). The following nonsmooth
locally Lipschitz integrands satisfy hypothesgs;)o:

) x—e*+1 if x <O,

Ji(z, x) = %x”—xrlnx if x >0withl<r < p, and
sinx if x <O,

jo(z,x) = tan1x if0<x<1,

0@ ,p _ 0@ 4 & ;
R P~|—4 if x> 1.

In the next theorent(2) = {x € C1(Z): x|yz = O}.

Theorem 4.2. If hypotheses H ()2 hold, then problem (4.1) has a solution x € C3(Z)
such that x(z) > Ofor all z € Z and 22 (z) < Ofor all z € 9Z.
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Proof. Let
0 if x >0,

G(x) = iR, () = {—i—oo if x <O.
Evidently G > 0 andG € I'p(R). In this case it is more convenient to make the following
choices ofp; andg»:

1
1) = 1Dx1] - [ier@)dz xewd ) and
Z

1
pa(x) = {fz Gur@)dz I Gr() eLND), ¢ ylr(z)

400 otherwise,
LetC ={x ¢ Wo""(Z): x(z) >0a.e.onZ} (i.e.,C = WC}”’(Z)Jr the positive cone of the
Sobolev spacevé‘p(Z)). Evidently
0 if x e C,
400 otherwise.
From the first part of the proof of Theorem 3.3 and becausegomC, we obtain an
x € C, x # 0 (see the remark after the proof of Theorem 3.3), such that

0 dg1(x) + dp2(x). (4.2)

We should point out that since dagp = C, in hypothesisH (j)»(iv) we can assume that
the limits in the two inequalities are taken only in the positive direction (i.ex,-as+oo,
compare with hypothesi#l (j)(iv)). From (4.2), we infer that there existse Sa i Cx ()
such that

A(x) —u € =9¢2(x) = —=Nc(x),

p2x)=ic(x) =

whereN¢ (x) is the normal cone to the closed convex@edtx € C, i.e., Nc(x) = {x* €
w—14(z): (x*,y — x) < Oforally e C} (see Denkowski—-Migorski-Papageorgiou [2,
p. 622]). So

(A(x)—u,y—x>20 forally e C.

Leth e Wé”’(Z) ande > 0 be arbitrary and set= (x +eh)* =x +eh+ (x +eh)~ € C.
We have

0<(A(x) —u, eh)+ (A(x) —u, (x +&h) ™),
=  —(AW®) —u, (x+eh)”) < (A(x) —u, gh). (4.3)
We estimate the left-hand side of (4.3). Then

—(A) —u, (x +eh)")=—(A(), (x +eh) ")+ / u(x +eh)” dz. (4.4)
z

Assume that the first option in hypothegig j)»(vi) holds, namely for almost ali € Z,
allx > M and allu € 35 (z, x), we havex > 0. Set

Zf ={zeZ: (x+eh)(z) <0} and Z° ={zeZ%: x(z) >0}
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We know that

— v _[—D(x+¢h)(z) a.e.onzf,
Dx+eh)™ () = { 0 otherwise

(see Denkowski—Migorski—Papageorgiou [2, p. 348]). So we have

—(A(x), (x + gh)_> = —/ ||Dx||P_2(Dx, D(x + Eh)_)RN dz
V4

=/||Dx||1’*2(m,D(xﬂh))]RN dz
zt

28/ I Dx[P~%(Dx, Dh)gx dz
ze

:e/ | Dx||P~2(Dx, Dh)gn dz. (4.5)
22

The last equality follows from the fact th&@tx(z) = 0 a.e. on{x = 0} (by Stampacchia’s
Theorem, see Denkowski—Migorski—Papageorgiou [2, p. 349]).
Also we have

/u(x +eh) dz=— / u(x +eh)dz
V4 VA
=— / u(x +eh)dz — / u(x +¢eh)dz.
Z8N{x<M} ZEN{x>M}

We estimate each summand of the right-hand side separately. So

— / u(x+eh)dz=— / u(x +eh)dz — / u(x +¢eh)dz.

Z¢ N{x<M} Z¢ N{x=0} Zf N{0<x<M}

By hypothesisij(z,0) C R, a.e. onZ. Sou(z) > 0 a.e. onZ N {x = 0}. Also since

x(z) > 0 a.e. onZ, we have thati(z) < 0 a.e. onZ®.. So we obtain

— / u(x +eh)dz =— / euhdz > 0.
Z¢ N{x=0} Z¢ N{x=0}

Therefore

— / u(x+eh)dz> — / u(x +¢eh)dz

Z¢ N{x<M} Z¢ N{0<x<M}

> p1 / (x +eh)dz

Z¢ N{0<x <M}
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for somep; >0 (see hypothesiH(j)z(iii))
>eP1 f hdz (sincex > 0). (4.6)
78 Nfx <M}

Also sinceu(z) > 0 a.e. onlx > M}, we have

- / u(x +eh)dz > 0. 4.7)
Zf N{x =M}
Therefore from (4.6) and (4.7), we infer that
/u(x—l—sh)_dz >eP1 / hdz. (4.8)
Z 78 N{x<M}

Using (4.5) and (4.8) in (4.4), we obtain

—(AX) —u, (x+eh)") 2 e / | Dx||P~2(Dx, Dh)gn dz + €1 / hdz.
Vil 78 Nfx <M}
(4.9)

Returning to (4.3), using (4.9) and then dividing witl- 0, we obtain

/ | Dx||P~2(Dx, Dh)gn dz + 1 / hdz <(A(x) —u,h).
Z¢ 28 N{x<M}

Note that|Z¢ |y — O ase 1 0 (by| - |v we denote the Lebesgue measureRdh. So in
the limit ase | 0, we obtain

0<(A)—u, k) forallhe Wy'(Z) = Ax)=u.

Next suppose that the second option in hypothésig),(vi) is valid, namely for almost
allzeZ,allx > M andallu € 9j(z, x), we haveu < 0. In this case we have

—/u(x—i—e)dz:— / u(x +eh)dz — / u(x +eh)dz
ze Z¢ N{x<M} ZEN{x>M}
= — / u(x +¢eh)dz — / u(x +¢eh)dz
78 N{x <M} ZE N{x =M}

(sincedj(z,0) C R4 a.e. onZ)

> ef2 / hdz —¢ / uhdz

78 N{x <M} ZEN{x>M}
for somep > 0 (recallx > 0 and se€ (j)2(iii)). (4.10)
Using (4.5) and (4.10) in (4.4), we have
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—(A@) —u,(x+eh)V=¢ | IDx|P"2(Dx, Dh)pn dz
R

V4

+ eB2 [ hdz —¢ / uhdz. (4.11)

28 N{x<M} 28 N{x =M}

Combining (4.3) and (4.11) and dividing with> 0, we obtain

f||Dx||p_2(Dx,Dh)RNdz+ﬂ2 / hdz — f uhdz
7€

28 N{x<M} ZEN{x =M}

<(A(x) —u, h).

As before|Z¢ |y — 0 ase | 0. So in the limit we have

0<(A@) —u,h) forallhe WyP(Z) = A =u.
So in both cases we have

A(x)=u for someu e ng(.,x(_)).
From this it follows that

{ —div(|| Dx(2)||P"2Dx(z)) € 3j(z, x(z)) a.e.onZ
xlaz =0,

i.e.,xe Wol”’(Z), x >0, x # 0 solves problem (4.1).

By virtue of Theorem 7.1 of Ladyzhenskaya—Uraltseva [9] (see also Gasinski—
Papageorgiou [5, p. 115]), we hawee L°°(Z). Then using Theorem 1 of Lieberman
[10] (see also Gasinski—Papageorgiou [5, p. 116]), we havextI&af&(Z). Because of
hypothesisH (j)2(v), we have

div(| Dx(2)]|"?Dx(2)) < colx@)|” " ae. onz.

Invoking Theorem 5 of Vazquez [15], we conclude that

9
x(z)>0 forallzeZ and a—x(z)<0 forallzeoz. O
n

Remark 4.3.If C3(2)+ = {x € C3(2): x(z) > 0} (the positive cone iC3(Z)), then from
the properties of € C3(Z) obtained in Theorem 4.2, we have that int C3(Z)...
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