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Abstract

We introduce the family of linear operators

(
A�f

)
(x) = 1

� (�)

∫ ∞
0

t�−1 (Stf ) (x) dt, �> 0

associated to a certain “admissible bunch” of operators St , t > 0, acting on Lp(Rn, dm, and investigate the
approximation properties of this family as � → 0+. We give some applications to the Riesz and the Bessel
potentials generated by the ordinary (Euclidean) and generalized translations.
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1. Introduction

In this paper, given some “admissible bunch” of linear operators {St }t>0, acting on Lp(Rn, dm),
we introduce the following family of integral operators:

(A�f )(x) = 1

�(�)

∫ ∞

0
t�−1(Stf )(x) dt, � > 0.

This family of operators contains (for special choices of “admissible bunch” {St }t>0) the Riesz
and the Bessel potentials generated by the ordinary and generalized translation. The classical
Riesz potentials, I�f , and the generalized Riesz potentials, I �

� f , are defined in terms of Fourier
and Fourier–Bessel transforms by the following formulas:

F
(
I�f

)
(x) = |x|−� F (f ) (x) , x ∈ Rn; (1)

F�
(
I �
� f
)
(x) = |x|−� F� (f ) (x) , x ∈ Rn+. (2)

Similarly, the classical Bessel potentials, J �f , and the generalized Bessel potentials, J �
� f , are

defined as

F
(
J �f

)
(x) =

(
1 + |x|2

)−�/2
F (f ) (x) , x ∈ Rn; (3)

F�
(
J �
� f
)
(x) =

(
1 + |x|2

)−�/2
F� (f ) (x) , x ∈ Rn+. (4)

These potentials are known as important technical tools in Fourier and Fourier–Bessel harmonic
analysis (More information about these potentials can be found in [1–3,5,10–12]).

In this paper we investigate the approximation properties of the family A�f , when the parameter
� > 0 tends to zero. The paper is organized as follows. Section 2 contains basic notations,
definitions and auxiliary lemmas. In particular, the notion of the “admissible bunch” of operators
is introduced and some examples are given in the section. The main results of the paper are given
in Section 3. This section is devoted to the investigation of approximation properties of the family
(A�f ) (x) as � → 0+. The order of approximation of the Lipschitz functions is also studied.
Moreover, some applications to the Riesz and the Bessel potentials generated by the Euclidean and
generalized translations are given. It should also be mentioned that the approximation properties
of the classical Riesz and Bessel potentials have been studied by Kurokawa [7] before.

2. Preliminaries and auxiliary lemmas

Let Lp ≡ Lp

(
Rn, dm

)
be the space of m-measurable functions such that

‖f ‖p =
(∫

Rn
|f (x)|p dm (x)

)1/p

< ∞, 1�p < ∞,

and let C0 ≡ C0(R
n) be the class of all continuous functions on Rn vanishing at infinity. We will

assume that the set of all compactly supported continuous functions is dense in Lp(Rn, dm) (e.g.,
this is the case when m is a Borel measure).
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Definition 1. A family {St }t>0 of linear operators on Lp will be called an “admissible bunch” of
type � > 0 if

(a) There exists c = c (�) independent from t so that

ess sup
x∈Rn

|(Stf ) (x)| �ct−� ‖f ‖p ; (5)

(b)

sup
t>0

‖Stf ‖p �c ‖f ‖p ; (6)

(c) the maximal operator(
S∗f

)
(x) = sup

t>0
|(Stf ) (x)|

is weak (p, p), i.e.

m
{
x : (S∗f

)
(x) > �

}
�
(

c ‖f ‖p

�

)p

, ∀� > 0;

(d) limt→0 Stf = f in the Lp-norm. For f ∈ Lp ∩ C0, the convergence is also uniform on Rn.

If (a) holds for all � > 0, we call {St }t>0 an “admissible bunch” of infinite type.

Remark 2. The number � in (5) may depend on n and p. The notion “admissible bunch” is
close to the notion “admissible semigroup” defined in [3]. The basic difference between these
two notions is that, the “admissible bunch” does not require to have semigroup property.

Lemma 3 (Duoandikoetxea [4, p. 27]). Let (X, dm) be a measure space and let {T�}�>0 be a
family of linear operators on Lp (X, dm). Denote(

T ∗f
)
(x) = sup

�>0
|(T�f ) (x)| .

If T ∗ is weak (p, q), i.e.,

m
{
y : (T ∗f

)
(y) > �

}
�
(

c ‖f ‖p

�

)q

, ∀� > 0,

then the set{
f : f ∈ Lp (X, dm) , lim

�→0
(T�f ) (x) = f (x) , a.e.

}

is closed in Lp (X, dm).

Remark 4. Owing to Definition 1(c)–(d), and Lemma 3, it follows that if f ∈ Lp, 1�p < ∞,
then lim

t→0
(Stf ) (x) = f (x), a.e.

Let us give some examples of “admissible bunches” of operators. The most famous examples
are the classical Riesz–Bochner, Gauss–Weierstrass, Poisson and Metaharmonic integrals. We
consider here the last two examples only, which will be used in the sequel.
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(i) The Poisson integrals are defined as:

(Pt f ) (y) =
∫

Rn
P (x, t) f (y − x) dx, where F [P (·, t)] (�) = e−t|�|. (7)

(ii) The Metaharmonic integrals are defined as:

(Mt f ) (y) =
∫

Rn
M (x, t) f (y − x) dx, (8)

where F [M (·, t)] (�) = e
−t

√
1+|�|2

.
Here F designates the Fourier transform

(Fg) (�) =
∫

Rn
e−i�·xg (x) dx, � · x = �1x1 + · · · + �nxn. (9)

The corresponding kernels in (7) and (8) have the form [12,9] (see also [10,11]):

P (x, t) = � ((n + 1) /2)

�(n+1)/2

t(|x|2 + t2
)(n+1)/2

; (10)

M (x, t) = 2t

(2�)(n+1)/2

K(n+1)/2

(√
|x|2 + t2

)
(√

|x|2 + t2
)(n+1)/2

, (11)

where K(n+1)/2 (·) is the McDonald function. Operators (7) and (8) act on the usual Lebesgue
space Lp(Rn, dm) with dm (x) = dx = dx1 · · · dxn, and constitute “admissible bunches” of type
� = n

p
and � = ∞, respectively (see e.g. [10, p. 217 and p. 257]).

The “admissible bunches” on Lp(Rn, dm) of different type arise in the Fourier–Bessel harmonic
analysis associated with the singular Laplace–Bessel differential operator

�� =
n∑

k=1

�2

�x2
k

+ 2�

xn

�
�xn

, xn > 0, � > 0. (12)

Let

Rn+ = {
x : x = (x1, . . . , xn−1, xn) ∈ Rn, xn > 0

} ;
dm (x) = X+ (x) x2�

n dx, dx = dx1 · · · dxn. (13)

Here � > 0 is a fixed parameter and X+ (x) is the characteristic function of Rn+, i.e. X+ (x) = 1
if xn > 0 and X+ (x) = 0 if xn �0. The relevant Fourier–Bessel transform F� associated to the
measure (13) and the operator (12) is defined by

(F�f ) (�) =
∫

Rn+
f (x)e−i�′·x′

j�− 1
2
(�nxn) x2�

n dx, (14)

where �′ · x′ = �1x1 + · · · + �n−1xn−1, j� (�) = 2�� (� + 1) J� (�)
/
��, J� (�) is the Bessel

function of the first kind. The Fourier–Bessel harmonic analysis is adopted to the generalized
convolution

(f ⊗ g) (x) =
∫

Rn+
f (y)

(
T yg

)
(x) y2�

n dy, x ∈ Rn+ (15)
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generated by the generalized (Bessel) translation

(
T yf

)
(x) = � (� + 1/2)

� (�) � (1/2)

∫ �

0
f

(
x′ − y′,

√
x2
n − 2xnyn cos � + y2

n

)
sin2�−1 �d�

(16)

(see e.g. [1,2,5,6,8,14]). Actually we deal with the usual (Euclidean) translation in x′ = (x1, . . . ,

xn−1) and the generalized translation with respect to xn-variable.
The corresponding generalized Poisson and Metaharmonic integrals, {P(�)

t f }t>0 and
{M(�)

t f }t>0, which also fall into the scope of Definition 1, are defined as:

(i′)
(
P(�)

t f
)

(y) =
∫

Rn+
P (�) (x, t)

(
T xf

)
(y) x2�

n dx, y ∈ Rn+;

F�
[
P � (·, t)] (�) = e−t|�|, t > 0, � ∈ Rn+; (17)

(ii′)
(
M(�)

t f
)

(y) =
∫

Rn+
M(�) (x, t)

(
T xf

)
(y) x2�

n dx,

F�

[
M(�) (·, t)

]
(�) = e

−t

√
1+|�|2

, t > 0, � ∈ Rn+, (18)

where F� is the Fourier–Bessel transform defined by (14).

Operators (17) and (18) represent “admissible bunches” of type � = n+2�
p

and � = ∞,
respectively. The corresponding kernels have the form:

P (�) (x, t) = 2� ((n + 2� + 1) /2)

�n/2� (� + 1/2)

t(|x|2 + t2
)(n+2�+1)/2

, (19)

M(�) (x, t) = 2−�+3/2t

(2�)n/2 � (� + 1/2)

K(n+2�+1)/2

(√
|x|2 + t2

)
(√

|x|2 + t2
)(n+2�+1)/2

. (20)

More information about these integral operators can be found in [1,2,5].
From now on the letters c, c0, c1, c2, . . . will be used for constants. As usual, we will write

“	 (�) = O (1) as � → 0” if the function 	 (�) is bounded as � → 0.

Lemma 5. Let the kernels P (x, t), M (x, t), P (�) (x, t) and M(�) (x, t) be defined as in (10),
(11), (19) and (20), respectively. Then, there exists c > 0 such that

(a) M (x, t) �cP (x, t) , ∀x ∈ Rn, t > 0;
(b) M(�) (x, t) �cP (�) (x, t) , ∀x ∈ Rn+, t > 0.

Proof. Taking into account the following well known estimation for the McDonald function
[10, p. 257]

K
 (r)

r
 �
{

c0
e−r

r

√

r
if r > 0

c0r
−2
 if 0 < r �1

}
�c1r

−2
, (0 < r < ∞, 
�1/2),
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we have for 
 = (n + 1) /2

M (x, t) = c2t
K


(√
|x|2 + t2

)
(√

|x|2 + t2
)
 � c3t(|x|2 + t2

)(n+1)/2
(10)= cP (x, t) .

The part (b) is proved analogously. �

We need the following Lipschitz classes

�� =
{
f : f ∈ L∞

(
Rn
) ‖f (x − y) − f (x)‖∞ �c |y|�

}
; (21)

�̃� =
{
f : f ∈ L∞

(
Rn+
)
,
∥∥(T yf

)
(x) − f (x)

∥∥∞ �c |y|�
}

, (22)

where 0 < ��1; T y is the generalized translation (16); ‖g‖∞ = sup |g (x)|; supremum is taken
over Rn in (21), and over Rn+ in (22), respectively.

Lemma 6. (a) Let Stf be one of the operators Pt f and Mt f . If f ∈ ��, then

‖Stf − f ‖∞ = O (1) t� as t → 0. (23)

(b) Let Stf be one of the operators P(�)
t f and M(�)

t f . If f ∈ �̃�, then

‖Stf − f ‖∞ = O (1) t� as t → 0. (24)

Proof. We will prove only the case Stf = M(�)
t f , with f ∈ �̃�. (The other cases are proved

analogously.)
Since

∫
Rn+ M(�) (y, t) y2�

n dy = e−t , we have

(M(�)
t f ) (x) − f (x) =

∫
Rn+

M(�) (y, t)
( (

T yf
)
(x) − etf (x)

)
y2�
n dy

=
∫

Rn+
M(�) (y, t)

( (
T yf

)
(x) − f (x)

)
y2�
n dy + (

et − 1
)
f (x) .

This yields∥∥∥M(�)
t f − f

∥∥∥∞ �
∫

Rn+
M(�) (y, t)

∥∥T yf − f
∥∥∞ y2�

n dy + (
et − 1

) ‖f ‖∞ = i1 + i2.

Further, by Lemma 5(b) and (22) we have

i1 � c1

∫
Rn+

P (�) (y, t)
∥∥T yf − f

∥∥∞ y2�
n dy

� c2

∫
Rn+

t(|y|2 + t2
)(n+2�+1)/2

|y|� y2�
n dy = c3t

�.

Since et − 1 = t + O (1) t2 as t → 0, it follows that i2 = O (1) t as t → 0.
Finally, for 0 < ��1 we get∥∥∥M(�)

t f − f

∥∥∥∞ = O (1) t� + O (1) t = O (1) t� as t → 0. �
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Now we introduce a class of integral operators generated by an “admissible bunch” {St }t>0
(see Definition 1). Given an “admissible bunch” {St }t>0 of type � > 0 and a complex number �
with Re � > 0, we define the following family of integral operators:

(
A�f

)
(x) = 1

� (�)

∫ ∞

0
t�−1 (Stf ) (x) dt. (25)

For f ∈ Lp(Rn, dm), 1�p < ∞, the expression (25) is well defined a.e. on Rn provided
0 < Re � < �. Indeed,

(
A�f

)
(x) = 1

� (�)

(∫ 1

0
+
∫ ∞

0

)
t�−1 (Stf ) (x) dt = i1 + i2.

Denote a = Re �. By Definition 1(a)–(b)

‖i1‖p �c ‖f ‖p

∫ 1

0
ta−1 dt < ∞ and ‖i2‖p �c ‖f ‖p

∫ ∞

1
ta−�−1 dt < ∞.

Therefore (A�f ) (x) = i1 + i2 is finite a.e.
The family of operators (25) contains the Riesz and the Bessel potentials generated by the

ordinary and generalized translation.
The classical Riesz potentials, I�f , and the Bessel potentials, J �f , initially defined in terms

of Fourier transform by (1) and (3), have the following integral representations via the Poisson
and Metaharmonic integrals, respectively:

(
I�f

)
(x) = 1

� (�)

∫ ∞

0
t�−1 (Pt f ) (x) dt (Stein, Weiss [13]). (26)

(
J �f

)
(x) = 1

� (�)

∫ ∞

0
t�−1 (Mt f ) (x) dt (Lizorkin [9]). (27)

The analogous representations of the generalized Riesz and Bessel potentials, initially defined
by (2) and (4), respectively, have exactly the same form with the superscript (�) in notation of the
corresponding semigroups (17) and (18):

(
I �
� f
)
(x) = 1

� (�)

∫ ∞

0
t�−1

(
P(�)

t f
)

(x) dt, (28)

(
J �
� f
)
(x) = 1

� (�)

∫ ∞

0
t�−1

(
M(�)

t f
)

(x) dt, (29)

(see [1,2,4]).

Remark 7. It is clear that all these formulas (26)–(29) have the form (25).

3. The approximation properties of the family A�f as � → 0+

Theorem 8. Let f ∈ Lp

(
Rn, dm

)
, 1�p < ∞, and the family of operators {A�}�>0 be defined

by (25). Then

(a) lim�→0+(A�f ) (x) = f (x) for almost all x ∈ Rn;
(b) If f ∈ Lp ∩ C0, then convergence is uniform on Rn.



I.A. Aliev et al. / Journal of Approximation Theory 138 (2006) 242–253 249

Proof. (a) Let x ∈ Rn be such a point that limt→0 (Stf ) (x) = f (x) (see Remark 4). Then
given � > 0 there exists �1 > 0 such that |(Stf ) (x) − f (x)| < � for all 0 < t < �1 and
there exists �2 > 0 such that

(
1 − e−t

)
< � for all 0 < t < �2. Taking the number � as

0 < � < min {�1, �2, 1}, we have∣∣∣∣∣ 1

� (�)

∫ �

0
t�−1 [(Stf ) (x) − e−t f (x)

]
dt

∣∣∣∣∣ � 1

� (�)

∫ �

0
t�−1 |(Stf ) (x) − f (x)| dt

+|f (x)|
� (�)

∫ �

0
t�−1 (1 − e−t

)
dt � �

� (�)

∫ �

0
t�−1 dt + � |f (x)|

� (�)

∫ �

0
t�−1 dt

= ���

�� (�)
(1 + |f (x)|) = ���

�(� + 1)
(1 + |f (x)|) = O (1) � as � → 0+. (30)

Further,∣∣∣∣ 1

� (�)

∫ ∞

�
t�−1 [(Stf ) (x) − e−t f (x)

]
dt

∣∣∣∣
� 1

� (�)

∫ ∞

�
t�−1 (|(Stf ) (x)| + e−t |f (x)|) dt

(5)

� c1

� (�)

∫ ∞

�
t�−1

[
t−� ‖f ‖p + e−t |f (x)|

]
dt

� c1

� (�)

(
‖f ‖p

∫ ∞

�
t�−�−1 dt + |f (x)| ��−1

∫ ∞

�
e−t dt

)

= c1

� (�)

(‖f ‖p

� − �
��−� + |f (x)| ��−1e−�

)
= O (1) � as � → 0+. (31)

Now by making use of (30) and (31) we have∣∣(A�f
)
(x) − f (x)

∣∣
=
∣∣∣∣ 1

� (�)

∫ ∞

0
t�−1 (Stf ) (x) dt − 1

� (�)

∫ ∞

0
t�−1e−t f (x) dt

∣∣∣∣
� 1

� (�)

∫ �

0
t�−1

∣∣(Stf ) (x) −e−t f (x)
∣∣ dt+ 1

� (�)

∫ ∞

�
t�−1

∣∣(Stf ) (x) −e−t f (x)
∣∣ dt

= O (1) � + O (1) � as � → 0+.

The last estimate yields

lim sup
�→0

∣∣(A�f
)
(x) − f (x)

∣∣ �c�, c = c (x) .

Since � > 0 is arbitrary we have

lim
�→0

∣∣(A�f
)
(x) − f (x)

∣∣ = 0.

(b) Let now f ∈ Lp ∩ C0. Using the notation ‖g‖∞ = sup |g(x)|, we have from (30) and (31)

‖A�f − f ‖∞ ��
��

� (� + 1)

(
1 + ‖f ‖∞

)+ �
c1

� (� + 1)

(‖f ‖p

� − �
��−� + ‖f ‖∞ ��−1e−�

)
.



250 I.A. Aliev et al. / Journal of Approximation Theory 138 (2006) 242–253

The last expression leads to lim sup�→0 ‖(A�f ) − f ‖∞ ��(1 + ‖f ‖∞), ∀� > 0, and therefore,
lim�→0 ‖A�f − f ‖∞ = 0.

The proof of the theorem is completed. �

Corollary 9. Owing to the formulas (26)–(29), the statement of the Theorem 8 is valid, in par-
ticular, for the operators I�, J �, I�

� and J �
� .

Remark 10. The approximation properties of the families I�f and J �f as � → 0+ have been
studied by Kurokawa [7] before.

The next theorem gives an estimation for the order of approximation of the Lipschitz functions
(see (21) and (22)). Below the notation Lp,� stands for Lp(Rn, dm) with dm (x) = X+ (x) x2�

n dx

(see (13)).

Theorem 11. (a) Let f ∈ Lp(Rn, dx)∩��, 1�p < ∞, 0 < ��1. Let further A� be any of the
potentials I� and J �, � > 0. Then∥∥A�f − f

∥∥∞ = O (1) � as � → 0+.

(b) Let f ∈ Lp,� ∩ �̃�, 1�p < ∞, 0 < ��1. Let further A� be any of the generalized
potentials I�

� and J �
� , � > 0. Then∥∥A�f − f

∥∥∞ = O (1) � as � → 0+.

Proof. We will prove only the statement
∥∥I �

� f − f
∥∥∞ = O (1) � as � → 0+. (The other state-

ments of the theorem are proved analogously, using Lemma 6 and the inequality (5).) We have(
I�
� f
)
(x) − f (x)

(28)= 1

� (�)

∫ ∞

0
t�−1(P(�)

t f ) (x) dt − f (x)

= 1

� (�)

∫ ∞

0
t�−1

(
(P(�)

t f ) (x) − e−t f (x)
)

dt

= 1

� (�)

∫ 1

0
t�−1

(
(P(�)

t f ) (x) − f (x)
)

dt

+f (x)

� (�)

∫ 1

0
t�−1 (1 − e−t

)
dt

+ 1

� (�)

∫ ∞

0
t�−1

(
(P(�)

t f ) (x) − e−t f (x)
)

dt. (32)

Further,∥∥I�
� f − f

∥∥∞ � 1

� (�)

∫ 1

0
t�−1

∥∥∥P(�)
t f − f

∥∥∥∞ dt + ‖f ‖∞
� (�)

∫ 1

0
t�−1 (1 − e−t

)
dt

+ 1

� (�)

∫ ∞

0
t�−1

(∥∥∥P(�)
t f

∥∥∥∞ + e−t ‖f ‖∞
)

dt = i1 + i2 + i3.

The relation (24) with Stf = P(�)
t f leads to

i1 � c

� (�)

∫ 1

0
t�+�−1 dt = �

c

� (� + 1)

1

� + �
= O (1) � as � → 0+.
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Since (1 − e−t ) = t + O (1) t2 as t → 0, we have

i2 = O (1)

� (�)

∫ 1

0
t� dt = O (1) � as � → 0+.

Now by making use of the inequality (5) with � = n+2�
p

, we have

i3 � 1

� (�)

(
c ‖f ‖p

∫ ∞

0
t�−�−1 dt + ‖f ‖∞

∫ ∞

0
e−t dt

)

= O (1)

� (�)
= O (1) � as � → 0+.

Finally,∥∥I�
� f − f

∥∥∞ � i1 + i2 + i3 = O (1) � as � → 0+. �

Remark 12. It is interesting to observe that the order of approximation does not depend on the
“Lipschitz degree” � of the function f.

The following theorem constitutes a local behavior of the family (A�f )(x) as � → 0+ at a
“Lipschitz point” x0 of f . Given a �, 0 < ��1 and x0 ∈ Rn, we define (compare with (21))

�� (x0) =
{
f : |f (x0 − y) − f (x0)| �cf |y|� , ∀ |y| �1

}
.

Similarly, for 0 < ��1 and x0 ∈ Rn+ we define (compare with (22))

�̃� (x0) =
{
f : ∣∣(T yf

)
(x0) − f (x0)

∣∣ �cf |y|� , ∀ |y| �1,
(
y ∈ Rn+

)}
,

where T y is the generalized translation given by (16).

Theorem 13. (a) Let f ∈ Lp(Rn, dx) ∩ �� (x0), 1�p < ∞, 0 < ��1. Let further A� be any
of the potentials I� and J �, � > 0. Then(

A�f
)
(x0) − f (x0) = O (1) � as � → 0+.

(b) Let f ∈ Lp,� ∩ �̃�(x0), 1�p < ∞, 0 < ��1. Let further A� be any of the generalized
potentials I�

� and J �
� , � > 0. Then(

A�f
)
(x0) − f (x0) = O (1) � as � → 0+.

Proof. As in Theorem 11, we will prove only the case of A� = I �
� . The other statements of the

theorem are proved analogously by making use of Lemma 6. Using (32), we have(
I�
� f
)
(x0) − f (x0) = 1

� (�)

∫ 1

0
t�−1

(
(P(�)

t f ) (x0) − f (x0)
)

dt

+f (x0)

� (�)

∫ 1

0
t�−1 (1 − e−t

)
dt

+ 1

� (�)

∫ ∞

1
t�−1

(
(P(�)

t f ) (x0) − e−t f (x0)
)

dt

= i1 + i2 + i3.
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Further,∣∣∣(P(�)
t f

)
(x0) − f (x0)

∣∣∣ =
∣∣∣∣∣
∫

Rn+
P (�) (y, t)

( (
T yf

)
(x0) − f (x0)

)
y2�
n dy

∣∣∣∣∣
�
∫

|y|<1
P (�) (y, t)

∣∣∣ (T yf
)
(x0) − f (x0)

∣∣∣y2�
n dy

+
∫

|y|>1
P (�) (y, t)

∣∣∣ (T yf
)
(x0)

∣∣∣y2�
n dy

+
∣∣∣f (x0)

∣∣∣ ∫
|y|>1

P (�) (y, t) y2�
n dy = j1 + j2 + j3.

Since f ∈ �̃� (x0), we have

j1
(19)

� c1

∫
|y|<1

t(|y|2 + t2
)(n+2�+1)/2

|y|� y2�
n dy� c2t

�.

By the Hölder inequality,

j2 � ‖f ‖p

(∫
|y|>1

(
P (�) (y, t)

)p′
y2�
n dy

)1/p′

= c3t

(∫
|y|>1

(
|y|2 + t2

)−p′(n+2�+1)/2
y2�
n dy

)1/p′

� c4t

(∫
|y|>1

|y|−p′(n+2�+1) y2�
n dy

)1/p′

�c5t.

Similarly,

j3 = c6t

∫
|y|>1

(
|y|2 + t2

)−(n+2�+1)/2
y2�
n dy�c7t.

Therefore∣∣∣(P(�)
t f ) (x0) − f (x0)

∣∣∣ = O (1) t� as t → 0. (33)

Using (33), we get

|i1| � c

� (�)

∫ 1

0
t�+�−1 dt = c

� (�)

1

� + �
= O (1) � as � → 0+. (34)

Further, since
(
1 − e−t

) = t + O (1) t2 as t → 0, we get

|i2| � c

� (�)

∫ 1

0
t� dt = O (1) � as � → 0+. (35)

By making use of (5) with � = (n + 2�) /p, we have

|i3| � 1

� (�)

(
c ‖f ‖p

∫ ∞

0
t�−�−1 dt + |f (x0) |

∫ ∞

0
e−t dt

)

= O (1)

� (�)
= O (1) � as � → 0+. (36)
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Finally, by (34)–(36), it follows that(
I �
� f
)
(x0) − f (x0) = O (1) � as � → 0+.

The proof is completed. �

Remark 14. As in Theorem 11, the order of approximation does not depend on the “Lipschitz
degree” � of the function f.
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