Uniqueness and value distribution of differences of entire functions ${ }^{\text {* }}$

Xiaoguang Qi $^{\mathrm{a}, \mathrm{b}, *}$, Kai Liu ${ }^{\mathrm{c}}$
a School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China
${ }^{\mathrm{b}}$ Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
${ }^{\text {c }}$ Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, PR China

ARTICLE INFO

Article history:

Received 23 September 2010
Available online 24 December 2010
Submitted by Steven G. Krantz

Keywords:

Entire functions
Uniqueness
Difference
Shift
Sharing value

Abstract

We consider the existence of transcendental entire solutions of certain type of non-linear difference equations. As an application, we investigate the value distribution of difference polynomials of entire functions. In particular, we are interested in the existence of zeros of $f^{n}(z)\left(\lambda f^{m}(z+c)+\mu f^{m}(z)\right)-a$, where f is an entire function, n, m are two integers such that $n \geqslant m>0$, and λ, μ are non-zero complex numbers. We also obtain a uniqueness result in the case where shifts of two entire functions share a small function.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A meromorphic function means meromorphic in the whole complex plane. We say that two meromorphic functions f and g share a finite value a IM (ignoring multiplicities) when $f-a$ and $g-a$ have the same zeros. If $f-a$ and $g-a$ have the same zeros with the same multiplicities, then we say that f and g share the value $a \mathrm{CM}$ (counting multiplicities). We assume that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory, as found in [7,18]. We use $\sigma(f)$ to denote the order of f and $N_{p}\left(r, \frac{1}{f-a}\right)$ to denote the counting function of the zeros of $f-a$, where an m-fold zero is counted m times if $m \leqslant p$ and p times if $m>p$. For a small function a related to f, we define

$$
\delta(a, f)=\liminf _{r \rightarrow \infty} \frac{m\left(r, \frac{1}{f-a}\right)}{T(r, f)}
$$

Recently, Yang and Laine [19] considered the existence of the solutions of a non-linear differential-difference equation of the form

$$
\begin{equation*}
f^{n}+L(z, f)=h \tag{1}
\end{equation*}
$$

where $L(z, f)$ is a linear differential-difference polynomial in f. They obtained the following result.
Theorem A. (See [19, Theorem 3.4].) Let P, Q be polynomials. Then a non-linear difference equation

$$
f(z)^{2}+P(z) f(z+1)=Q(z)
$$

has no transcendental entire solution of finite order.

[^0]Theorem B. (See [19, Theorem 3.5].) A non-linear difference equation

$$
\begin{equation*}
f(z)^{3}+P(z) f(z+1)=c \sin b z \tag{2}
\end{equation*}
$$

where $P(z)$ is a non-constant polynomial and $b, c \in \mathbb{C}$ are non-zero constants, does not admit entire solutions of finite order. If $P(z)=p$ is a non-zero constants, then (2) possesses three distinct entire solution of finite order, provided $b=3 n \pi$ and $p^{3}=(-1)^{n+1} \frac{27}{4} c^{2}$ for a non-zero integer n.

Laine and Yang [9] continued to consider the non-existence of transcendental entire solutions of non-linear differential equations of type

$$
\begin{equation*}
f^{n}+P_{d}(f)=p_{1} e^{a_{1} z}+p_{2} e^{a_{2} z} \tag{3}
\end{equation*}
$$

and obtained new results which complementing the theorems given by Li and Yang [10,11].

Theorem C. (See [9, Theorem 3.1].) Let $n \geqslant 3$ be an integer and $P_{d}(f)$ be a differential polynomial in f of total degree $d \leqslant n-2$ with polynomial coefficients such that $P_{d}(0)=0$. Provided that p_{1}, p_{2} are non-vanishing polynomials and a_{1}, a_{2} are distinct non-zero complex constants, then (3) has no transcendental entire solutions.

Laine and Yang [9] pointed out that a similar conclusion could be proved if the differential polynomial $P_{d}(f)$ is replaced with a differential-difference polynomial. However, Theorems A, B and C, the degree of the differential-difference polynomial is less than n. Now, we consider the equal-case, we get the following results.

Theorem 1. Let a, c be non-zero constants, n and m be integers satisfying $n \geqslant m>0, \lambda \neq 0$ be a complex number and let $P(z), Q(z)$ be polynomials. If $n \geqslant 2$, then the difference equation

$$
\begin{equation*}
f(z)^{n+m}+\lambda f(z)^{n} f(z+c)^{m}=P(z) e^{Q(z)}+a \tag{4}
\end{equation*}
$$

has no transcendental entire solutions of finite order.

Remark. It seems to us that replacing $f(z)^{n} f(z+c)^{m}$ with $f(z)^{n} \sum_{j=1}^{m} f\left(z+c_{j}\right)$ and $c_{j} \neq 0$, or replacing the non-zero value a with $a(z) \not \equiv 0$, where $a(z)$ is a polynomial in z, the same conclusion can be proved.

Let f be a transcendental meromorphic function, and let n be a positive integer. Reminiscent to the value distributions of $f^{n} f^{\prime}$, Hayman [5, Corollary to Theorem 9] proved that $f^{n} f^{\prime}$ takes every non-zero complex value infinitely often if $n \geqslant 3$. Mues [15, Satz 3] proved that $f^{2} f^{\prime}-1$ has infinitely many zeros. Later on, Bergweiler and Eremenko [1, Theorem 2] showed that $f f^{\prime}-1$ has infinitely many zeros also. Corresponding to the results above, Laine and Yang [8, Theorem 2] investigated the value distribution of difference products of entire functions.

Theorem D. (See [8, Theorem 2].) Let f be a transcendental entire function with finite order, and let c be a non-zero complex constant. Then, for $n \geqslant 2, f(z)^{n} f(z+c)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often.

Some improvements of Theorem D can be found in [12,13]. In the present paper, we consider the value distribution of $f(z)^{n}\left(\lambda f(z+c)^{m}+\mu f(z)^{m}\right)$, where n, m are non-negative integers, and λ, μ are non-zero complex numbers. We obtain the following result which generalize some theorems in [8,12,13].

Theorem 2. Let f be a transcendental entire function with finite order, c be a non-zero constant, n and m be integers satisfying $n \geqslant m>0$, and let λ, μ be two complex numbers such that $|\lambda|+|\mu| \neq 0$. If $n \geqslant 2$, then either $f(z)^{n}\left(\lambda f(z+c)^{m}+\mu f(z)^{m}\right)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often or $f(z)=e^{\frac{\log t}{c} z} g(z)$, where $t=\left(-\frac{\mu}{\lambda}\right)^{\frac{1}{m}}$, and $g(z)$ is periodic function with period c.

Remarks. (1) If $m=0$ and $\lambda+\mu \neq 0$, then $(\lambda+\mu) f^{n}$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often provided that $n \geqslant 2$.
(2) It seems to us that replacing the non-zero value $a \in \mathbf{C}$ with $a(z) \not \equiv 0$, where $a(z)$ is a polynomial in z, a similar conclusion can be proved.
(3) When $m>n>0$. If $\lambda \mu=0$ and $|\lambda|+|\mu| \neq 0, m \geqslant 2$, then Theorem 2 holds. Unfortunately, when $\lambda \mu \neq 0, m \geqslant 2$, we do not know whether Theorem 2 holds.
(4) When $\lambda \mu \neq 0, m=1$ and $n=0$, we can give a counterexample. Namely, let $f(z)=z+e^{z}, \lambda=1$ and $\mu=-1$. Then $f(z+c)-f(z)=c$, where $c=2 \pi i$. Clearly, $f(z)^{n}\left(\lambda f(z+c)^{m}+\mu f(z)^{m}\right)$ cannot assume every non-zero value $a \in \mathbf{C}$ infinitely often.

Corresponding to Theorem 2, we consider the value distribution of $f(z)^{n}+\mu f(z+c)^{m}$, where $m \neq n$.
Theorem 3. Let f be a transcendental entire function with finite order, μ and c be non-zero constants, and let a(z) be a non-zero small function to f. Suppose that n, m are positive integers such that $n>m+1$ (or $m>n+1$). Then the difference polynomial $f(z)^{n}+\mu f(z+c)^{m}-a(z)$ has infinitely many zeros.

Remark. Theorem 3 is not true, if $n=m+1$ (or $m=n+1$). For example, if $m=1, f(z)=e^{z}+1, c=2 \pi i$ and $\mu=-2$, then $f(z)^{2}-2 f(z+c)+1=e^{2 z}$ has no zeros.

The following result is a partial answer as to what may happen if $n=m$ in Theorem 3 .
Theorem 4. Let f be an entire function with order $1 \leqslant \sigma(f)<\infty$, and suppose that f has infinitely many zeros with the exponent of convergence of zeros $\lambda(f)<1$. Let μ, a and c be non-zero constants such that $f(z)+\mu f(z+c) \not \equiv 0$. Then the difference polynomial $f(z)+\mu f(z+c)-a$ has infinitely many zeros.

Set $F(z)=f(z)^{n}$. Then $F(z+c)=f(z+c)^{n}, \sigma(F)=\sigma(f)$ and $\lambda(F)=\lambda(f)$, so we obtain
Corollary. Let all conditions of Theorem 4 hold, and let n be a positive integer such that $f(z)^{n}+\mu f(z+c)^{n} \not \equiv 0$. Then the difference polynomial $f(z)^{n}+\mu f(z+c)^{n}-a$ has infinitely many zeros.

In 1976, Yang [17] proposed the following problem.
Suppose that f and g are two transcendental entire functions such that f and g share $0 C M$ and f^{\prime} and g^{\prime} share $1 C M$. What can be said about the relationship between f and g ?

Shibazaki [16] proved the following result.

Theorem E. Suppose that f and g are entire functions of finite order such that f^{\prime} and g^{\prime} share $1 C M$. If $\delta(0, f)>0$ and 0 is a Picard value of g, then either $f \equiv g$ or $f^{\prime} g^{\prime} \equiv 1$.

The following result can be seen as a difference counterpart to Theorem E.
Theorem 5. Suppose that f and g are two entire functions of finite order, and let a and b be distinct small functions related to f and g such that $\delta(a)=\delta(a, f)+\delta(a, g)>1$. If $f\left(z+c_{1}\right)$ and $g\left(z+c_{2}\right)$ share $b C M$, then exactly one of the following assertions holds.
(i) $f(z) \equiv g(z+c)$, where $c=c_{2}-c_{1}$.
(ii) $f\left(z+c_{1}\right)=(a-b) e^{h}+a, g\left(z+c_{2}\right)=(a-b) e^{-h}+a$, where $h(z)$ is an entire function.

2. Some lemmas

The first lemma is a difference analogue of the logarithmic derivative lemma, given by Halburd and Korhonen [4]. Chiang and Feng have obtained similar estimates for the logarithmic difference [2, Corollary 2.5], and this work is independent from [4].

Lemma 1. (See [4, Theorem 2.1].) Let f be a meromorphic function of finite order, and let $c \in \mathbf{C}$ and $\delta \in(0,1)$. Then

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)+m\left(r, \frac{f(z)}{f(z+c)}\right)=o\left(\frac{T(r, f)}{r^{\delta}}\right)=S(r, f)
$$

Lemma 2. (See [7, Theorem 2.4.2].) Let $f(z)$ be a transcendental meromorphic solution of

$$
f^{n} A(z, f)=B(z, f)
$$

where $A(z, f), B(z, f)$ are differential polynomials in f and its derivatives with small meromorphic coefficients a_{λ}, in the sense of $m\left(r, a_{\lambda}\right)=S(r, f)$ for all $\lambda \in \operatorname{If}$. $d(B(z, f)) \leqslant n$, then $m(r, A(z, f))=S(r, f)$.

Lemma 3. (See [3, Lemma 5.1].) Let f be a finite order meromorphic function, and let c be a non-zero constant. Then for each $\varepsilon>0$, we have

$$
T(r, f(z+c))=T(r, f(z))+O\left(r^{\sigma-1+\varepsilon}\right)+O(\log r)
$$

and

$$
\sigma(f(z+c))=\sigma(f(z))
$$

Lemma 4. (See [20, Theorem 3.1].) Let $f_{j}(z)(j=1,2,3)$ be meromorphic functions that satisfy

$$
\sum_{j=1}^{3} f_{j}(z) \equiv 1
$$

If $f_{1}(z)$ is not a constant, and

$$
\sum_{j=1}^{3} N_{2}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, f_{j}\right)<(\lambda+o(1)) T(r), \quad r \in I
$$

where $0 \leqslant \lambda<1, T(r)=\max _{1 \leqslant j \leqslant 3}\left\{T\left(r, f_{j}\right)\right\}$, and I has infinite linear measure, then either $f_{2}(z) \equiv 1$ or $f_{3}(z) \equiv 1$.
Lemma 5. (See [18, Theorem 1.51].) Suppose that $f_{j}(z)(j=1, \ldots, n)(n \geqslant 2)$ are meromorphic functions and $g_{j}(z)(j=1, \ldots, n)$ are entire functions satisfying the following conditions.
(1) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$.
(2) $1 \leqslant j<k \leqslant n, g_{j}(z)-g_{k}(z)$ are not constants for $1 \leqslant j<k \leqslant n$.
(3) For $1 \leqslant j \leqslant n, 1 \leqslant h<k \leqslant n$,

$$
T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-g_{k}}\right)\right\}, \quad r \rightarrow \infty, r \notin E
$$

where $E \subset(1, \infty)$ is of finite linear measure.
Then $f_{j}(z) \equiv 0$.

3. Proof of Theorem 1

Suppose that f is a transcendental entire solution of finite order to Eq. (4). Differentiating (4) and eliminating $e^{Q(z)}$, we get

$$
\begin{equation*}
f(z)^{n-m} F(z, f)=-a p^{*}(z) \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
F(z, f)= & n \lambda P(z) f(z)^{m-1} f^{\prime}(z) f(z+c)^{m}+m \lambda P(z) f(z)^{m} f(z+c)^{m-1} f^{\prime}(z+c) \\
& +(m+n) P(z) f(z)^{2 m-1} f^{\prime}(z)-P^{*} \lambda f(z)^{m} f(z+c)^{m}-P^{*} f(z)^{2 m},
\end{aligned}
$$

and $p^{*}(z)=P^{\prime}(z)+P(z) Q^{\prime}(z)$.
We get that $F(z, f)$ cannot vanish identically by repeating the reasoning as [8, Theorem 2]. Set

$$
\begin{align*}
F^{*}(z, f)= & n \frac{\lambda P(z) f(z)^{m-1} f^{\prime}(z) f(z+c)^{m}}{f(z)^{2 m}}+m \frac{\lambda P(z) f(z)^{m} f(z+c)^{m-1} f^{\prime}(z+c)}{f(z)^{2 m}} \\
& +(m+n) \frac{P(z) f(z)^{2 m-1} f^{\prime}(z)}{f(z)^{2 m}}-\frac{P^{*} \lambda f(z)^{m} f(z+c)^{m}+P^{*} f(z)^{2 m}}{f(z)^{2 m}} \tag{6}
\end{align*}
$$

Then from (5), we have

$$
\begin{equation*}
f^{n+m} F^{*}(z, f)=-a p^{*}(z) \tag{7}
\end{equation*}
$$

Applying Lemmas 1 and 2 , we obtain

$$
m\left(r, F^{*}(z, f)\right)=S(r, f)
$$

and

$$
m\left(r, f F^{*}(z, f)\right)=S(r, f)
$$

From (6) and (7) we know that the poles of $F^{*}(z, f)$ may be located only at the zeros of $f(z)$. If $F^{*}(z, f)$ has infinitely many poles, then from that a zero of $f(z)$ with multiplicity t should be a pole of multiplicity $m t+1$ of $F^{*}(z, f)$. Since $n \geqslant 2$,
we know that the left side of (7) must have infinitely many zeros, which is a contradiction to $p^{*}(z)$ being a polynomial. So we obtain

$$
N\left(r, F^{*}(z, f)\right)=O(\log r)
$$

and

$$
N\left(r, f F^{*}(z, f)\right)=O(\log r)
$$

Hence

$$
T\left(r, F^{*}(z, f)\right)=S(r, f)
$$

and

$$
T\left(r, f F^{*}(z, f)\right)=S(r, f)
$$

Therefore

$$
T(r, f(z))=S(r, f)
$$

which is a contradiction.

4. Proof of Theorem 2

Let $a \in \mathbf{C} \backslash\{0\}$ be arbitrary. If $\lambda f(z+c)^{m}+\mu f(z)^{m} \equiv 0$, by [14, Satz 19], p. 98, we know that $f(z)$ can be written in the form $f(z)=e^{\frac{\log t}{c} z} g(z)$, where $t=\left(-\frac{\mu}{\lambda}\right)^{\frac{1}{m}}, g(z)$ is a periodic function with period c. Now suppose $\lambda f(z+c)^{m}+\mu f(z)^{m} \not \equiv 0$. We consider the following two cases.

Case 1. Suppose $\lambda=0$. Then $f(z)^{n}\left(\lambda f(z+c)^{m}+\mu f(z)^{m}\right)=\mu f(z)^{m+n}$. Let $F(z)=\mu f(z)^{m+n}-a$. By the second main theorem, we get

$$
\begin{aligned}
(m+n) T(r, f) & =T(r, F)+S(r, f) \leqslant \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F+a}\right)+S(r, F) \\
& \leqslant \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f) \\
& \leqslant T(r, f)+\bar{N}\left(r, \frac{1}{F}\right)+S(r, f)
\end{aligned}
$$

Since $n \geqslant 2$, we get $m+n>2$, and F must have infinitely many zeros.
Case 2. Suppose $\lambda \neq 0$. Assume on the contrary to the assertion that $f(z)^{n}\left(\lambda f(z+c)^{m}+\mu f(z)^{m}\right)-a$ has finitely many zeros. Then

$$
f(z)^{n}\left(\lambda f(z+c)^{m}+\mu f(z)^{m}\right)-a=H(z) e^{Q(z)},
$$

where $H(z), Q(z)$ are polynomials. When $\mu \neq 0$, Theorem 2 holds by Theorem 1 . When $\mu=0$, a simple modification of the proof of Theorem 1 yields Theorem 2.

5. Proof of Theorem 3

Suppose on the contrary to the assertion that $f(z)^{n}+\mu f(z+c)^{m}-a(z)$ has finitely many zeros. Then by Hadamard factorization theorem, there exist two polynomials $P(z)$ and $Q(z)$ such that

$$
\begin{equation*}
f(z)^{n}+\mu f(z+c)^{m}-a(z)=P(z) e^{Q(z)} \tag{8}
\end{equation*}
$$

Case 1. If $n>m+1$, then differentiating (8) and eliminating $e^{Q(z)}$, we have

$$
\begin{align*}
f(z)^{n-1}\left(n f^{\prime}(z)-\left(Q^{\prime}(z)+\frac{P^{\prime}(z)}{P(z)}\right) f(z)\right)= & a^{\prime}(z)+m \mu f(z+c)^{m-1} f^{\prime}(z+c) \\
& +\left(Q^{\prime}(z)+\frac{P^{\prime}(z)}{P(z)}\right)\left(\mu f(z+c)^{m}-a(z)\right) \tag{9}
\end{align*}
$$

If $n f^{\prime}(z)-\left(Q^{\prime}(z)+\frac{P^{\prime}(z)}{P(z)}\right) f \equiv 0$, then we have $f(z)^{n}=A P(z) e^{Q(z)}$, where A is a non-zero constant. Writing $f=h e^{\frac{Q}{n}}$, where h is a polynomial, and substituting f into (8), we get

$$
\begin{equation*}
(A-1) P(z) e^{Q(z)}+\mu h(z+c) e^{\frac{m Q(z+c)}{n}}-a(z) \equiv 0 . \tag{10}
\end{equation*}
$$

Clearly, $A \neq 1$. Let $g=e^{\frac{Q}{n}}$. From (10) and Lemma 3, we get

$$
n T(r, g) \leqslant m T(r, g)+O\left(r^{\sigma(g)-1+\varepsilon}\right)+O(\log r)
$$

which is a contradiction. Therefore, we obtain $n f^{\prime}(z)-\left(Q^{\prime}(z)+\frac{P^{\prime}(z)}{P(z)}\right) f \neq 0$. Combining (9) and Lemma 2, we have

$$
T\left(r, n f^{\prime}(z)-\left(Q^{\prime}(z)+\frac{P^{\prime}(z)}{P(z)}\right) f\right)=S(r, f)
$$

and

$$
T\left(r, f\left(n f^{\prime}(z)-\left(Q^{\prime}(z)+\frac{P^{\prime}(z)}{P(z)}\right) f\right)\right)=S(r, f)
$$

Hence

$$
T(r, f)=S(r, f)
$$

which is a contradiction.
Case 2. If $n<m-1$, then set $F(z)=f(z+c), F(z-c)=f(z)$ follows. We obtain

$$
F(z)^{m}+\frac{1}{\mu} F(z-c)^{n}-\frac{1}{\mu} a(z-c)=P^{*}(z) e^{Q^{*}(z)}
$$

Similarly as in Case 1, we get the conclusion, completing the proof of Theorem 3.

6. Proof of Theorem 4

Since $f(z)$ is an entire function of order $1 \leqslant \sigma(f)<\infty$ and has infinitely many zeros with $\lambda(f)<1$, we can write $f(z)=h(z) e^{P(z)}$ by the Hadamard factorization theorem, where $h(z)$ is the product of the zeros of $f(z)$, is also an entire function and $\lambda(f)=\lambda(h)=\sigma(h)<1$, and $P(z)$ is a non-constant polynomial. If $f(z)+\mu f(z+c)-a$ has finitely many zeros, we obtain

$$
\begin{equation*}
h(z) e^{P(z)}+\mu h(z+c) e^{P(z+c)}-a=Q(z) e^{Q^{*}(z)} \tag{11}
\end{equation*}
$$

where $Q(z), Q^{*}(z)$ are polynomials. Clearly

$$
\begin{equation*}
h(z) e^{P(z)}+\mu h(z+c) e^{P(z+c)}-a-Q(z) e^{Q^{*}(z)} \equiv 0 \tag{12}
\end{equation*}
$$

Case 1. If $P(z+c)-P(z) \equiv a_{1}$, where a_{1} is a constant, then we obtain $P(z)=A z+B$, where $A \neq 0$. Substituting $P(z)=$ $A z+B$ into (12), we have

$$
\begin{equation*}
e^{A z+B}\left(h(z)+\mu h(z+c) e^{a_{1}}\right)-a-Q(z) e^{Q^{*}(z)} \equiv 0 \tag{13}
\end{equation*}
$$

If $Q^{*}(z)-A z-B \equiv a_{2}$, where a_{2} is a constant, then $Q^{*}(z)=A z+C$. By (13), we get

$$
\begin{equation*}
e^{A z+B}\left(h(z)+\mu h(z+c) e^{a_{1}}-Q(z) e^{C-B}\right) \equiv a \tag{14}
\end{equation*}
$$

$a \neq 0$, which is a contradiction.
If $Q^{*}(z)-A z-B \not \equiv a_{2}$, then we get $a \equiv 0$, from (13) and Lemma 5 , which also is a contradiction. Hence $P(z+c)-$ $P(z) \not \equiv a_{1}$.

Case 2. If $P(z+c)-Q^{*}(z) \equiv b_{1}$, where b_{1} is a constant, then we get

$$
\begin{equation*}
\left(\mu h(z+c) e^{b_{1}}-Q(z)\right) e^{Q^{*}(z)}+h(z) e^{P(z)}-a \equiv 0 \tag{15}
\end{equation*}
$$

Clearly, $Q^{*}(z)-P(z) \not \equiv b_{2}$, otherwise, we get $P(z+c)-P(z) \equiv b_{1}+b_{2}$, which is a contradiction. When $Q^{*}(z)-P(z) \not \equiv b_{2}$, applying Lemma 5 to (15), we get $h(z) \equiv 0$, which is a contradiction. So $P(z+c)-Q^{*}(z) \not \equiv b_{1}$.

Case 3. Similarly as in Case 2 , we get $P(z)-Q^{*}(z) \not \equiv c_{1}$, where c_{1} is a constant.
From Cases 1,2 and 3 and applying Lemma 5 to (12), we get $h(z) \equiv 0$, which is a contradiction. Therefore, $f(z)+$ $\mu f(z+c)-a$ has infinitely many zeros.

7. Proof of Theorem 5

The former part of Theorem 5 follows by using the same reasoning as in [6] with apparent modification. For the convenience of the reader, we give a complete proof.

From $\delta(a)>1$, we can easily get $\delta(a, f)>0$ and $\delta(a, g)>0$. Now we take a positive number ε such that $(2+2 \varepsilon-$ $\delta(a))<1, \delta(a, f)-\varepsilon>0$ and $\delta(a, g)-\varepsilon>0$. Then we have

$$
\begin{equation*}
(\delta(a, f)-\varepsilon) T(r, f) \leqslant m\left(r, \frac{1}{f-a}\right) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
(\delta(a, g)-\varepsilon) T(r, g) \leqslant m\left(r, \frac{1}{g-a}\right) \tag{17}
\end{equation*}
$$

as $r \rightarrow \infty$. By Lemma 1, we deduce that

$$
\begin{equation*}
m\left(r, f\left(z+c_{1}\right)\right) \leqslant m(r, f)+S(r, f), \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(r, \frac{1}{f-a}\right) \leqslant m\left(r, \frac{1}{f\left(z+c_{1}\right)-a}\right)+S(r, f) \tag{19}
\end{equation*}
$$

Set

$$
\begin{equation*}
F(z)=\frac{f\left(z+c_{1}\right)-a}{b-a}, \quad G(z)=\frac{g\left(z+c_{2}\right)-a}{b-a} \tag{20}
\end{equation*}
$$

From (16), (18)-(20), we get

$$
\begin{align*}
(\delta(a, f)-\varepsilon) T(r, f) & \leqslant m\left(r, \frac{1}{f\left(z+c_{1}\right)-a}\right)+S(r, f) \\
& \leqslant m\left(r, f\left(z+c_{1}\right)\right)+S(r, f) \\
& \leqslant T(r, F)+S(r, f) \leqslant T(r, f)+S(r, f) \tag{21}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
(\delta(a, g)-\varepsilon) T(r, g) \leqslant T(r, G)+S(r, g) \leqslant T(r, g)+S(r, g) \tag{22}
\end{equation*}
$$

Hence

$$
S(r, F)=S(r, f), \quad S(r, G)=S(r, g)
$$

Again from (16) and (19), we obtain that

$$
\begin{align*}
(\delta(a, f)-\varepsilon) T(r, F) & \leqslant(\delta(a, f)-\varepsilon) T(r, f)+S(r, f) \\
& \leqslant m\left(r, \frac{1}{f\left(z+c_{1}\right)-a}\right)+S(r, f) \\
& \leqslant T(r, F)-N\left(r, \frac{1}{F}\right)+S(r, f) \tag{23}
\end{align*}
$$

So we have

$$
\begin{equation*}
N\left(r, \frac{1}{F}\right) \leqslant(1-\delta(a, f)+\varepsilon) T(r, F) \tag{24}
\end{equation*}
$$

By the same reasoning, we get

$$
\begin{equation*}
N\left(r, \frac{1}{G}\right) \leqslant(1-\delta(a, g)+\varepsilon) T(r, G) \tag{25}
\end{equation*}
$$

Since $f\left(z+c_{1}\right)$ and $g\left(z+c_{2}\right)$ share b CM, we obtain that,

$$
\begin{equation*}
\frac{f\left(z+c_{1}\right)-b}{g\left(z+c_{2}\right)-b}=e^{h(z)} \tag{26}
\end{equation*}
$$

where $h(z)$ is a polynomial. From (26) we have

$$
F(z)-G(z) e^{h(z)}+e^{h(z)} \equiv 1
$$

Set $F_{1}(z)=F(z), F_{2}(z)=G(z) e^{h(z)}, F_{3}(z)=e^{h(z)}$. Then

$$
F_{1}+F_{2}+F_{3}=1,
$$

and

$$
T(r)=\max _{1 \leqslant j \leqslant 3}\left\{T\left(r, F_{j}\right)\right\}, \quad S(r)=o(T(r))
$$

From (24) and (25), we get

$$
\begin{aligned}
\sum_{j=1}^{3} N_{2}\left(r, \frac{1}{F_{j}}\right)+\sum_{j=1}^{3} \bar{N}\left(r, F_{j}\right) & \leqslant N\left(r, \frac{1}{F}\right)+N\left(r, \frac{1}{G}\right)+S(r) \\
& \leqslant(2+2 \varepsilon-\delta(a)) T(r)+S(r)
\end{aligned}
$$

By Lemma 4, we get that $F_{2}=1$ or $F_{3}=1$. If $F_{2}=1$, the conclusion (ii) holds, while if $F_{3}=1$, the conclusion (i) holds.

Acknowledgment

The authors thank the Department of Physics and Mathematics, University Eastern Finland, for its hospitality during their study period there.

References

[1] W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam. 11 (2) (1995) 355-373.
[2] Y.M. Chiang, S.J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (1) (2008) 105-129.
[3] Y.M. Chiang, S.J. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (7) (2009) 3767-3791.
[4] R.G. Halburd, R.J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. 31 (2) (2006) 463-478.
[5] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959) 9-42.
[6] X.H. Hua, A unicity theorem for entire functions, Bull. Lond. Math. Soc. 22 (5) (1990) 457-462.
[7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993.
[8] I. Laine, C.C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (8) (2007) 148-151.
[9] I. Laine, C.C. Yang, Entire solution of some nonlinear differential equations, preprint.
[10] P. Li, C.C. Yang, On the nonexistence of entire solution of certain type of nonlinear differential equations, J. Math. Anal. Appl. 320 (2) (2006) 827-835.
[11] P. Li, Entire solutions of certain type of differential equations, J. Math. Anal. Appl. 344 (1) (2008) 253-259.
[12] K. Liu, L.Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (3) (2009) 270-278.
[13] K. Liu, Value distribution of differences of meromorphic functions, Rocky Mountain J. Math., in press.
[14] H. Meschkowski, Differenzengleichungen, Studia Math., Bd. XIV, Vandenhoeck \& Ruprecht, Göttingen, 1959 (in German).
[15] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (3) (1979) 239-259.
[16] K. Shibazaki, Unicity theorem for entire functions of finite order, Mem. Nat. Defense Acad. (Japan) 21 (1981) 67-71.
[17] C.C. Yang, On two entire functions which together with their first derivative have the same zeros, J. Math. Anal. Appl. 56 (1) (1976) 1-6.
[18] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003.
[19] C.C. Yang, I. Laine, On analogies between nonlinear difference and differential equations, Proc. Japan Acad. Ser. A 86 (2010).
[20] L.Z. Yang, J.L. Zhang, Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76 (1-2) (2008) 140-150.

[^0]: 放 This work was supported by the NNSF of China (No. 10671109).

 * Corresponding author at: School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China. E-mail addresses: xiaogqi@mail.sdu.edu.cn (X. Qi), liukai418@126.com (K. Liu).

