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1. Introduction

By a polynomial sequence we shall denote a sequence of polynomials py(x),k = 0, 1, 2, ..., where
pr(x) is exactly of degree k for all k. Sequences of polynomials play an important role in mathematics
and physics. One of the simplest classes of polynomial sequences is the class of Sheffer sequences that
contains relevant sequences such as the Laguerre, the Hermite, the Bernoulli and the Abel polynomials.
The systematic study of the class of Sheffer sequences is the object of the modern classical umbral
calculus started in the 1970s by Gian-Carlo Rota and his disciples [11].

The notion of Sheffer sequence can be introduced in many ways. In this paper, we will follow the
definitions of Rota and Roman, and introduce the concept of Sheffer sequence in terms of formal power
series. If the formal power series g(t) has a multiplicative inverse, denoted by g(t) ™! or -, then we
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callg(t) aninvertible series. If the series f (t) has a compositional inverse, denoted by f (t) and satisfying
ff () =f(f(t)) = t, then we call f(t) a delta series.

Definition 1.1 [11].

(1) Letg(t) beaninvertible series and let f (t) be a delta series; we say that the polynomial sequence
sp(x) is the Sheffer sequence for the pair (g(t), f(t)) if and only if

o0 tn 1 _
ol = L o 1
20 = e W

where f(t) is the compositional inverse of f (t).

(2) The Sheffer sequence for (1, f(t)) is the associated sequence for f(t). If p,(x) is associated to
F(©), then 322 pr(x) & = &9,

(3) The Sheffer sequence for (g(t), t) is the Appell sequence for g(t). If a, (x) is Appell for g(t), then

00 tn _ Xt
n=0 an(x)m = 0

Besides the generating function, there are several other ways to characterize Sheffer sequences. To
complement we list the following algebraic ones, the proofs can be found in [11,12].

Theorem 1.2.

(1) A polynomial sequence p,(x) is the associated sequence for a delta series f (t) if and only if it is of
binomial type, that is, if and only if it satisfies the identity

pax+y) = (")pk (OPni¥)-

=0 k

(2) A polynomial sequence s, (x) is Sheffer for (g(t), f(t)), for some invertible g(t), if and only if

snx+y) =D (n)pk (®)Sn—k ),

=0 k

where p,(x) is the associated sequence for f (t).
(3) A polynomial sequence a, (x) is Appell for some invertible g(t), if and only if

a,(x) = nap—1(x), n=1,2,...

In a recent work [3], a new definition by means of a determinant form for Appell polynomials
is given. In [7], Luz6n introduced a new notation T(f|g) to represent the Riordan arrays and gave a
recurrence relation for the polynomial sequences associated to Riordan arrays. In this paper, using
the production matrix of an exponential Riordan array, we give a recurrence relation for the Sheffer
polynomial sequence. A determinant representation for the Sheffer polynomial sequence is obtained.
In fact, we show that the general formula for the sequence can be expressed as the characteristic
polynomial of the principal submatrix of the production matrix.

2. Exponential Riordan array

Shapiro et al. [13] introduced the concept of a Riordan array in 1991, then the concept is generalized
to the exponential Riordan array by many authors [1,5,6,8,10,14,17]. The connection between the
Riordan arrays and the Sheffer sequences has already been pointed out by Shapiro et al. [13] and
Sprugnoli [15,16]. The exponential Riordan group is a set of infinite lower-triangular integer matrices,
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where each matrix is defined by a pair of exponential generating functions g(t) = 1+ X.72; gn%n!
andf(t) =t + 22, fn;—”! with fo = 0 and go = fi = 1. The associated matrix is the matrix whose
jth column has exponential generating function jllg(x)f (x) (the first column being indexed by 0). The
matrix corresponding to the pair f(t), g(t) is denoted by [g(t), f(t)]. For example, the exponential

Riordan array [e!, t] corresponds to the Pascal triangle A = ) 0
i,j>

The group law is then given by [g(t), f(t)][h(t), I(t)] = [g(t)h(f(t)), I(f(t))]. The identity for this

law is I = [1, t] and the inverse of [g(t), f(t)] is [g(fl(t)) ,f(®)], where f(t) is compositional inverse of

f(t).Letb = (bg, by, by, .. .)T be a real sequence with exponential generating function B(t), then the
sequence [g(t), f(t)]b has exponential generating function g(t)B(f(t)), i.e.

[g(®), f(O]B(t) = g(OBF(1)). (2)

For example, the exponential Riordan array [1, e/ — 1] corresponds to the Stirling matrix of the
second kind, while the exponential Riordan array [1, log(1 + t)] is the Stirling matrix of the first kind.

Lemma 2.1 [1,5,8]. LetA = (ank)n.k>0 = [g(t), f(t)] be an exponential Riordan array and let

c)=cotet+et?+-, 1) =ro+nt+nt+--- (3)
be two formal power series such that r(f (t)) = f'(t), c(f(t)) = g’(t)/g(t). Then
1 .
i1k = 1y i'(ci—k + kri—k+1)an i, (4)
< izk—1

where defining c_1=0. Conversely, starting from the sequences defined by (3), the infinite array (an k)n k>0
defined by (4) is an exponential Riordan array.

For an invertible lower triangular matrix R, its production matrix (also called its Stieltjes matrix,
see [4,10]) is the matrix P = R 'R, where R is the matrix R with its first row removed. The production
matrix P can be characterized by the matrix equality RP = DR, where D = (8;11,j)i j>0 (9 is the usual
Kronecker delta). It is not hard to see that the production matrix P = (p; ;)i j>o is Hessenberg, i.e.,
pij =O0whenj > i+ 1.

A consequence of Lemma 2.1 is that the production matrix of A = [g(t), f(£)] is P = (pjj)i j>o0.
where

i! )
pij = i (Ciej +Jricjr1),

Co o 0 0
1l %(co +11) To 0
b 2!y %(c1+r2) %(c0+2r1) 1o 0 0 ---
T 3l e +13) F(er +2m) H(co+3m) Io 0
4y H(es+1a) 3(ca+2r3) 5i(c3+3r2) Si(co+4r) ro -

Furthermore, the bivariate exponential generating function ¢p(t, z) = >, k P, ktk% of the matrix
P is given by ¢p(t,z) = e(c(z) + tr(z)). Note in particular that we have r(t) = f'(f(t)), c(t) =
g w)

(O The sequences (c;)n>0 and () n>0 are called respectively the c-sequence and the r-sequence
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of exponential Riordan array A. Since we require f(t) =t + >0, fn% with fo = 0and f; = 1, we
haverg = 1. '

Lemma 2.2 [6,17]. Ifsp(x) = X}, sn,kxk is Sheffer for (g(t), f(t)), then the coefficients sy i are the
elements of the exponential Riordan array [m , f(t)]. Ifx™ = >} _o bu kSk(x), then by, i are the elements

of the exponential Riordan array [g(t), f(t)].
Theorem 2.3. Let B be an invertible lower triangular matrix with production matrix P = (pn,k)n.k>0- Let

Bl=A= (ank) and an(x) = >}, an,kxk. Then (an(x))n>0 satisfies the recurrence relation of the
form:

Prnr1any1(X) = —(Ppn — X)an(X) — Ppa—10n—1(X) — - -+ — pp,1a1(X) — pn,0ao(x),

with initial condition ag(x) = ag o and po,1a;(x) = x — po,o-

Forn > 0, ap4+1(x) is also given by the following determinant formula:

Po.o —X Do,1 0 0
Po,1 P11 —X P12 - 0
(_1)n+1 .
app1(x) = —— Po,2 P21 D22 —X 0
Do,1P1,2 * * " Pn,n+1
Dn,o Pn,1 Pn2 " Pan—X
(_1)n+1
= ——————|[Pn1 — Xl
Po,1P1,2 - * " Pn,n+1
1
[XIn41 — Ppyql.

Po0,1DP1,2 - * Pn,n+1

Proof. Let E = (1,x,x2,...)T, then DE = x(1,x,x%,...)", and A7'E = (ag(x), a1 (x), ax(x), .. )T,
where D = (8i+1,j)i,j>0-

Let P be production matrix of A, then AP = DA, and PA~! = A~!D. Thus PA"'E = A~'DE, and
PA~'E = xA™'E. In matrix form, we have

Po,o Pog O O 0 --- ap(x) ap(x)
piop1,1 P12 0 0 - ar (x) ar(x)
P2,0 P2,1 P22 P23 0 --- ax) | =x| ax(x)

P3,0 P3,1 P3,2 P3,3 P3,4 *°° az(x) az(x)
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Po,o po1 0 0 O ar(x) xag(x) 0
P10 piip2 00 az(x) 0 ar(x)
ag(x) | P2.o | + | p2.1 P22 P23 O a(x) | = 0 +x| a2(x)
P30 P3,1 P3,2 P33 P34 - as(x) 0 az(x)
0 00000O a (x)
ai(x) 10000 a(x)
Sincex | @2(x) | =x] 01000 az(x) |, the above matrix equation can be rewritten as
as(x) 00100 as(x)
Po,1 0 0 0 ar(x) X — Po,0
P11—X P12 0 0 az(x) —D1,0
P21 P22—% p23 O a3(x) | =ap(x)| —p2,0
P31 P32 D33 —XDP34 - as(x) —P3,0

Therefore, po,1a1(x) = x — po,0, and forn > 1, we have

Pn,1a1(X) + -+ - + ppn—1an—1(X) + (Pnn — X)an(X) + Pp,nr1any1(X) = —pp,oao(x),

or equivalently

P11 (X) = —(Ppn — X)an(X) — ppn—10n—1(X) — - -+ — pp,1a1(X) — pp,oao(x).

Considering the first n + 1 equations in n + 1 variables ai(x), 1 < k < n + 1, the determinant of

the coefficients is
formula, we have

ant1(x) =

triangular so that its value is po 1p1,2 - - - Pn,n+1. Solving the equations by Cramer’s

Po,1 0 0 x—poo
p1,1 —X D12 0 —Do,1
- | P21 DP22—X:- 0 —Do,2
Po,1P1,2 * * * Pn,n+1
Dn,1 Dn,2 * Pnn—X —Pno
X —Ppoo Do, 0 0
—DPo,1 P11 —X D12 0
_‘l n
# —DPo2 D21 D22—X - 0
Po,1P1,2 "+ * Pn,n+1
—DPn,0 Pn.1 Pn,2 * Pnn—X
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Po,o —X Do, 0 e 0
pPo,1 P11 —X P12 - 0
(-t
=—— | Doz P21 D22 —X - 0 . O
Po,1P1,2 - * Pn,n+1
DPn,o DPn1 Pn,2 o Pnn—X

Theorem 2.4. Let [g(t), f(t)] be an exponential Riordan array with the c-sequences (¢;)i>o and 1-
sequences (ri)i>o. Let (an(x))n>0 be the Sheffer polynomial sequence for (g(t), f(t)). Then (an(x))n>0
satisfies the recurrence relation of the form:

!
n1 (X) = (X — G0 — M1)an(X) — ——— (1 + (0 — 1)) an_1 (®)
n—1)!
| |
e %(cn_z + 2610y (x) — %(cn_l + )y (x) — nlcado(x).

with initial condition ag(x) = 1 and a;(x) = x — co. Forn > 0, ay41(x) is given by the following
determinant formula:

co— X 1 0 e 0
1l %(co-i—r])—x 1
anp1(x) = (=" 2o %(Cl + 1) %(CO +2r) —x --- 0
e n! n! _
n:Cp 1 (cn—1 + 1) 21 (cp—2 +2rp—1) -+ o (co +nry) —x

= (=1)""NPps1 — Xlyj1| = [Xlpg1 — Poga].

Proof. Taking into account rg = 1 and using Lemma 2.1, the results follow from Theorem 2.3. O

Theorem 2.5. Let the r-sequence of [1, f(t)] be (1;)i>0, and let (a,(x))n>0 be the associated polynomial
sequence to f(t). Then (a,(x))n>o satisfies the recurrence relation of the form:

n! n!
apy1(x) = (x — nry)ap(x) — Ny 1(x) — -+ — —Trp_1a(x) — o1 (),

(n—2)! 1!

with initial condition ap(x) = 1, and a;(x) = X. Forn > 0, ay1 (x) is given by the following determinant
formula:

x -1 0
1!
Ox—gn -1 .- 0
2! 2!
any1(x) = |0 =Gz x—Fm o

n! n! n!
0 _arn —ﬂrn,1 X—Wr]



2992 S.-L. Yang / Linear Algebra and its Applications 437 (2012) 2986-2996
Proof. Since g(t) = 1, we have c(t) = 0. Let the r-sequence of [1, f(t)] be (r;)i>0 with ryp = 1, then

g |G T TGS,
t 0, otherwise.

The results follow from Lemma 2.1 and Theorem 2.4. [J

Iff(t) = t, thenr(t) = 1. Let the c-sequence of [g(t), t] be (¢;)i>0, then

iy, if0 < <,
pij =11, ifj=i+1,
0, otherwise,

@ 1 0 0 0
N Hg 1 0 0
0
1

!
Z!Cz %q Scp 1
P= \
3! 3! 3!
3!C3 C iC] 3,C0

]V
4 4

0
0
0.--
0
4! 4! 4l 1
G4 7163 5702 37C3 4yCo

Hence, we have following result.

Theorem 2.6. Let the c-sequence of [g(t), t] be (¢;)i>o, and let (an(x))n>0 be the Appell polynomial
sequence for g(t). Then (a, (x))n>o satisfies the recurrence relation of the form:

n! n! n!
An41(%) = (X — Co)an(X) — mcmnq(X) T 5 202(0) = G1@1 () — nlcndo(v),

with initial condition ag(x) = 1, and a1(x) = x — co. Forn > 0, ap4+1(x) is given by the following
determinant formula:

X — Cp —1 0
—1lcty x—o¢o —1
21 2!
ny1(x) = | =212 — 116 X —Co
! n! n!
—N:Cy —iCn,1 —iCH,Z e X —Cp

3. Examples

v 2
Example 1. The exponential Riordan array A = [e%, t] has general term
n—k
n (3) 2
(55!

IT
0, otherwise,

, ifn > kandn — k even,

Qnk =

and the generating functions for its c-sequence and r-sequence are c(t) = vt and r(t) = 1 respectively.
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v 2
Let (an(x))n>0 be the Appell sequence for g(t) = e's . Then ap(x) = 1,a;(x) = x,and forn > 1
ant1(X) = Xap(x) — nvap—q(x),

with the general formula

—-x 1 0 00--- 0 O
v —x 1 00--- 0 0
0 2v—.x 1 0--- 0 O
U1 () = (=)™ 0 0 3v —x1--- 0 0
0 0 —x 1
0 0 0 00- nv —x

-x 1 0
Forn = 2,wehavea;(x) = (—1)>| v —x 1 | = —3vx+x>.Whenv = 2, we have a,(2x) = Hp(x)
0 2v —x

are the Hermite polynomials (see [2]).

Example 2. The exponential Riordan array A = [1, ﬁ] has general term
n! (n—1 .
oy = H(k—l)’ ifn>k >0,
’ 0, otherwise,

and the generating functions for its c-sequence and r-sequence are c(t) = 0 and r(t) = (1 + t)?
respectively.

Let (an(x))n>0 be the associated sequence for f(t) = ﬁ Then ap(x) = 1, a;(x) = x, and for
n>1

an1(X) = (x — 2n)ap(x) — n(n — 1)ap—1 ().

In fact, forn > 1, we have a,(x) = >J_, (—1)”‘"%(?:}))(".
The determinant formula is

x 1 0 0 0. 0 0
02—x 1 0 0 0 0
0 2 4-x 1 0- 0 0
=D 0 s k1. 0 0

0 0 0 0 O0---nn—1)2n—x

Forn =2 wehaveas(x) = (—1)>[02—x 1 |=6x—6x>+x>.

0 2 4—x
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Example 3. Considering the exponential Riordan array A = [(cosht)”, tanht], we have A~ =
[(1 — tz)%, In,/ }—f; ] From Lemma 2.1 we obtain r(t) = 1 — t? and c(t) = yt. It follows at once that
the general entry of production matrix of P

iy—i+1), ifj=i—1,

- _]o, ifj =1,
Pii =14, ifj=i41,
0, otherwise.

The first rows of P are

0o 1 0 0 00
y 0 1 0 00---
020—1) 0 1 00
P=1o0 0o 30-2 o 10
0 0 0 4y—3)01--

Let (an(x))n>0 be the Sheffer sequence for ((cosht)?, tanht). Then ap(x) = 1, a;(x) = x, and for
n>=1l

a1 () = xap (x) — n(y —n+ Dap—1(%).

The determinant formula is

—X 1 0 0O0-- 0 0

—X 1 0o0-- 0 0

0200—1) —x 10- 0 0

G =(=D"| 0 0 3(y—2) —x1-- 0 0
0 0 0 0O0--- —X 1

0 0 0 00---n—1Dly—n+2) —x

Note that in this example a,(x) are the Cayley continuants of order n (see [9]).

Example 4. Considering the exponential Riordan array A = [1 — t, t — %]. Its inverse is A™1 =

[ﬁ, 1 — /1 — 2t ], which corresponds to the Bessel matrix of the first kind
1 0 00O0:--
1 1. 00O0---
3 31 00---
A=l 15 156 10...
10510545101 ---
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2
The generating function of the r-sequence of exponential Riordan array A = [1 — ¢, t — %] is

r(t) = 4/1 — 2t, and the generating function of its c-sequence is c(t) = — \/ll_ﬁ The product matrix

of A begins

—1 1 0O 0 O
-1 -2 1 0 0
-3 -3 -3 1 0
-15 —-12 -6 —4 1
-105 -75 —-30 —10 =5 ---

whose general entry is

(n+1)! (211—2k)7 ifo <k <n,

k! (n—k+1)2n—k \ n—k
Dnk =11, ifk=n+1,
0, otherwise.

Let (an(x))n>0 be the Sheffer sequence for (1 — ¢, t — %). Then ag(x) = 1, and forn > 1,
an(x) = |xI, — P,|, where Py, is the nth principal submatrix of the production matrix P. For n = 3, we
have

x+1 —1 0
az(x) = |xls — P3| =| 1 x+2 —1 |=15+15x+6x* +x°.
3 3 x+3

Note that in this example a;,, (x) are the Bessel polynomials with exponents in decreasing order (see

[5]).
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