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OXIDATIVE STRESS AND NO

Nitric oxide, oxidative stress, and apoptosis
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Nitric oxide, oxidative stress, and apoptosis. Life demands in- like oxidized low-density lipoprotein receptor-1 (LOX1),
tra- and intercellular communication in and between cells to is implicated in the process of atherogenesis. Atheroscle-
respond and adapt to changes in the environment. Among rosis is now considered a problem of wound healing andsignaling molecules, reactive oxygen (ROS) and nitrogen

chronic inflammation and can be viewed as a “response(RNS) species gained attention in facilitating intracellular com-
to injury” with lipoproteins, or other risk factors as themunication and causing cell demise during pathology. Com-

plexity was added with the notion that ROS and RNS signals injurious agents with the important notion that accumu-
overlap and/or produce synergistic, as well as antagonistic, lation of lipid-laden foam cells in fatty streaks are a
effects. This is exemplified by using oxidized lipoproteins primary event in disease progression. Increased oxi-(oxLDL), or NO donors, in provoking the stabilization of two

dative stress participates in vascular dysfunction andwell recognized transcription factors, such as tumor suppressor
atherogenesis [2]. Furthermore, oxLDL and/or ROS reg-p53 and hypoxia-inducible factor-1� (HIF-1�). Radical (i.e.,

superoxide) (O�
2 ) formation in response to oxLDL is associated ulate pathways linked to apoptosis and affect gene ex-

with p53, as well as HIF-1� accumulation in human macro- pression by modulating a large number of transcription
phages, a process that is antagonized by NO. On the other factors, one of which is the peroxisome proliferator-acti-side, NO-elicited HIF-1� stabilization is modulated by O�

2 .
vated receptor gamma (PPAR�) [3].Thus, ROS- and RNS-signaling is important in understanding

Peroxisome proliferator-activated receptors (PPARs)cell physiology and pathology, with the notion that marginal
changes in the flux rates of either NO or O�

2 may shift vital are a group of lipid-activated nuclear receptors that het-
signals used for communication into areas of pathology in close erodimerize with the 9-cis retinoic acid receptor (RXR)
association with human diseases. to form functional transcription factors that regulate

genes involved in lipid and glucose metabolism. Exam-
ples include adipocyte fatty acid binding protein aP2,
phosphoenolpyruvate carboxykinase, lipoprotein lipase,
and the brown fat uncoupling protein UCP1. ActivationOXLDL AND PPAR� IN SUPEROXIDE
of PPAR� is achieved by naturally occurring ligands thatFORMATION AND SIGNALING
comprise derivatives of linoleic or arachidonic acid, orLow-density lipoproteins acquire a number of impor-
synthetic antidiabetic drugs known as thiazolidinediones.tant pathophysiologic activities as a result of oxidative

We and others have demonstrated that membrane-modification [1]. Oxidation is achieved in vitro by auto-
bound NAD(P)H oxidase is a major source of ROSoxidation in the presence of transition metals or in vivo
formation, mediated by oxLDL in macrophages [4]. Thevia cell-mediated mechanisms. Oxidized low-density li-
oxidative burst was measured by flow cytometry andpoproteins (oxLDL) are powerful regulators of cell sig-
quantitated by oxidation of the redox sensitive dye, di-naling in provoking various responses [2]. Among other
chlorodihydrofluorescein diacetate (DCF). Short-timeactivities, oxLDL is both a potent chemoattractant for
stimulation dose-dependently elicited ROS formation.circulating monocytes and a differentiating agent that
Diphenylene iodonium prevented ROS formation, thuspromotes transition of macrophages to lipid-loaden foam
pointing to the involvement of an NAD(P)H oxidase incells. In close association, receptor-mediated endocytosis
producing reduced oxygen species. In contrast, preincu-of oxLDL by several scavenger receptor family mem-
bation of macrophages with oxLDL for 16 hours showedbers, including macrophage class A scavenger receptor
an attenuated oxidative burst after a second contact with(SR-A), CD36, scavenger receptor that binds phosphati-
oxLDL. Taking into account that oxLDL is an estab-dylserine and oxidized lipoprotein (SR-PSOX), and lectin-
lished PPAR� agonist, and considering the anti-inflam-
matory properties of PPAR�, we went on and showed
that a PPAR� agonist such as ciglitazone attenuatedKey words: nitric oxide, superoxide, apoptosis, survival, hypoxia-induc-

ible factor-1�, p53. ROS formation [5]. Along that line, major lipid peroxida-
tion products of oxLDL, such as 9-HODE and 13- 2003 by the International Society of Nephrology
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HODE, shared that performance. Supporting evidence
that PPAR� activation accounted for reduced ROS gen-
eration came from studies in which PPRE decoy oligonu-
cleotides, but not mutated oligonucleotides, supplied in
front of oxLDL delivery were allowed to regain a com-
plete oxidative burst upon cell activation [6]. We con-
clude that oxLDL not only elicits an oxidative burst
upon first contact, but also promotes desensitization of
macrophages via activation of PPAR�.

In some analogy, we noticed the ability of oxLDL
to provoke p53 accumulation in human macrophages
(primary monocyte derived macrophages and Mono Mac Fig. 1. HIF-1� and p53 stabilization under the influence of ROS/RNS.
6 cells) in close association with the appearance of apo- Stabilization of both HIF-1� and p53 under the influence of NO and

O�
2 with indications of signal cross talk, sites of intervention, and potentialptosis [7]. Apoptotic markers comprised staining of phos-

pathophysiologic outcomes are shown (→ signal propagation; � inhibi-phatidylserine at the outer leaflet of the membrane
tory or suppressive). For details see the text.

(Annexin V staining), DNA fragmentation determined
by the cell death detection ELISA, and histochemical
features of chromatin condensation (i.e., DAPI-stain- tioxidant N-acetyl-L-cysteine (NAC) and NAD(P)H oxi-
ing). Initiation of apoptosis, as well as p53 accumulation, dase inhibitors, such as diphenylene iodonium (DPI) or
was sensitive to diphenylene iodonium, thus correlating 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), thus
O�

2 formation upon oxLDL addition with downstream implicating the contribution of oxLDL-generated ROS.
signaling events. We conclude that oxLDL, via ROS Furthermore, the most physiologic NO donor S-nitro-
signaling, contributes to macrophage cell death (i.e., apo- soglutathione (GSNO) inhibited oxLDL-induced HIF-1�
ptosis while subtoxic concentrations of oxLDL alter the accumulation. Based on HIF-1-dependent luciferase re-
macrophage phenotype with the outcome of suppressed porter gene analysis, we established oxLDL-elicited
O�

2 formation). Thus, desensitization of macrophages by HIF-1 transactivation, which was again sensitive to DPI.
oxLDL may have important consequences for the behav- Our results indicated that ROS are required for oxLDL
ior of macrophages and foam cells in atherosclerotic to elicit a “hypoxic” response.
lesions. Recently, nitric oxide emerged as a messenger with

the ability to stabilize HIF-1� and to transactivate HIF-1
under normoxia [10, 11]. Considering that reactive nitro-HIF-1� ACCUMULATION BY REDOX SIGNALS
gen species are recognized for posttranslation protein

HIF-1 is a heterodimeric transcription factor com- modifications, among others S-nitrosation, we asked
posed of � and � subunits [8]. While HIF-1� is constitu- whether HIF-1� is a target for S-nitrosation. In vitro
tively expressed in many cell types, HIF-1� is present NO� donating compounds such as GSNO and SNAP
under normal oxygen supply at undetectable amounts. provoked massive S-nitrosation of purified HIF-1�. All
Under these conditions, HIF-1� is rapidly degraded by 15 free thiol groups found in human HIF-1� are sub-
the ubiquitin-proteasome system. Under hypoxic condi- jected to S-nitrosation. Thiol modification is not shared
tions, HIF-1� is stabilized. Following its heterodimeriza- by spermine-NONOate, a NO radical donating agent.

However, spermine-NONOate in the presence of O�
2 ,tion with HIF-1� and translocation to the nucleus, bind-

generated by xanthine/xanthine oxidase, regained S-nitro-ing to promoter-specific sites known as hypoxia response
sation, most likely via formation of a N2O3-like species. Inelements (HRE) drives classic hypoxia responsive genes.
RCC4 and HEK293 cells, GSNO or SNAP reproducedRecent studies suggest that alterations in the level of
S-nitrosation of HIF-1�, with a significantly reduced po-ROS provide a redox signal for HIF-1 induction by hyp-
tency, however. Importantly, endogenous formation ofoxia [9]. Moreover, ROS also appear to regulate HIF-1
NO in RCC4 cells via inducible NO synthase elicitedactivity under normoxia. In some cell types, direct expo-
S-nitrosation of HIF-1� that was sensitive to inhibitionsure to ROS or increased ROS production in response
of inducible NO synthase activity with NMMA. In con-to hormones or growth factors has been shown to medi-
clusion, HIF-1� is a target for S-nitrosation by exoge-ate HIF-1� protein accumulation and HIF-1-dependent
nously and endogenously produced NO in close associa-transcription. Along that line, cytokine-mediated stabili-
tion with NO-evoked protein stabilization.zation of HIF-1� and HIF-1 transactivation requires a

ROS-sensitive pathway. We obtained evidence that ox-
CONCLUSIONLDL induced HIF-1� protein accumulation in human

macrophages under normoxia. OxLDL-mediated HIF-1� NO and O�
2 are versatile messengers in physiology

and pathology [12, 13] (Fig. 1). Signaling properties andaccumulation was attenuated by pretreatment with the an-
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voking and attenuating the oxidative burst in macrophages: Role oftoxicity of both radicals are affected, to a large extent, by
PPAR�. J Immunol 168:2828–2834, 2002

the existing biologic milieu, relative rates of NO/O�
2 for- 5. von Knethen A, Brüne B: Delayed activation of PPAR� in macro-

phages by LPS and IFN-� attenuates the oxidative burst. FASEBmation, and scavenger systems [14]. For the future it will
J 15:535–544, 2001be essential to define the transition from “signaling” to 6. von Knethen A, Brüne B: Activation of PPAR� by NO in mono-

“toxicity” and to use this knowledge for therapeutic inter- cytes/macrophages down-regulates p47phox and attenuates the respira-
tory burst. J Immunol 169:2619–2626, 2002ventions.
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hypoxia-inducible-factor 1� by the inflammatory mediators nitric

REFERENCES oxide and tumor necrosis factor-� in contrast to desferroxamine and
phenylarsine oxide. J Biol Chem 276:39805–39811, 2001

1. Glass CK, Witztum JL: Atherosclerosis: The road ahead. Cell 12. Grisham MB, Jourd’Heul D, Wink DA: Nitric oxide: Physiological
104:503–516, 2001 chemistry of nitric oxide and its metabolites, implications in inflam-

2. Cai H, Harrison DG: Endothelial dysfunction in cardiovascular mation. Am J Physiol 276:G315–G321, 1999
diseases: The role of oxidant stress. Circ Res 87:840–844, 2000 13. Brüne B: Nitric oxide (NO) and apoptosis in mesangial cells. Kidney
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