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We consider the existence of transcendental entire solutions of certain type of non-linear
difference equations. As an application, we investigate the value distribution of difference
polynomials of entire functions. In particular, we are interested in the existence of zeros of
f n(z)(λ f m(z + c) + μ f m(z)) − a, where f is an entire function, n, m are two integers such
that n � m > 0, and λ, μ are non-zero complex numbers. We also obtain a uniqueness
result in the case where shifts of two entire functions share a small function.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A meromorphic function means meromorphic in the whole complex plane. We say that two meromorphic functions f
and g share a finite value a IM (ignoring multiplicities) when f − a and g − a have the same zeros. If f − a and g − a
have the same zeros with the same multiplicities, then we say that f and g share the value a CM (counting multiplicities).
We assume that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory, as found
in [7,18]. We use σ( f ) to denote the order of f and N p(r, 1

f −a ) to denote the counting function of the zeros of f − a,
where an m-fold zero is counted m times if m � p and p times if m > p. For a small function a related to f , we define

δ(a, f ) = lim inf
r→∞

m(r, 1
f −a )

T (r, f )
.

Recently, Yang and Laine [19] considered the existence of the solutions of a non-linear differential-difference equation of
the form

f n + L(z, f ) = h, (1)

where L(z, f ) is a linear differential-difference polynomial in f . They obtained the following result.

Theorem A. (See [19, Theorem 3.4].) Let P , Q be polynomials. Then a non-linear difference equation

f (z)2 + P (z) f (z + 1) = Q (z)

has no transcendental entire solution of finite order.
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Theorem B. (See [19, Theorem 3.5 ].) A non-linear difference equation

f (z)3 + P (z) f (z + 1) = c sin bz (2)

where P (z) is a non-constant polynomial and b, c ∈ C are non-zero constants, does not admit entire solutions of finite order. If P (z) = p
is a non-zero constants, then (2) possesses three distinct entire solution of finite order, provided b = 3nπ and p3 = (−1)n+1 27

4 c2 for a
non-zero integer n.

Laine and Yang [9] continued to consider the non-existence of transcendental entire solutions of non-linear differential
equations of type

f n + Pd( f ) = p1ea1z + p2ea2 z, (3)

and obtained new results which complementing the theorems given by Li and Yang [10,11].

Theorem C. (See [9, Theorem 3.1].) Let n � 3 be an integer and Pd( f ) be a differential polynomial in f of total degree d � n − 2
with polynomial coefficients such that Pd(0) = 0. Provided that p1 , p2 are non-vanishing polynomials and a1 , a2 are distinct non-zero
complex constants, then (3) has no transcendental entire solutions.

Laine and Yang [9] pointed out that a similar conclusion could be proved if the differential polynomial Pd( f ) is replaced
with a differential-difference polynomial. However, Theorems A, B and C, the degree of the differential-difference polynomial
is less than n. Now, we consider the equal-case, we get the following results.

Theorem 1. Let a, c be non-zero constants, n and m be integers satisfying n � m > 0, λ �= 0 be a complex number and let P (z), Q (z)
be polynomials. If n � 2, then the difference equation

f (z)n+m + λ f (z)n f (z + c)m = P (z)eQ (z) + a (4)

has no transcendental entire solutions of finite order.

Remark. It seems to us that replacing f (z)n f (z + c)m with f (z)n ∑m
j=1 f (z + c j) and c j �= 0, or replacing the non-zero

value a with a(z) �≡ 0, where a(z) is a polynomial in z, the same conclusion can be proved.

Let f be a transcendental meromorphic function, and let n be a positive integer. Reminiscent to the value distributions
of f n f ′ , Hayman [5, Corollary to Theorem 9] proved that f n f ′ takes every non-zero complex value infinitely often if n � 3.
Mues [15, Satz 3] proved that f 2 f ′ −1 has infinitely many zeros. Later on, Bergweiler and Eremenko [1, Theorem 2] showed
that f f ′ − 1 has infinitely many zeros also. Corresponding to the results above, Laine and Yang [8, Theorem 2] investigated
the value distribution of difference products of entire functions.

Theorem D. (See [8, Theorem 2].) Let f be a transcendental entire function with finite order, and let c be a non-zero complex constant.
Then, for n � 2, f (z)n f (z + c) assumes every non-zero value a ∈ C infinitely often.

Some improvements of Theorem D can be found in [12,13]. In the present paper, we consider the value distribution of
f (z)n(λ f (z + c)m +μ f (z)m), where n, m are non-negative integers, and λ, μ are non-zero complex numbers. We obtain the
following result which generalize some theorems in [8,12,13].

Theorem 2. Let f be a transcendental entire function with finite order, c be a non-zero constant, n and m be integers satisfying
n � m > 0, and let λ, μ be two complex numbers such that |λ| + |μ| �= 0. If n � 2, then either f (z)n(λ f (z + c)m + μ f (z)m) assumes

every non-zero value a ∈ C infinitely often or f (z) = e
log t

c z g(z), where t = (−μ
λ
)

1
m , and g(z) is periodic function with period c.

Remarks. (1) If m = 0 and λ + μ �= 0, then (λ + μ) f n assumes every non-zero value a ∈ C infinitely often provided that
n � 2.

(2) It seems to us that replacing the non-zero value a ∈ C with a(z) �≡ 0, where a(z) is a polynomial in z, a similar
conclusion can be proved.

(3) When m > n > 0. If λμ = 0 and |λ| + |μ| �= 0, m � 2, then Theorem 2 holds. Unfortunately, when λμ �= 0, m � 2, we
do not know whether Theorem 2 holds.

(4) When λμ �= 0, m = 1 and n = 0, we can give a counterexample. Namely, let f (z) = z + ez , λ = 1 and μ = −1. Then
f (z + c)− f (z) = c, where c = 2π i. Clearly, f (z)n(λ f (z + c)m +μ f (z)m) cannot assume every non-zero value a ∈ C infinitely
often.
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Corresponding to Theorem 2, we consider the value distribution of f (z)n + μ f (z + c)m , where m �= n.

Theorem 3. Let f be a transcendental entire function with finite order, μ and c be non-zero constants, and let a(z) be a non-zero
small function to f . Suppose that n, m are positive integers such that n > m + 1 (or m > n + 1). Then the difference polynomial
f (z)n + μ f (z + c)m − a(z) has infinitely many zeros.

Remark. Theorem 3 is not true, if n = m + 1 (or m = n + 1). For example, if m = 1, f (z) = ez + 1, c = 2π i and μ = −2, then
f (z)2 − 2 f (z + c) + 1 = e2z has no zeros.

The following result is a partial answer as to what may happen if n = m in Theorem 3.

Theorem 4. Let f be an entire function with order 1 � σ( f ) < ∞, and suppose that f has infinitely many zeros with the exponent of
convergence of zeros λ( f ) < 1. Let μ, a and c be non-zero constants such that f (z) + μ f (z + c) �≡ 0. Then the difference polynomial
f (z) + μ f (z + c) − a has infinitely many zeros.

Set F (z) = f (z)n . Then F (z + c) = f (z + c)n , σ(F ) = σ( f ) and λ(F ) = λ( f ), so we obtain

Corollary. Let all conditions of Theorem 4 hold, and let n be a positive integer such that f (z)n + μ f (z + c)n �≡ 0. Then the difference
polynomial f (z)n + μ f (z + c)n − a has infinitely many zeros.

In 1976, Yang [17] proposed the following problem.

Suppose that f and g are two transcendental entire functions such that f and g share 0 CM and f ′ and g′ share 1 CM. What can
be said about the relationship between f and g?

Shibazaki [16] proved the following result.

Theorem E. Suppose that f and g are entire functions of finite order such that f ′ and g′ share 1 CM. If δ(0, f ) > 0 and 0 is a Picard
value of g, then either f ≡ g or f ′ g′ ≡ 1.

The following result can be seen as a difference counterpart to Theorem E.

Theorem 5. Suppose that f and g are two entire functions of finite order, and let a and b be distinct small functions related to f and g
such that δ(a) = δ(a, f ) + δ(a, g) > 1. If f (z + c1) and g(z + c2) share b CM, then exactly one of the following assertions holds.

(i) f (z) ≡ g(z + c), where c = c2 − c1 .
(ii) f (z + c1) = (a − b)eh + a, g(z + c2) = (a − b)e−h + a, where h(z) is an entire function.

2. Some lemmas

The first lemma is a difference analogue of the logarithmic derivative lemma, given by Halburd and Korhonen [4]. Chiang
and Feng have obtained similar estimates for the logarithmic difference [2, Corollary 2.5], and this work is independent
from [4].

Lemma 1. (See [4, Theorem 2.1].) Let f be a meromorphic function of finite order, and let c ∈ C and δ ∈ (0,1). Then

m

(
r,

f (z + c)

f (z)

)
+ m

(
r,

f (z)

f (z + c)

)
= o

(
T (r, f )

rδ

)
= S(r, f ).

Lemma 2. (See [7, Theorem 2.4.2].) Let f (z) be a transcendental meromorphic solution of

f n A(z, f ) = B(z, f ),

where A(z, f ), B(z, f ) are differential polynomials in f and its derivatives with small meromorphic coefficients aλ , in the sense of
m(r,aλ) = S(r, f ) for all λ ∈ I . If d(B(z, f )) � n, then m(r, A(z, f )) = S(r, f ).

Lemma 3. (See [3, Lemma 5.1].) Let f be a finite order meromorphic function, and let c be a non-zero constant. Then for each ε > 0,
we have

T
(
r, f (z + c)

) = T
(
r, f (z)

) + O
(
rσ−1+ε

) + O (log r)
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and

σ
(

f (z + c)
) = σ

(
f (z)

)
.

Lemma 4. (See [20, Theorem 3.1].) Let f j(z) ( j = 1,2,3) be meromorphic functions that satisfy

3∑
j=1

f j(z) ≡ 1.

If f1(z) is not a constant, and

3∑
j=1

N2

(
r,

1

f j

)
+

3∑
j=1

N(r, f j) <
(
λ + o(1)

)
T (r), r ∈ I,

where 0 � λ < 1, T (r) = max1� j�3{T (r, f j)}, and I has infinite linear measure, then either f2(z) ≡ 1 or f3(z) ≡ 1.

Lemma 5. (See [18, Theorem 1.51].) Suppose that f j(z) ( j = 1, . . . ,n) (n � 2) are meromorphic functions and g j(z) ( j = 1, . . . ,n)

are entire functions satisfying the following conditions.

(1)
∑n

j=1 f j(z)eg j(z) ≡ 0.

(2) 1 � j < k � n, g j(z) − gk(z) are not constants for 1 � j < k � n.
(3) For 1 � j � n, 1 � h < k � n,

T (r, f j) = o
{

T
(
r, egh−gk

)}
, r → ∞, r /∈ E,

where E ⊂ (1,∞) is of finite linear measure.

Then f j(z) ≡ 0.

3. Proof of Theorem 1

Suppose that f is a transcendental entire solution of finite order to Eq. (4). Differentiating (4) and eliminating eQ (z) , we
get

f (z)n−m F (z, f ) = −ap∗(z), (5)

where

F (z, f ) = nλP (z) f (z)m−1 f ′(z) f (z + c)m + mλP (z) f (z)m f (z + c)m−1 f ′(z + c)

+ (m + n)P (z) f (z)2m−1 f ′(z) − P∗λ f (z)m f (z + c)m − P∗ f (z)2m,

and p∗(z) = P ′(z) + P (z)Q ′(z).
We get that F (z, f ) cannot vanish identically by repeating the reasoning as [8, Theorem 2]. Set

F ∗(z, f ) = n
λP (z) f (z)m−1 f ′(z) f (z + c)m

f (z)2m
+ m

λP (z) f (z)m f (z + c)m−1 f ′(z + c)

f (z)2m

+ (m + n)
P (z) f (z)2m−1 f ′(z)

f (z)2m
− P∗λ f (z)m f (z + c)m + P∗ f (z)2m

f (z)2m
. (6)

Then from (5), we have

f n+m F ∗(z, f ) = −ap∗(z). (7)

Applying Lemmas 1 and 2, we obtain

m
(
r, F ∗(z, f )

) = S(r, f )

and

m
(
r, f F ∗(z, f )

) = S(r, f ).

From (6) and (7) we know that the poles of F ∗(z, f ) may be located only at the zeros of f (z). If F ∗(z, f ) has infinitely
many poles, then from that a zero of f (z) with multiplicity t should be a pole of multiplicity mt +1 of F ∗(z, f ). Since n � 2,
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we know that the left side of (7) must have infinitely many zeros, which is a contradiction to p∗(z) being a polynomial. So
we obtain

N
(
r, F ∗(z, f )

) = O (log r)

and

N
(
r, f F ∗(z, f )

) = O (log r).

Hence

T
(
r, F ∗(z, f )

) = S(r, f )

and

T
(
r, f F ∗(z, f )

) = S(r, f ).

Therefore

T
(
r, f (z)

) = S(r, f ),

which is a contradiction.

4. Proof of Theorem 2

Let a ∈ C \ {0} be arbitrary. If λ f (z + c)m + μ f (z)m ≡ 0, by [14, Satz 19], p. 98, we know that f (z) can be written in the

form f (z) = e
log t

c z g(z), where t = (−μ
λ
)

1
m , g(z) is a periodic function with period c. Now suppose λ f (z + c)m +μ f (z)m �≡ 0.

We consider the following two cases.
Case 1. Suppose λ = 0. Then f (z)n(λ f (z + c)m + μ f (z)m) = μ f (z)m+n . Let F (z) = μ f (z)m+n − a. By the second main

theorem, we get

(m + n)T (r, f ) = T (r, F ) + S(r, f ) � N

(
r,

1

F

)
+ N

(
r,

1

F + a

)
+ S(r, F )

� N

(
r,

1

f

)
+ N

(
r,

1

F

)
+ S(r, f )

� T (r, f ) + N

(
r,

1

F

)
+ S(r, f ).

Since n � 2, we get m + n > 2, and F must have infinitely many zeros.
Case 2. Suppose λ �= 0. Assume on the contrary to the assertion that f (z)n(λ f (z + c)m + μ f (z)m) − a has finitely many

zeros. Then

f (z)n(λ f (z + c)m + μ f (z)m) − a = H(z)eQ (z),

where H(z), Q (z) are polynomials. When μ �= 0, Theorem 2 holds by Theorem 1. When μ = 0, a simple modification of the
proof of Theorem 1 yields Theorem 2.

5. Proof of Theorem 3

Suppose on the contrary to the assertion that f (z)n + μ f (z + c)m − a(z) has finitely many zeros. Then by Hadamard
factorization theorem, there exist two polynomials P (z) and Q (z) such that

f (z)n + μ f (z + c)m − a(z) = P (z)eQ (z). (8)

Case 1. If n > m + 1, then differentiating (8) and eliminating eQ (z), we have

f (z)n−1
(

nf ′(z) −
(

Q ′(z) + P ′(z)

P (z)

)
f (z)

)
= a′(z) + mμ f (z + c)m−1 f ′(z + c)

+
(

Q ′(z) + P ′(z)

P (z)

)(
μ f (z + c)m − a(z)

)
. (9)

If nf ′(z)− (Q ′(z)+ P ′(z)
P (z) ) f ≡ 0, then we have f (z)n = A P (z)eQ (z), where A is a non-zero constant. Writing f = he

Q
n , where

h is a polynomial, and substituting f into (8), we get

(A − 1)P (z)eQ (z) + μh(z + c)e
mQ (z+c)

n − a(z) ≡ 0. (10)
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Clearly, A �= 1. Let g = e
Q
n . From (10) and Lemma 3, we get

nT (r, g) � mT (r, g) + O
(
rσ (g)−1+ε

) + O (log r),

which is a contradiction. Therefore, we obtain nf ′(z) − (Q ′(z) + P ′(z)
P (z) ) f �= 0. Combining (9) and Lemma 2, we have

T

(
r,nf ′(z) −

(
Q ′(z) + P ′(z)

P (z)

)
f

)
= S(r, f )

and

T

(
r, f

(
nf ′(z) −

(
Q ′(z) + P ′(z)

P (z)

)
f

))
= S(r, f ).

Hence

T (r, f ) = S(r, f ),

which is a contradiction.
Case 2. If n < m − 1, then set F (z) = f (z + c), F (z − c) = f (z) follows. We obtain

F (z)m + 1

μ
F (z − c)n − 1

μ
a(z − c) = P∗(z)eQ ∗(z).

Similarly as in Case 1, we get the conclusion, completing the proof of Theorem 3.

6. Proof of Theorem 4

Since f (z) is an entire function of order 1 � σ( f ) < ∞ and has infinitely many zeros with λ( f ) < 1, we can write
f (z) = h(z)eP (z) by the Hadamard factorization theorem, where h(z) is the product of the zeros of f (z), is also an entire
function and λ( f ) = λ(h) = σ(h) < 1, and P (z) is a non-constant polynomial. If f (z)+μ f (z + c)−a has finitely many zeros,
we obtain

h(z)eP (z) + μh(z + c)eP (z+c) − a = Q (z)eQ ∗(z), (11)

where Q (z), Q ∗(z) are polynomials. Clearly

h(z)eP (z) + μh(z + c)eP (z+c) − a − Q (z)eQ ∗(z) ≡ 0. (12)

Case 1. If P (z + c) − P (z) ≡ a1, where a1 is a constant, then we obtain P (z) = Az + B , where A �= 0. Substituting P (z) =
Az + B into (12), we have

e Az+B(
h(z) + μh(z + c)ea1

) − a − Q (z)eQ ∗(z) ≡ 0. (13)

If Q ∗(z) − Az − B ≡ a2, where a2 is a constant, then Q ∗(z) = Az + C . By (13), we get

e Az+B(
h(z) + μh(z + c)ea1 − Q (z)eC−B) ≡ a, (14)

a �= 0, which is a contradiction.
If Q ∗(z) − Az − B �≡ a2, then we get a ≡ 0, from (13) and Lemma 5, which also is a contradiction. Hence P (z + c) −

P (z) �≡ a1.
Case 2. If P (z + c) − Q ∗(z) ≡ b1, where b1 is a constant, then we get(

μh(z + c)eb1 − Q (z)
)
eQ ∗(z) + h(z)eP (z) − a ≡ 0. (15)

Clearly, Q ∗(z) − P (z) �≡ b2, otherwise, we get P (z + c) − P (z) ≡ b1 + b2, which is a contradiction. When Q ∗(z) − P (z) �≡ b2,
applying Lemma 5 to (15), we get h(z) ≡ 0, which is a contradiction. So P (z + c) − Q ∗(z) �≡ b1.

Case 3. Similarly as in Case 2, we get P (z) − Q ∗(z) �≡ c1, where c1 is a constant.
From Cases 1, 2 and 3 and applying Lemma 5 to (12), we get h(z) ≡ 0, which is a contradiction. Therefore, f (z) +

μ f (z + c) − a has infinitely many zeros.

7. Proof of Theorem 5

The former part of Theorem 5 follows by using the same reasoning as in [6] with apparent modification. For the conve-
nience of the reader, we give a complete proof.

From δ(a) > 1, we can easily get δ(a, f ) > 0 and δ(a, g) > 0. Now we take a positive number ε such that (2 + 2ε −
δ(a)) < 1, δ(a, f ) − ε > 0 and δ(a, g) − ε > 0. Then we have

(
δ(a, f ) − ε

)
T (r, f ) � m

(
r,

1
)

(16)

f − a
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and

(
δ(a, g) − ε

)
T (r, g) � m

(
r,

1

g − a

)
(17)

as r → ∞. By Lemma 1, we deduce that

m
(
r, f (z + c1)

)
� m(r, f ) + S(r, f ), (18)

and

m

(
r,

1

f − a

)
� m

(
r,

1

f (z + c1) − a

)
+ S(r, f ). (19)

Set

F (z) = f (z + c1) − a

b − a
, G(z) = g(z + c2) − a

b − a
. (20)

From (16), (18)–(20), we get

(
δ(a, f ) − ε

)
T (r, f ) � m

(
r,

1

f (z + c1) − a

)
+ S(r, f )

� m
(
r, f (z + c1)

) + S(r, f )

� T (r, F ) + S(r, f ) � T (r, f ) + S(r, f ). (21)

Similarly,

(
δ(a, g) − ε

)
T (r, g) � T (r, G) + S(r, g) � T (r, g) + S(r, g). (22)

Hence

S(r, F ) = S(r, f ), S(r, G) = S(r, g).

Again from (16) and (19), we obtain that

(
δ(a, f ) − ε

)
T (r, F ) �

(
δ(a, f ) − ε

)
T (r, f ) + S(r, f )

� m

(
r,

1

f (z + c1) − a

)
+ S(r, f )

� T (r, F ) − N

(
r,

1

F

)
+ S(r, f ). (23)

So we have

N

(
r,

1

F

)
�

(
1 − δ(a, f ) + ε

)
T (r, F ). (24)

By the same reasoning, we get

N

(
r,

1

G

)
�

(
1 − δ(a, g) + ε

)
T (r, G). (25)

Since f (z + c1) and g(z + c2) share b CM, we obtain that,

f (z + c1) − b

g(z + c2) − b
= eh(z), (26)

where h(z) is a polynomial. From (26) we have

F (z) − G(z)eh(z) + eh(z) ≡ 1.

Set F1(z) = F (z), F2(z) = G(z)eh(z) , F3(z) = eh(z) . Then

F1 + F2 + F3 = 1,

and

T (r) = max
{

T (r, F j)
}
, S(r) = o

(
T (r)

)
.

1� j�3
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From (24) and (25), we get

3∑
j=1

N2

(
r,

1

F j

)
+

3∑
j=1

N(r, F j) � N

(
r,

1

F

)
+ N

(
r,

1

G

)
+ S(r)

�
(
2 + 2ε − δ(a)

)
T (r) + S(r).

By Lemma 4, we get that F2 = 1 or F3 = 1. If F2 = 1, the conclusion (ii) holds, while if F3 = 1, the conclusion (i) holds.
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