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Fluid loss from the peritoneal 
cavity by back-filtration through 
the small pores of the three-pore 
model
B Rippe1 and D Venturoli1

The partitioning of fluid flows among small and ultrasmall pores of the 
three-pore model in peritoneal dialysis has been traditionally assessed 
using 4-hour dwells with 3.86% glucose solutions.  Under these 
conditions, however, back-filtration through small pores has been 
hard to demonstrate. As nicely shown by Asghar and Davies, however, 
the use of low-concentration (1.36%) glucose-based solutions allows 
accurate studies of the partitioning of fluid flows from the peritoneal 
cavity under conditions of fluid loss.  
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As they report in this issue of Kidney 
International, Asghar and Davies1 have 
studied the mechanisms of fluid reab-
sorption across the peritoneal membrane 
under conditions of a so-called ‘standard-
ized peritoneal permeability analysis’ in 
patients on peritoneal dialysis. Paired 
glucose 3.86% and 1.36% dwell studies 
were performed using 125I-albumin as an 
intraperitoneal volume marker. Changes 
in intraperitoneal sodium concentration 
and in volume were assessed to determine 
the transperitoneal clearance of sodium, 
which, at least during the first hour of the 
dwell, can be used as an indicator of the 
ultrafiltration (UF) occurring across the 
small pores of the three-pore model. This 
approach, though in an ingeniously sim-
ple form, was first described by La Milia 
et al.2 and is here referred to as the La 
Milia technique. For dwells longer than 
1 hour, a correction for the diffusion of 
Na+ through the small pores is required 
to correctly assess small-pore UF from 
the transperitoneal clearance of Na+.3

The major difference between the 
analysis of Asghar and Davies1 and pre-
vious analyses of this kind3–5 is that the 
present study includes a 1.36% glucose 
exchange, permitting the analysis of 
fluid reabsorption occurring when the 
osmotic gradient has more or less dissi-
pated, and when net fluid reabsorption 
from the peritoneal cavity to plasma has 
started. In previous standardized periton-
eal permeability analyses, 3.86% glucose 
exchanges have been used, and the sepa-
ration of fluid flows among the various 
fluid conductive pathways (mainly small 
pores and ultrasmall pores) was carried 
out in relatively short dwells (4 hours), 
in which net reabsorption had barely 
started at the end of the dwell. This is 
problematic, because it is quite difficult 
to partition small-pore UF from ultra-
small-pore UF, without error, when 
total net UF is very small. Therefore, not 
surprisingly, previous analyses using 
3.86% glucose standardized peritoneal 
permeability dwells have failed to show 
peritoneal fluid loss occurring via small-
pore back-filtration.3–5 Indeed, in order 
to study the fluid loss from the periton-
eal cavity in hypertonic glucose dwells, 
dwell time has to be increased markedly 
beyond 4 hours.

Alternatively, it is possible to analyze 
the mechanisms of fluid loss from the 
peritoneal cavity in relatively short dwells 
(4 hours) using peritoneal dialysis solu-
tions with low glucose concentration. 
This is one of the approaches taken in the 
study by Asghar and Davies.1 In 1.36% 
glucose dwells, fluid reabsorption through 
small pores starts at around 60 minutes, 
not at 240 minutes as in 3.86% glucose 
dwells. Another major advantage in the 
study of Asghar and Davies1 is the use of 
radio-iodinated serum albumin instead of 
dextran 70 (molecular weight 70,000) as 
an intraperitoneal volume marker. Dex-
tran 70 is a rather polydisperse dextran 
mixture, which is relatively rapidly disap-
pearing from the peritoneal cavity during 
the early phase of the dwell, leading to 
a tendency to overestimate the apparent 
initial UF.

One ambiguity in all studies using an 
intraperitoneal macromolecular volume 
marker is that the disappearance of such a 
marker from the peritoneal cavity is very 
complex. For more than 20 years it has 
been debated to what extent peritoneal 
marker clearance, KE, represents just local 
clearance of marker into peritoneal tis-
sues, or lymphatic clearance (lymphatic 
reabsorption). KE is a complex parameter 
that includes convection of macromole-
cules and fluid into the peritoneal tissues. 
Fluid is drained from the tissues by three 
mechanisms: (1) small-pore reabsorption, 
that is, back-filtration of fluid, but not of 
marker, to the blood capillaries; (2) lym-
phatic reabsorption (a minor portion); 
and (3) ‘volume recirculation’ of fluid, but 
not of marker, back into the peritoneal 
cavity again. Such a volume recircula-
tion, described at some length in another 
article,6 will make KE exceed the sum of 
lymphatic and capillary (small-pore) fluid 
reabsorption, usually by 0.7–1.0 ml/min. 
However, only the fluid that effectively 
leaves the peritoneal cavity by capillary 
and lymphatic reabsorption will affect 
the net fluid kinetic parameters. Hence, 
according to the three-pore model, only 
the lymphatic reabsorption term (∼0.2–
0.3 ml/min) should be added to the net 
UF curve to establish the (total) transcap-
illary ultrafiltered volume curve.
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Despite the use of indicator dilution-
assessed volume as a function of dwell 
time and its complication by the KE term, 
Asghar and Davies1 have done a very 
scrupulous evaluation of peritoneal fluid 
reabsorption and how it is partitioned 
among the different fluid conductive path-
ways for 1.36% glucose dwells. Figure 1a 
shows the computer-simulated partition-
ing of the partial UF flows through the 
different pores of the three-pore model 
for 1.36% glucose, using standard model 

parameters for an average patient,7 after 
a moderate increase of the plasma col-
loid osmotic pressure from 22 to 27 mm 
Hg. This was done to match the high 
reabsorption found in the patient cohort 
of Asghar and Davies.1 The modeling 
of volumes shows that the transcellular 
(‘water-only’) UF for 1.36% glucose is 
rather small during 240 minutes, whereas 
the small-pore back-filtration is consider-
able. Furthermore, there is a ‘crossover’ 
of the net ultrafiltered volume curve and 

the small-pore ultrafiltered curve at about 
180 minutes. Figure 1b demonstrates 
that this pattern is more or less exactly 
mimicked by measured data.1 Indeed, it 
is striking how well the measured data 
correspond to the computer simulation, 
given the fact that the three-pore model 
was originally created based on volumet-
ric, not on tracer dilution-assessed, ultra-
filtered volumes.

The article by Asghar and Davies1 points 
to the difficulty of using the La Milia tech-
nique for partitioning small-pore ultrafil-
tered volume from aquaporin-mediated 
(ultrasmall-pore) ultrafiltered volume 
when dwells are exceeding 2 hours and 
net reabsorption of fluid has not yet 
started in hypertonic dwells. Studies aim-
ing to analyze the pathways of reabsorp-
tion of fluid from the peritoneal cavity to 
plasma should use solutions based on a 
low glucose concentration (1.36%), or, 
alternatively, they should substantially 
extend the dwell times (to 6–8 hours) if 
hypertonic glucose solutions are used. 
Under all circumstances, the article by 
Asghar and Davies1 represents a nice 
experimental confirmation of the predic-
tion by the three-pore model that small-
pore back-filtration accounts for the bulk 
of net fluid loss from the peritoneal cav-
ity under conditions of fluid reabsorption 
from peritoneum to plasma.
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Figure 1 | Partitioning of changes in ultrafiltered volumes (∆UFV) among the different fluid 
conductive pathways of the three-pore model for 1.36% glucose. (a) ∆UFV partitioned among 
the various fluid conductive pathways according to computer simulations using the three-pore 
model of peritoneal transport for 1.36% glucose and standard patient parameters, but having 
increased the plasma colloid osmotic pressure from 22 to 27 mm Hg, to create a more reabsorptive 
state than in the standard patient of the three-pore model. Ultrafiltration rates are denoted ‘Total,’ 
“Transcellular,’ ‘  ‘Small pore,’ and ‘Large pore,’ and the rate of lymphatic reabsorption is denoted 
‘Lymphatic.’ Note that back-filtration across the small pores accounts for most of the net fluid loss 
from the peritoneal cavity in the late phase of the 1.36% glucose dwell. UFV, ultrafiltered volume. 
(b) The achieved partial fluid flows occurring through the different fluid conductive pathways of 
the three-pore model measured by Asghar and Davies.1 Measured data seem to conform well with 
the computer-simulated data generated by the three-pore model.




