

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Uniqueness and value distribution of differences of entire functions $\stackrel{\leftrightarrow}{}$

Xiaoguang Qi^{a,b,*}, Kai Liu^c

^a School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China

^b Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland

^c Department of Mathematics, Nanchang University, Nanchang, Jiangxi 330031, PR China

ARTICLE INFO

Article history: Received 23 September 2010 Available online 24 December 2010 Submitted by Steven G. Krantz

Keywords: Entire functions Uniqueness Difference Shift Sharing value

ABSTRACT

We consider the existence of transcendental entire solutions of certain type of non-linear difference equations. As an application, we investigate the value distribution of difference polynomials of entire functions. In particular, we are interested in the existence of zeros of $f^n(z)(\lambda f^m(z+c) + \mu f^m(z)) - a$, where f is an entire function, n, m are two integers such that $n \ge m > 0$, and λ , μ are non-zero complex numbers. We also obtain a uniqueness result in the case where shifts of two entire functions share a small function.

© 2010 Elsevier Inc. All rights reserved.

(1)

1. Introduction

A meromorphic function means meromorphic in the whole complex plane. We say that two meromorphic functions f and g share a finite value a IM (ignoring multiplicities) when f - a and g - a have the same zeros. If f - a and g - a have the same zeros with the same multiplicities, then we say that f and g share the value a CM (counting multiplicities). We assume that the reader is familiar with the standard symbols and fundamental results of Nevanlinna theory, as found in [7,18]. We use $\sigma(f)$ to denote the order of f and $N_p(r, \frac{1}{f-a})$ to denote the counting function of the zeros of f - a, where an m-fold zero is counted m times if $m \leq p$ and p times if m > p. For a small function a related to f, we define

$$\delta(a, f) = \liminf_{r \to \infty} \frac{m(r, \frac{1}{f-a})}{T(r, f)}.$$

Recently, Yang and Laine [19] considered the existence of the solutions of a non-linear differential-difference equation of the form

$$f^n + L(z, f) = h,$$

where L(z, f) is a linear differential-difference polynomial in f. They obtained the following result.

Theorem A. (See [19, Theorem 3.4].) Let P, Q be polynomials. Then a non-linear difference equation

 $f(z)^{2} + P(z)f(z+1) = Q(z)$

has no transcendental entire solution of finite order.

^{*} This work was supported by the NNSF of China (No. 10671109).

^{*} Corresponding author at: School of Mathematics, Shandong University, Jinan, Shandong 250100, PR China. E-mail addresses: xiaogqi@mail.sdu.edu.cn (X. Qi), liukai418@126.com (K. Liu).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2010.12.031

Theorem B. (See [19, Theorem 3.5].) A non-linear difference equation

$$f(z)^{3} + P(z)f(z+1) = c\sin bz$$
⁽²⁾

where P(z) is a non-constant polynomial and $b, c \in \mathbb{C}$ are non-zero constants, does not admit entire solutions of finite order. If P(z) = p is a non-zero constants, then (2) possesses three distinct entire solution of finite order, provided $b = 3n\pi$ and $p^3 = (-1)^{n+1} \frac{27}{4}c^2$ for a non-zero integer n.

Laine and Yang [9] continued to consider the non-existence of transcendental entire solutions of non-linear differential equations of type

$$f^n + P_d(f) = p_1 e^{a_1 z} + p_2 e^{a_2 z},$$
(3)

and obtained new results which complementing the theorems given by Li and Yang [10,11].

Theorem C. (See [9, Theorem 3.1].) Let $n \ge 3$ be an integer and $P_d(f)$ be a differential polynomial in f of total degree $d \le n-2$ with polynomial coefficients such that $P_d(0) = 0$. Provided that p_1 , p_2 are non-vanishing polynomials and a_1 , a_2 are distinct non-zero complex constants, then (3) has no transcendental entire solutions.

Laine and Yang [9] pointed out that a similar conclusion could be proved if the differential polynomial $P_d(f)$ is replaced with a differential-difference polynomial. However, Theorems A, B and C, the degree of the differential-difference polynomial is less than *n*. Now, we consider the equal-case, we get the following results.

Theorem 1. Let *a*, *c* be non-zero constants, *n* and *m* be integers satisfying $n \ge m > 0$, $\lambda \ne 0$ be a complex number and let P(z), Q(z) be polynomials. If $n \ge 2$, then the difference equation

$$f(z)^{n+m} + \lambda f(z)^n f(z+c)^m = P(z)e^{Q(z)} + a$$
(4)

has no transcendental entire solutions of finite order.

Remark. It seems to us that replacing $f(z)^n f(z+c)^m$ with $f(z)^n \sum_{j=1}^m f(z+c_j)$ and $c_j \neq 0$, or replacing the non-zero value *a* with $a(z) \neq 0$, where a(z) is a polynomial in *z*, the same conclusion can be proved.

Let f be a transcendental meromorphic function, and let n be a positive integer. Reminiscent to the value distributions of $f^n f'$, Hayman [5, Corollary to Theorem 9] proved that $f^n f'$ takes every non-zero complex value infinitely often if $n \ge 3$. Mues [15, Satz 3] proved that $f^2 f' - 1$ has infinitely many zeros. Later on, Bergweiler and Eremenko [1, Theorem 2] showed that ff' - 1 has infinitely many zeros also. Corresponding to the results above, Laine and Yang [8, Theorem 2] investigated the value distribution of difference products of entire functions.

Theorem D. (See [8, Theorem 2].) Let f be a transcendental entire function with finite order, and let c be a non-zero complex constant. Then, for $n \ge 2$, $f(z)^n f(z + c)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often.

Some improvements of Theorem D can be found in [12,13]. In the present paper, we consider the value distribution of $f(z)^n(\lambda f(z+c)^m + \mu f(z)^m)$, where *n*, *m* are non-negative integers, and λ , μ are non-zero complex numbers. We obtain the following result which generalize some theorems in [8,12,13].

Theorem 2. Let f be a transcendental entire function with finite order, c be a non-zero constant, n and m be integers satisfying $n \ge m > 0$, and let λ , μ be two complex numbers such that $|\lambda| + |\mu| \ne 0$. If $n \ge 2$, then either $f(z)^n (\lambda f(z+c)^m + \mu f(z)^m)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often or $f(z) = e^{\frac{\log t}{c}z}g(z)$, where $t = (-\frac{\mu}{\lambda})^{\frac{1}{m}}$, and g(z) is periodic function with period c.

Remarks. (1) If m = 0 and $\lambda + \mu \neq 0$, then $(\lambda + \mu)f^n$ assumes every non-zero value $a \in C$ infinitely often provided that $n \ge 2$.

(2) It seems to us that replacing the non-zero value $a \in C$ with $a(z) \neq 0$, where a(z) is a polynomial in z, a similar conclusion can be proved.

(3) When m > n > 0. If $\lambda \mu = 0$ and $|\lambda| + |\mu| \neq 0$, $m \ge 2$, then Theorem 2 holds. Unfortunately, when $\lambda \mu \neq 0$, $m \ge 2$, we do not know whether Theorem 2 holds.

(4) When $\lambda \mu \neq 0$, m = 1 and n = 0, we can give a counterexample. Namely, let $f(z) = z + e^z$, $\lambda = 1$ and $\mu = -1$. Then f(z+c) - f(z) = c, where $c = 2\pi i$. Clearly, $f(z)^n (\lambda f(z+c)^m + \mu f(z)^m)$ cannot assume every non-zero value $a \in \mathbf{C}$ infinitely often.

Corresponding to Theorem 2, we consider the value distribution of $f(z)^n + \mu f(z+c)^m$, where $m \neq n$.

Theorem 3. Let f be a transcendental entire function with finite order, μ and c be non-zero constants, and let a(z) be a non-zero small function to f. Suppose that n, m are positive integers such that n > m + 1 (or m > n + 1). Then the difference polynomial $f(z)^n + \mu f(z + c)^m - a(z)$ has infinitely many zeros.

Remark. Theorem 3 is not true, if n = m + 1 (or m = n + 1). For example, if m = 1, $f(z) = e^z + 1$, $c = 2\pi i$ and $\mu = -2$, then $f(z)^2 - 2f(z+c) + 1 = e^{2z}$ has no zeros.

The following result is a partial answer as to what may happen if n = m in Theorem 3.

Theorem 4. Let *f* be an entire function with order $1 \le \sigma(f) < \infty$, and suppose that *f* has infinitely many zeros with the exponent of convergence of zeros $\lambda(f) < 1$. Let μ , *a* and *c* be non-zero constants such that $f(z) + \mu f(z+c) \neq 0$. Then the difference polynomial $f(z) + \mu f(z+c) - a$ has infinitely many zeros.

Set $F(z) = f(z)^n$. Then $F(z+c) = f(z+c)^n$, $\sigma(F) = \sigma(f)$ and $\lambda(F) = \lambda(f)$, so we obtain

Corollary. Let all conditions of Theorem 4 hold, and let n be a positive integer such that $f(z)^n + \mu f(z+c)^n \neq 0$. Then the difference polynomial $f(z)^n + \mu f(z+c)^n - a$ has infinitely many zeros.

In 1976, Yang [17] proposed the following problem.

Suppose that f and g are two transcendental entire functions such that f and g share 0 CM and f' and g' share 1 CM. What can be said about the relationship between f and g?

Shibazaki [16] proved the following result.

Theorem E. Suppose that f and g are entire functions of finite order such that f' and g' share 1 CM. If $\delta(0, f) > 0$ and 0 is a Picard value of g, then either $f \equiv g$ or $f'g' \equiv 1$.

The following result can be seen as a difference counterpart to Theorem E.

Theorem 5. Suppose that *f* and *g* are two entire functions of finite order, and let *a* and *b* be distinct small functions related to *f* and *g* such that $\delta(a) = \delta(a, f) + \delta(a, g) > 1$. If $f(z + c_1)$ and $g(z + c_2)$ share *b* CM, then exactly one of the following assertions holds.

(i) $f(z) \equiv g(z+c)$, where $c = c_2 - c_1$. (ii) $f(z+c_1) = (a-b)e^h + a$, $g(z+c_2) = (a-b)e^{-h} + a$, where h(z) is an entire function.

2. Some lemmas

The first lemma is a difference analogue of the logarithmic derivative lemma, given by Halburd and Korhonen [4]. Chiang and Feng have obtained similar estimates for the logarithmic difference [2, Corollary 2.5], and this work is independent from [4].

Lemma 1. (See [4, Theorem 2.1].) Let f be a meromorphic function of finite order, and let $c \in \mathbf{C}$ and $\delta \in (0, 1)$. Then

$$m\left(r,\frac{f(z+c)}{f(z)}\right) + m\left(r,\frac{f(z)}{f(z+c)}\right) = o\left(\frac{T(r,f)}{r^{\delta}}\right) = S(r,f).$$

Lemma 2. (See [7, Theorem 2.4.2].) Let f(z) be a transcendental meromorphic solution of

 $f^n A(z, f) = B(z, f),$

where A(z, f), B(z, f) are differential polynomials in f and its derivatives with small meromorphic coefficients a_{λ} , in the sense of $m(r, a_{\lambda}) = S(r, f)$ for all $\lambda \in I$. If $d(B(z, f)) \leq n$, then m(r, A(z, f)) = S(r, f).

Lemma 3. (See [3, Lemma 5.1].) Let f be a finite order meromorphic function, and let c be a non-zero constant. Then for each $\varepsilon > 0$, we have

 $T(r, f(z+c)) = T(r, f(z)) + O(r^{\sigma-1+\varepsilon}) + O(\log r)$

and

$$\sigma(f(z+c)) = \sigma(f(z)).$$

Lemma 4. (See [20, Theorem 3.1].) Let $f_i(z)$ (j = 1, 2, 3) be meromorphic functions that satisfy

$$\sum_{j=1}^{3} f_j(z) \equiv 1.$$

If $f_1(z)$ *is not a constant, and*

$$\sum_{j=1}^3 N_2\left(r,\frac{1}{f_j}\right) + \sum_{j=1}^3 \overline{N}(r,f_j) < \left(\lambda + o(1)\right)T(r), \quad r \in I,$$

where $0 \le \lambda < 1$, $T(r) = \max_{1 \le j \le 3} \{T(r, f_j)\}$, and *I* has infinite linear measure, then either $f_2(z) \equiv 1$ or $f_3(z) \equiv 1$.

Lemma 5. (See [18, Theorem 1.51].) Suppose that $f_i(z)$ (j = 1, ..., n) $(n \ge 2)$ are meromorphic functions and $g_i(z)$ (j = 1, ..., n)are entire functions satisfying the following conditions.

- (1) $\sum_{j=1}^{n} f_j(z) e^{g_j(z)} \equiv 0.$ (2) $1 \leq j < k \leq n, g_j(z) g_k(z)$ are not constants for $1 \leq j < k \leq n.$
- (3) For $1 \leq j \leq n$, $1 \leq h < k \leq n$,

$$T(r, f_j) = o\left\{T\left(r, e^{g_h - g_k}\right)\right\}, \quad r \to \infty, \ r \notin E,$$

where $E \subset (1, \infty)$ is of finite linear measure.

Then $f_j(z) \equiv 0$.

3. Proof of Theorem 1

Suppose that f is a transcendental entire solution of finite order to Eq. (4). Differentiating (4) and eliminating $e^{Q(z)}$, we get

$$f(z)^{n-m}F(z,f) = -ap^*(z),$$
(5)

where

$$F(z, f) = n\lambda P(z) f(z)^{m-1} f'(z) f(z+c)^m + m\lambda P(z) f(z)^m f(z+c)^{m-1} f'(z+c) + (m+n) P(z) f(z)^{2m-1} f'(z) - P^* \lambda f(z)^m f(z+c)^m - P^* f(z)^{2m},$$

and $p^*(z) = P'(z) + P(z)Q'(z)$.

We get that F(z, f) cannot vanish identically by repeating the reasoning as [8, Theorem 2]. Set

$$F^{*}(z, f) = n \frac{\lambda P(z) f(z)^{m-1} f'(z) f(z+c)^{m}}{f(z)^{2m}} + m \frac{\lambda P(z) f(z)^{m} f(z+c)^{m-1} f'(z+c)}{f(z)^{2m}} + (m+n) \frac{P(z) f(z)^{2m-1} f'(z)}{f(z)^{2m}} - \frac{P^{*} \lambda f(z)^{m} f(z+c)^{m} + P^{*} f(z)^{2m}}{f(z)^{2m}}.$$
(6)

Then from (5), we have

$$f^{n+m}F^*(z,f) = -ap^*(z).$$
(7)

Applying Lemmas 1 and 2, we obtain

$$m(r, F^*(z, f)) = S(r, f)$$

and

$$m(r, fF^*(z, f)) = S(r, f).$$

From (6) and (7) we know that the poles of $F^*(z, f)$ may be located only at the zeros of f(z). If $F^*(z, f)$ has infinitely many poles, then from that a zero of f(z) with multiplicity t should be a pole of multiplicity mt + 1 of $F^*(z, f)$. Since $n \ge 2$, we know that the left side of (7) must have infinitely many zeros, which is a contradiction to $p^*(z)$ being a polynomial. So we obtain

$$N(r, F^*(z, f)) = O(\log r)$$

and

 $N(r, fF^*(z, f)) = O(\log r).$

Hence

$$T(r, F^*(z, f)) = S(r, f)$$

and

 $T(r, fF^*(z, f)) = S(r, f).$

Therefore

$$T(r, f(z)) = S(r, f),$$

which is a contradiction.

4. Proof of Theorem 2

Let $a \in \mathbb{C} \setminus \{0\}$ be arbitrary. If $\lambda f(z+c)^m + \mu f(z)^m \equiv 0$, by [14, Satz 19], p. 98, we know that f(z) can be written in the form $f(z) = e^{\frac{\log t}{c}z}g(z)$, where $t = (-\frac{\mu}{\lambda})^{\frac{1}{m}}$, g(z) is a periodic function with period *c*. Now suppose $\lambda f(z+c)^m + \mu f(z)^m \neq 0$. We consider the following two cases.

Case 1. Suppose $\lambda = 0$. Then $f(z)^n (\lambda f(z+c)^m + \mu f(z)^m) = \mu f(z)^{m+n}$. Let $F(z) = \mu f(z)^{m+n} - a$. By the second main theorem, we get

$$(m+n)T(r, f) = T(r, F) + S(r, f) \leq \overline{N}\left(r, \frac{1}{F}\right) + \overline{N}\left(r, \frac{1}{F+a}\right) + S(r, F)$$
$$\leq \overline{N}\left(r, \frac{1}{f}\right) + \overline{N}\left(r, \frac{1}{F}\right) + S(r, f)$$
$$\leq T(r, f) + \overline{N}\left(r, \frac{1}{F}\right) + S(r, f).$$

Since $n \ge 2$, we get m + n > 2, and *F* must have infinitely many zeros.

Case 2. Suppose $\lambda \neq 0$. Assume on the contrary to the assertion that $f(z)^n(\lambda f(z+c)^m + \mu f(z)^m) - a$ has finitely many zeros. Then

$$f(z)^{n} (\lambda f(z+c)^{m} + \mu f(z)^{m}) - a = H(z)e^{Q(z)},$$

where H(z), Q(z) are polynomials. When $\mu \neq 0$, Theorem 2 holds by Theorem 1. When $\mu = 0$, a simple modification of the proof of Theorem 1 yields Theorem 2.

5. Proof of Theorem 3

Suppose on the contrary to the assertion that $f(z)^n + \mu f(z+c)^m - a(z)$ has finitely many zeros. Then by Hadamard factorization theorem, there exist two polynomials P(z) and Q(z) such that

$$f(z)^{n} + \mu f(z+c)^{m} - a(z) = P(z)e^{Q(z)}.$$
(8)

Case 1. If n > m + 1, then differentiating (8) and eliminating $e^{Q(z)}$, we have

$$f(z)^{n-1} \left(nf'(z) - \left(Q'(z) + \frac{P'(z)}{P(z)} \right) f(z) \right) = a'(z) + m\mu f(z+c)^{m-1} f'(z+c) + \left(Q'(z) + \frac{P'(z)}{P(z)} \right) \left(\mu f(z+c)^m - a(z) \right).$$
(9)

If $nf'(z) - (Q'(z) + \frac{P'(z)}{P(z)})f \equiv 0$, then we have $f(z)^n = AP(z)e^{Q(z)}$, where *A* is a non-zero constant. Writing $f = he^{\frac{Q}{n}}$, where *h* is a polynomial, and substituting *f* into (8), we get

$$(A-1)P(z)e^{Q(z)} + \mu h(z+c)e^{\frac{mQ(z+c)}{n}} - a(z) \equiv 0.$$
(10)

Clearly, $A \neq 1$. Let $g = e^{\frac{Q}{n}}$. From (10) and Lemma 3, we get

$$nT(r,g) \leq mT(r,g) + O\left(r^{\sigma(g)-1+\varepsilon}\right) + O\left(\log r\right)$$

which is a contradiction. Therefore, we obtain $nf'(z) - (Q'(z) + \frac{P'(z)}{P(z)})f \neq 0$. Combining (9) and Lemma 2, we have

$$T\left(r, nf'(z) - \left(Q'(z) + \frac{P'(z)}{P(z)}\right)f\right) = S(r, f)$$

and

$$T\left(r, f\left(nf'(z) - \left(Q'(z) + \frac{P'(z)}{P(z)}\right)f\right)\right) = S(r, f).$$

Hence

T(r, f) = S(r, f),

which is a contradiction.

Case 2. If n < m - 1, then set F(z) = f(z + c), F(z - c) = f(z) follows. We obtain

$$F(z)^{m} + \frac{1}{\mu}F(z-c)^{n} - \frac{1}{\mu}a(z-c) = P^{*}(z)e^{Q^{*}(z)}$$

Similarly as in Case 1, we get the conclusion, completing the proof of Theorem 3.

6. Proof of Theorem 4

Since f(z) is an entire function of order $1 \le \sigma(f) < \infty$ and has infinitely many zeros with $\lambda(f) < 1$, we can write $f(z) = h(z)e^{P(z)}$ by the Hadamard factorization theorem, where h(z) is the product of the zeros of f(z), is also an entire function and $\lambda(f) = \lambda(h) = \sigma(h) < 1$, and P(z) is a non-constant polynomial. If $f(z) + \mu f(z+c) - a$ has finitely many zeros, we obtain

$$h(z)e^{P(z)} + \mu h(z+c)e^{P(z+c)} - a = Q(z)e^{Q^*(z)},$$
(11)

where Q(z), $Q^*(z)$ are polynomials. Clearly

$$h(z)e^{P(z)} + \mu h(z+c)e^{P(z+c)} - a - Q(z)e^{Q^*(z)} \equiv 0.$$
(12)

Case 1. If $P(z + c) - P(z) \equiv a_1$, where a_1 is a constant, then we obtain P(z) = Az + B, where $A \neq 0$. Substituting P(z) = Az + B into (12), we have

$$e^{Az+B}(h(z)+\mu h(z+c)e^{a_1})-a-Q(z)e^{Q^*(z)}\equiv 0.$$
(13)

If $Q^*(z) - Az - B \equiv a_2$, where a_2 is a constant, then $Q^*(z) = Az + C$. By (13), we get

$$e^{Az+B}(h(z) + \mu h(z+c)e^{a_1} - Q(z)e^{C-B}) \equiv a,$$
(14)

 $a \neq 0$, which is a contradiction.

If $Q^*(z) - Az - B \neq a_2$, then we get $a \equiv 0$, from (13) and Lemma 5, which also is a contradiction. Hence $P(z + c) - P(z) \neq a_1$.

Case 2. If $P(z + c) - Q^*(z) \equiv b_1$, where b_1 is a constant, then we get

$$\left(\mu h(z+c)e^{b_1} - Q(z)\right)e^{Q^*(z)} + h(z)e^{P(z)} - a \equiv 0.$$
(15)

Clearly, $Q^*(z) - P(z) \neq b_2$, otherwise, we get $P(z+c) - P(z) \equiv b_1 + b_2$, which is a contradiction. When $Q^*(z) - P(z) \neq b_2$, applying Lemma 5 to (15), we get $h(z) \equiv 0$, which is a contradiction. So $P(z+c) - Q^*(z) \neq b_1$.

Case 3. Similarly as in Case 2, we get $P(z) - Q^*(z) \neq c_1$, where c_1 is a constant.

From Cases 1, 2 and 3 and applying Lemma 5 to (12), we get $h(z) \equiv 0$, which is a contradiction. Therefore, $f(z) + \mu f(z+c) - a$ has infinitely many zeros.

7. Proof of Theorem 5

The former part of Theorem 5 follows by using the same reasoning as in [6] with apparent modification. For the convenience of the reader, we give a complete proof.

From $\delta(a) > 1$, we can easily get $\delta(a, f) > 0$ and $\delta(a, g) > 0$. Now we take a positive number ε such that $(2 + 2\varepsilon - \delta(a)) < 1$, $\delta(a, f) - \varepsilon > 0$ and $\delta(a, g) - \varepsilon > 0$. Then we have

$$\left(\delta(a,f) - \varepsilon\right) T(r,f) \leqslant m\left(r,\frac{1}{f-a}\right) \tag{16}$$

and

$$\left(\delta(a,g)-\varepsilon\right)T(r,g) \leqslant m\left(r,\frac{1}{g-a}\right)$$
(17)

as $r \to \infty$. By Lemma 1, we deduce that

$$m(r, f(z+c_1)) \leqslant m(r, f) + S(r, f), \tag{18}$$

and

$$m\left(r,\frac{1}{f-a}\right) \leqslant m\left(r,\frac{1}{f(z+c_1)-a}\right) + S(r,f).$$
(19)

Set

$$F(z) = \frac{f(z+c_1)-a}{b-a}, \qquad G(z) = \frac{g(z+c_2)-a}{b-a}.$$
(20)

From (16), (18)-(20), we get

$$\left(\delta(a,f) - \varepsilon \right) T(r,f) \leq m \left(r, \frac{1}{f(z+c_1)-a} \right) + S(r,f)$$

$$\leq m \left(r, f(z+c_1) \right) + S(r,f)$$

$$\leq T(r,F) + S(r,f) \leq T(r,f) + S(r,f).$$

$$(21)$$

Similarly,

$$(\delta(a,g) - \varepsilon)T(r,g) \leqslant T(r,G) + S(r,g) \leqslant T(r,g) + S(r,g).$$
(22)

Hence

$$S(r, F) = S(r, f), \qquad S(r, G) = S(r, g).$$

Again from (16) and (19), we obtain that

$$(\delta(a, f) - \varepsilon)T(r, F) \leq (\delta(a, f) - \varepsilon)T(r, f) + S(r, f)$$

$$\leq m \left(r, \frac{1}{f(z+c_1)-a}\right) + S(r, f)$$

$$\leq T(r, F) - N\left(r, \frac{1}{F}\right) + S(r, f).$$

$$(23)$$

So we have

$$N\left(r,\frac{1}{F}\right) \leqslant \left(1-\delta(a,f)+\varepsilon\right)T(r,F).$$
(24)

By the same reasoning, we get

$$N\left(r,\frac{1}{G}\right) \leq \left(1-\delta(a,g)+\varepsilon\right)T(r,G).$$
⁽²⁵⁾

Since $f(z + c_1)$ and $g(z + c_2)$ share *b* CM, we obtain that,

$$\frac{f(z+c_1)-b}{g(z+c_2)-b} = e^{h(z)},$$
(26)

where h(z) is a polynomial. From (26) we have

$$F(z) - G(z)e^{h(z)} + e^{h(z)} \equiv 1.$$

Set $F_1(z) = F(z)$, $F_2(z) = G(z)e^{h(z)}$, $F_3(z) = e^{h(z)}$. Then

$$F_1 + F_2 + F_3 = 1$$
,

and

$$T(r) = \max_{1 \leq j \leq 3} \left\{ T(r, F_j) \right\}, \qquad S(r) = o\left(T(r) \right).$$

From (24) and (25), we get

$$\sum_{j=1}^{3} N_2\left(r, \frac{1}{F_j}\right) + \sum_{j=1}^{3} \overline{N}(r, F_j) \leq N\left(r, \frac{1}{F}\right) + N\left(r, \frac{1}{G}\right) + S(r)$$
$$\leq \left(2 + 2\varepsilon - \delta(a)\right)T(r) + S(r).$$

By Lemma 4, we get that $F_2 = 1$ or $F_3 = 1$. If $F_2 = 1$, the conclusion (ii) holds, while if $F_3 = 1$, the conclusion (i) holds.

Acknowledgment

The authors thank the Department of Physics and Mathematics, University Eastern Finland, for its hospitality during their study period there.

References

- [1] W. Bergweiler, A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam. 11 (2) (1995) 355-373.
- [2] Y.M. Chiang, S.J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J. 16 (1) (2008) 105–129. [3] Y.M. Chiang, S.J. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (7) (2009) 3767–3791.
- [4] R.G. Halburd, R.J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. 31 (2) (2006) 463–478.
- [5] W.K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959) 9–42.
- [6] X.H. Hua, A unicity theorem for entire functions, Bull. Lond. Math. Soc. 22 (5) (1990) 457–462.
- [7] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, New York, 1993.
- [8] I. Laine, C.C. Yang, Value distribution of difference polynomials, Proc. Japan Acad. Ser. A Math. Sci. 83 (8) (2007) 148-151.
- [9] I. Laine, C.C. Yang, Entire solution of some nonlinear differential equations, preprint.
- [10] P. Li, C.C. Yang, On the nonexistence of entire solution of certain type of nonlinear differential equations, J. Math. Anal. Appl. 320 (2) (2006) 827-835.
- [11] P. Li, Entire solutions of certain type of differential equations, J. Math. Anal. Appl. 344 (1) (2008) 253–259.
- [12] K. Liu, L.Z. Yang, Value distribution of the difference operator, Arch. Math. (Basel) 92 (3) (2009) 270-278.
- [13] K. Liu, Value distribution of differences of meromorphic functions, Rocky Mountain J. Math., in press.
- [14] H. Meschkowski, Differenzengleichungen, Studia Math., Bd. XIV, Vandenhoeck & Ruprecht, Göttingen, 1959 (in German).
- [15] E. Mues, Über ein Problem von Hayman, Math. Z. 164 (3) (1979) 239–259.
- [16] K. Shibazaki, Unicity theorem for entire functions of finite order, Mem. Nat. Defense Acad. (Japan) 21 (1981) 67-71.
- [17] C.C. Yang, On two entire functions which together with their first derivative have the same zeros, J. Math. Anal. Appl. 56 (1) (1976) 1-6.
- [18] C.C. Yang, H.X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, 2003.
- [19] C.C. Yang, I. Laine, On analogies between nonlinear difference and differential equations, Proc. Japan Acad. Ser. A 86 (2010).
- [20] L.Z. Yang, J.L. Zhang, Non-existence of meromorphic solution of a Fermat type functional equation, Aequationes Math. 76 (1-2) (2008) 140-150.