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We show that any self-adjoint operator A (bounded or unbounded) in a Hilbert

space H ¼ ðV ; ð�; �ÞÞ that is bounded below generates a continuum of Hilbert spaces

fHrgr>0 and a continuum of self-adjoint operators fArgr>0. For reasons originating in

the theory of differential operators, we call each Hr the rth left-definite space and each

Ar the rth left-definite operator associated with ðH ;AÞ. Each space Hr can be seen as

the closure of the domain DðArÞ of the self-adjoint operator Ar in the topology

generated from the inner product ðArx; yÞ ðx; y 2 DðArÞÞ. Furthermore, each Ar is a

unique self-adjoint restriction of A in Hr. We show that the spectrum of each Ar
agrees with the spectrum of A and the domain of each Ar is characterized in terms of

another left-definite space. The Hilbert space spectral theorem plays a fundamental

role in these constructions. We apply these results to two examples, including the

classical Laguerre differential expression ‘½�	 in which we explicitly find the left-

definite spaces and left-definite operators associated with A, the self-adjoint operator
generated by ‘½�	 in L2ðð0;1Þ; tae�tÞ having the Laguerre polynomials as eigenfunc-

tions. # 2002 Elsevier Science (USA)
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1. INTRODUCTION AND MOTIVATION

In this paper, we prove that if A is a self-adjoint operator in a Hilbert
space H ¼ ðV ; ð�; �ÞÞ that is bounded below by a positive constant k, that is, if

ðAx; xÞ5kðx; xÞ ðx 2 DðAÞÞ;

then there are a continuum of unique Hilbert spaces fHrgr>0 (which we call
left-definite Hilbert spaces) and operators fArgr>0 in Hr (called left-definite

operators), with each Ar being a unique self-adjoint restriction of A in Hr. We
explicitly determine these Hilbert spaces Hr, together with their inner
products ð�; �Þr, as specific vector subspaces of H . Moreover, we are able to
explicitly specify the domains of each operator Ar as certain left-definite
spaces, and we show that the spectrum of each Ar is identical
with the spectrum of A. The key result, as we will see, that allows for a
determination of these spaces and operators is the classical Hilbert space
spectral theorem.

Each of these Hilbert spaces and associated inner products can be viewed
as a generalization of a left-definite Hilbert space and Dirichlet inner
product, respectively, from the theory of self-adjoint differential operators.
However, we emphasize that the results developed in this paper apply to
arbitrary self-adjoint operators in a Hilbert space that are bounded
below (see the example in Section 11). It is the case, however, that our
original motivation stems from the study of certain differential equations of
the form

s½y	ðtÞ ¼ lwðtÞyðtÞ ðt 2 IÞ; ð1:1Þ

where s½�	 is a Lagrangian symmetric differential expression of order 2n
given by

s½y	ðtÞ :¼
Xn
j¼0

ð�1ÞjðbjðtÞyðjÞðtÞÞ
ðjÞ ðt 2 IÞ: ð1:2Þ

Here I ¼ ða; bÞ is an open interval of the real line R; wðtÞ > 0 for t 2 I , and
each coefficient bjðtÞ is positive and infinitely differentiable on I . Such
equations arise in the functional analytic study of differential equations
having orthogonal polynomial solutions (see [29] for a general discussion of
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the connections between orthogonal polynomials and differential equa-
tions). For further information in this context, see Sections 12 and 13 in this
paper for specific examples of differential equations of this type having
orthogonal polynomial solutions.

One particular setting for the spectral study of (1.2) is the Hilbert space
L2ðI ;wÞ, defined by

L2ðI ;wÞ ¼ ff : I ! C j f is Lebesgue measurable and

Z
I
jf ðtÞj2wðtÞdt51g;

with inner product

ðf ; gÞ ¼
Z b

a
f ðtÞ %ggðtÞwðtÞdt:

Due to the appearance of w on the right-hand side of (1.1), it is natural to
refer to the L2ðI ;wÞ setting as the classic right-definite spectral setting for
w�1s½�	.

For functions f ; g 2 Dmax, the maximal domain of w�1s½�	 in L2ðI ;wÞ (see
[33, Chap. V] for definitions and notation), we have Green’s formulaZ b

a
s½f 	ðtÞ %ggðtÞdt ¼

Z b

a
f ðtÞs½g	ðtÞdt þ ½f ; g	ðtÞjt¼bt¼a ðf ; g 2 DmaxÞ; ð1:3Þ

where ½�; �	 is the skew-symmetric sesquilinear form for s½�	. A related formula
– and the central motivating factor for the work that we present in this paper
– is Dirichlet’s formula,Z b

a
s½f 	ðtÞ %ggðtÞdt ¼

Xn
j¼0

Z b

a
bjðtÞf ðjÞðtÞ %ggðjÞðtÞdt

þ ff ; ggðtÞjt¼bt¼a ðf ; g 2 DmaxÞ; ð1:4Þ

where f�; �g is another bilinear form, closely related to the ½�; �	 given
in (1.3).

There are two well-known operators generated by w�1s½�	 in L2ðI ;wÞ,
the minimal and maximal operators Tmin and Tmax defined, respectively,
by

Tminf :¼ w�1s½f 	 ðf 2 DminÞ;

and

Tmaxf :¼ w�1s½f 	 ðf 2 DmaxÞ:

These operators are adjoints of each other; furthermore, Tmin½�	 is symmetric
in L2ðI ;wÞ. The well-established Glazman–Krein–Naimark Theorem (see
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[33, Section 18]) of self-adjoint extensions of symmetric differential
operators then determines, through appropriate boundary conditions, the
various self-adjoint extensions A of Tmin (or, equivalently, self-adjoint
restrictions of the maximal operator Tmax).

To continue our motivation for this paper, suppose A: DðAÞ � L2ðI ;wÞ
! L2ðI ;wÞ is a self-adjoint extension of Tmin such that

ðAf ; gÞ ¼
Z b

a
s½f 	ðtÞ %ggðtÞdt ¼

Xn
j¼0

Z b

a
bjðtÞf ðjÞðtÞ %ggðjÞðtÞdt ðf ; g 2 DðAÞÞ;

ð1:5Þ

That is to say, for all f ; g 2 DðAÞ, the evaluation of the Dirichlet form
ff ; ggðtÞjt¼bt¼a in (1.4) is zero (of course, such an A may or may not exist, in
general). Furthermore, suppose that b0ðtÞ5k > 0 for all t 2 I , where k is a
positive constant. Then, from (1.5) and our assumed positivity of the
coefficients bj on ða; bÞ, we find that A satisfies

ðAf ; f Þ5kðf ; f Þ ðf 2 DðAÞÞ: ð1:6Þ

Moreover, we see that s½�	 generates, through (1.5), a Sobolev space H1 with
inner product (called the Dirichlet inner product)

ðf ; gÞ1 :¼
Xn
j¼0

Z b

a
bjðtÞf ðjÞðtÞ %ggðjÞðtÞdt ðf ; g 2 H1Þ; ð1:7Þ

for physical reasons, the norm generated from this inner product is also
called the energy norm (see [32, p. 12]). More specifically, H1 is defined to be
the closure of DðAÞ in the topology generated by the norm jj � jj1 ¼ ð�; �Þ1=21 .
Observe that, from (1.5) and (1.7), we have

ðAf ; gÞ ¼ ðf ; gÞ1 ðf ; g 2 DðAÞÞ: ð1:8Þ

Since the inner product ð�; �Þ1 is generated from the left-hand side of (1.1), the
literature refers to H1 as the left-definite setting for w�1s½�	 and calls H1 the
left-definite Hilbert space associated with the expression w�1s½�	. Actually, in
the notation of this paper, H1 is the first left-definite space associated with A.
As this paper shows, there are actually a continuum of left-definite Hilbert
spaces associated with such an operator A.

It is possible to extend the identity in (1.8) to obtain

ðAf ; gÞ ¼ ðf ; gÞ1 ðf 2 DðAÞ; g 2 H1Þ: ð1:9Þ
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From the inequality (1.6), it follows that 0 2 rðAÞ, the resolvent set of A.
Consequently, we see that R0ðAÞ ¼ A�1 is a bounded operator from H1 onto
DðAÞ. Furthermore, from the inclusion

DðAÞ � H1 � L2ðI ;wÞ

and (1.9), it follows that the operator B: H1 ! H1, defined by

Bf ¼ R0ðAÞf ðf 2 DðBÞ :¼ H1Þ;

is an invertible, self-adjoint operator. The inverse of B, denoted here by A1,
is also a self-adjoint operator. In the literature, A1 is called the left-definite

operator associated with A. As we see in this paper, it is more appropriate
to name A1 the first left-definite operator associated with A. In fact, we
construct a continuum of left-definite self-adjoint operators fArgr>0
associated with the original operator A, with each Ar being a unique self-
adjoint restriction of A in Hr.

To emphasize our starting point in this paper, we begin with a self-
adjoint operator A that is bounded below in H by a positive constant.
In the theory of differential operators, A corresponds to a right-
definite operator generated from the differential expression w�1s½�	 (as
given in (1.1) and (1.2)) in L2ðI ;wÞ. However, it is possible
that the differential expression w�1s½�	 is not right-definite – for example,
the function w may be signed on I – and yet s½�	 is left-definite (that is,
each coefficient bj > 0 on I). This approach is taken by Kong et al.
in [18] in their left-definite study of the classic, regular Sturm–Liouville
equation

�ðpy0Þ0 þ qy ¼ lwy;

on I .
The history of left-definite spectral theory – as it relates to differential

operators – can be traced back to the work of Weyl [50] who, in his
landmark analysis of second-order Sturm–Liouville differential equations,
coined the term polare-Eigenwertaufgabe for the study of second-order
equations in the left-definite setting. The terminology left-definite (actually,
the German Links-definit) first appeared in the literature in 1965 in a paper
by Sch.aafke and Schneider (see [44]). In his book [17], Kamke uses the term
F -definit in his study of the differential equation Fy ¼ lGy (he also uses
G-definit for his right-definite study of this equation). In [34–36], Niessen
and Schneider considered general left-definite singular systems and left-
definite s-hermitian problems. Pleijel ([38,39]) provided one of the first
concrete examples of such a left-definite setting for a self-adjoint differential
operator with his analysis of the classical second-order Legendre equation.
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His work was followed soon after by the work of Atkinson et al. [3] who
examined left-definite square-integrable homogeneous solutions. Later,
Everitt [6] gave a complete (first) left-definite analysis of the classical
Legendre equation and his student, Onyango-Otieno [37], extended these
results by analyzing the appropriate right-definite and first left-definite
spectral settings for the differential equations having the classical
orthogonal polynomials (Jacobi, Laguerre, Hermite) as solutions.
Everitt, in [7], and Bennewitz and Everitt [4] furthered the general
theory of left-definite operators associated with second-order differential
equations.

During the past 15 years, there have been several additional papers
dealing with theory and specific examples of left-definite operators, all
within the framework of differential operators. Important results related to
second-order equations have been obtained by Krall ([19,20,22,23]), Krall
and Littlejohn [21], and Hajmirzaahmad ([16]). Left-definite results for
higher-order differential equations have been obtained by Everitt and
Littlejohn [11], Everitt et al. [9,10,13,14], Loveland [30], and Wellman [49].
More recently, Vonhoff [48] has reconsidered the left-definite analysis of the
fourth-order Legendre-type equation based on ideas developed in his
thesis [47].

In this paper, we attempt to provide a framework for a general
left-definite theory of bounded-below, self-adjoint operators in a
Hilbert space. The contents of this paper are as follows. In Section 2 we
define the general concept of a left-definite Hilbert space and a left-
definite operator associated with a self-adjoint operator that is
bounded below. Section 3 contains statements of our main results,
with proofs of these theorems given in Sections 6 through 10. In Section
4, we recall the spectral theorem and some of its immediate conse-
quences that we need in our presentation. Our first example of the
theory developed in this paper concerns an unbounded self-adjoint
operator A in ‘2, the classical Hilbert space of square-summable sequences;
this example is described in Section 11. In Section 12, we apply the
results of this paper to the second-order classical Laguerre differential
expression ‘½�	. More specifically, for integral values of r, we will explicitly
exhibit the left-definite Hilbert space fHrg and the left-definite operators
fArg associated with the self-adjoint operator A in the Hilbert space
H ¼ L2ðð0;1Þ; tae�tÞ, generated by ‘½�	, having the Laguerre polynomials
fLamðtÞg

1
m¼0 as eigenfunctions. As we will see, each of the left-definite

inner products can be seen as the Dirichlet inner product of the
form (1.7) obtained from taking formal integral powers of the differential
expression ‘½�	. Lastly, in Section 13, we outline a number of other
applications (in particular, from [11] and [9]) and open problems resulting
from this work.
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2. AN ABSTRACT DEFINITION OF A LEFT-DEFINITE SPACE
AND A LEFT-DEFINITE OPERATOR

For the remainder of this paper, let V be a vector space (over the complex
field C) with inner product ð�; �Þ and norm jj � jj; the resulting inner product
space is denoted ðV ; ð�; �ÞÞ. Suppose Vr (the subscripts will be made clear
shortly) is a (vector) subspace (i.e., a linear manifold) of V and let ð�; �Þr and
jj � jjr denote, respectively, an inner product (quite possibly different from
ð�; �ÞÞ and an associated norm on Vr.

We begin with the following definition of a left-definite Hilbert space.

Definition 2.1. Let H ¼ ðV ; ð�; �ÞÞ be a Hilbert space. Suppose A: DðAÞ
� H ! H is a self-adjoint operator that is bounded below by a positive
number k > 0; i.e.,

ðAx; xÞ5kðx; xÞ ðx 2 DðAÞÞ:

Let H1 ¼ ðV1; ð�; �Þ1Þ, where V1 is a subspace of V and ð�; �Þ1 is an inner product
on V1. Then H1 is said to be a left-definite (Hilbert) space associated with the
pair ðH ;AÞ, if each of the following conditions holds:

(1) H1 is a Hilbert space,

(2) DðAÞ is a subspace of V1,

(3) DðAÞ is dense in H1,

(4) ðx; xÞ15kðx; xÞ ðx 2 V1Þ, and

(5) ðx; yÞ1 ¼ ðAx; yÞ ðx 2 DðAÞ; y 2 V1Þ.

Given a self-adjoint operator A that is bounded below by a positive
constant, it is not clear that a left-definite space H1 exists for the pair ðH ;AÞ.
In fact, however, we prove the existence and uniqueness of this Hilbert space
later in this paper; see Theorem 3.1.

If A is a self-adjoint operator in H that is bounded below by a positive
number k, then, with assistance from the spectral theorem (see Section 4
and, in particular, Theorem 4.3), we see that Ar is a self-adjoint
operator bounded below by krI for each r > 0. Consequently, we can
extend Definition 2.1 to a continuum of left-definite spaces associated with
ðH ;AÞ.

Definition 2.2. Let H ¼ ðV ; ð�; �ÞÞ be a Hilbert space. Suppose A: DðAÞ
� H ! H is a self-adjoint operator that is bounded below by a positive
number k > 0; i.e.,

ðAx; xÞ5kðx; xÞ ðx 2 DðAÞÞ:
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Let r > 0. If there exists a subspace Vr of V and an inner product ð�; �Þr on Vr
such that Hr ¼ ðVr; ð�; �ÞrÞ is a left-definite space associated with the pair
ðH ;ArÞ, we call Hr an rth left-definite space associated with the pair ðH ;AÞ.
Specifically, Hr is an rth left-definite space associated with the pair ðH ;AÞ if
each of the following conditions hold:

(1) Hr is a Hilbert space,

(2) DðArÞ is a subspace of Vr,

(3) DðArÞ is dense in Hr,

(4) ðx; xÞr5krðx; xÞ ðx 2 VrÞ, and

(5) ðx; yÞr ¼ ðArx; yÞ ðx 2 DðArÞ; y 2 VrÞ.

From our discussion above, we will see below in Theorem 3.1 that, for
each r > 0; Hr exists and is unique. At first glance, it appears that the rth
left-definite space Hr depends on H ; A, and the positive number k satisfying
condition (4) in the above definition. In fact, however, each of the left-
definite spaces Hr is independent of k; a specific reason will be given in
Section 6 after the proof of Theorem 3.1.

We are now in position to define a left-definite operator associated with A.

Definition 2.3. Let H ¼ ðV ; ð�; �ÞÞ be a Hilbert space. Suppose A: DðAÞ
� H ! H is a self-adjoint operator that is bounded below by a positive
number k > 0. Let r > 0 and suppose Hr is the rth left-definite space
associated with ðH ;AÞ. If there exists a self-adjoint operator Ar: Hr ! Hr
that is a restriction of A; that is to say,

Arx ¼ Ax;

x 2 DðArÞ � DðAÞ; ð2:1Þ

we call such an operator an rth left-definite operator associated with ðH ;AÞ.
In Theorem 3.2 below we prove that if A is a self-adjoint operator that is,

is bounded below by a positive number k > 0, then for all r > 0 there exists a
unique left-definite operator Ar in Hr associated with ðH ;AÞ.

3. STATEMENTS OF MAIN RESULTS

There are six main theorems that we prove in this paper concerning left-
definite Hilbert spaces and left-definite self-adjoint operators. The Hilbert-space
spectral theorem (see [41] or [43]) is essential in establishing most of these results.

Theorem 3.1. Suppose A is a self-adjoint operator in the Hilbert space

H ¼ ðV ; ð�; �ÞÞ that is bounded below by kI , where k > 0. Let r > 0. Define

Hr ¼ ðVr; ð�; �ÞrÞ with
Vr ¼ DðAr=2Þ ð3:1Þ
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and

ðx; yÞr ¼ ðAr=2x;Ar=2yÞ ðx; y 2 VrÞ: ð3:2Þ

Then Hr is an rth left-definite space associated with the pair ðH ;AÞ in the sense

of Definition 2.2. Moreover, suppose Hr ¼ ðVr; ð�; �ÞrÞ and H 0
r ¼ ðV 0

r ; ð�; �Þ
0
rÞ are

rth left-definite spaces associated with the pair ðH ;AÞ. Then Vr ¼ V 0
r and

ðx; yÞr ¼ ðx; yÞ0r for all x; y 2 Vr ¼ V 0
r ; i.e., Hr ¼ H 0

r. Consequently

Hr ¼ ðVr; ð�; �ÞrÞ, as defined in (3.1) and (3.2), is the unique rth left-definite

Hilbert space associated with ðH ;AÞ.

Proof. See Section 6. ]

Theorem 3.2. Suppose A is a self-adjoint operator in a Hilbert space H
that is bounded below by kI for some k > 0. For r > 0, let Hr ¼ ðVr; ð�; �ÞrÞ be the

rth left-definite space associated with ðH ;AÞ. Then there exists a unique left-

definite operator Ar in Hr associated with ðH ;AÞ. More specifically, if there

exists a self-adjoint operator *AAr: Hr ! Hr such that *AArx ¼ Ax for all

x 2 Dð *AArÞ � DðAÞ, then Ar ¼ *AAr. Furthermore,

DðArÞ ¼ Vrþ2: ð3:3Þ

and Ar is bounded below by kI in Hr.

Proof. See Section 7. ]

The following corollary is an immediate consequence of Theorems 3.1
and 3.2. It emphasizes the fact that, set-wise, the domain DðArÞ of the rth
power of A is given by V2r and, in particular, the first and second left-definite
spaces associated with A are, respectively, the domain of the positive square
root of A and the domain of A. Furthermore, it describes explicitly the
domain of the rth left-definite operator in terms of the domain of a certain
power of A. Interestingly, we note that the domains of the first and second
left-definite operators, A1 and A2, are given by DðA3=2Þ and DðA2Þ,
respectively.

Corollary 3.3. Suppose A is a self-adjoint operator in the Hilbert space

H that is bounded below by kI , where k > 0. For each r > 0, let Hr ¼ ðVr; ð�; �ÞrÞ
and Ar denote, respectively, the rth left-definite space and the rth left-definite

operator associated with ðH ;AÞ. Then

(1) DðArÞ ¼ V2r, in particular, DðA1=2Þ ¼ V1 and DðAÞ ¼ V2;

(2) DðArÞ ¼ DðAðrþ2Þ=2Þ, in particular, DðA1Þ ¼ DðA3=2Þ and DðA2Þ ¼
DðA2Þ.
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In the next theorem, we see that when A is a bounded, self-adjoint operator
that is bounded below by a positive constant k, then the left-definite theory is
trivial. However, the situation is quite different when A is unbounded.

Theorem 3.4. Let H ¼ ðV ; ð�; �ÞÞ be a Hilbert space. Suppose A: DðAÞ �
H ! H is a self-adjoint operator that is bounded below by kI for some k > 0.
For each r > 0, let Hr ¼ ðVr; ð�; �ÞrÞ and Ar denote the rth left-definite space and

the rth left-definite operator, respectively, associated with ðH ;AÞ.

(1) Suppose A is bounded. Then, for each r > 0,
(i) V ¼ Vr;
(ii) the inner products ð�; �Þ and ð�; �Þr are equivalent;
(iii) A ¼ Ar.

(2) Suppose A is unbounded. Then

(i) Vr is a proper subspace of V ;
(ii) Vs is a proper subspace of Vr whenever 05r5s;
(iii) the inner products ð�; �Þ and ð�; �Þs are not equivalent for any s > 0;
(iv) the inner products ð�; �Þr and ð�; �Þs are not equivalent for any

r; s > 0; r=s;(v)DðArÞ is a proper subspace of DðAÞ for each r > 0;
(vi) DðAsÞ is a proper subspace of DðArÞ whenever 05r5s;

Proof. See Section 8. ]

Since, for each m > 0; Am is a self-adjoint operator that is bounded below
in H by kmI , we see from Theorems 3.1 and 3.2 that there are a continua of
left-definite spaces fðHmÞrgr>0 and left-definite operators fðAmÞrgr>0 asso-
ciated with the pair ðH ;AmÞ. Furthermore, since Am is a self-adjoint operator
that is bounded below by kI in Hm, there are continua of left-definite spaces
fðHmÞrgr>0 and left-definite operators fðAmÞrgr>0 associated with the pair
ðHm;AmÞ. The following questions naturally arise:

(1) What is the relationship (if any) between the three continua of the
left-definite spaces fHrgr>0; fðHmÞrgr>0, and fðHmÞrgr>0?

(2) Since for fixed m > 0; ðArÞ
m – the mth power of the rth left-definite

operator Ar associated with ðH ;AÞ – is a self-adjoint restriction of Am, what is
the relationship (if any) between the continuum of left-definite operators
fðAmÞrgr>0 associated with the pair ðH ;AmÞ and the continuum of self-adjoint
operators fðArÞ

mÞgr>0? In particular, is ðArÞ
m a left-definite operator

associated with ðH ;AmÞ; that is to say, is ðArÞ
m 2 fðAmÞsgs>0?

(3) For fixed m > 0, what is the relationship (if any) between the
continuum of left-definite operators fðAmÞrgr>0 associated with the pair
ðHm;AmÞ and the continuum of left-definite operators fArgr>0 associated with
the pair ðH ;AÞ?
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Each of these questions is answered in the following theorem. In essence,
this theorem says that there are no new left-definite spaces or left-definite
operators emerging from a consideration of the above questions; that is to
say, the original spaces fHrgr>0 and operators fArgr>0 encompass all of the
left-definite spaces and left-definite operators described above that are
associated with the pairs ðH ;AmÞ and ðHm;AmÞ.

Theorem 3.5. Suppose A; H ; fHrgr>0, and fArgr>0 are as in Theorems 3.1
and 3.2 above. Fix m > 0. For each r > 0, let ðHmÞr ¼ ððV mÞr; ð�; �Þ

m
r Þ and ðAmÞr

denote, respectively, the rth left-definite space and the rth left-definite operator

associated with the pair ðH ;AmÞ. Then

(a) ðHmÞr ¼ Hmr.

(b) ðArÞ
m ¼ ðAmÞr=m with DððArÞ

mÞ ¼ V2mþr. Equivalently, ðAmÞr ¼ ðAmrÞ
m

with DððAmÞrÞ ¼ V2mþmr; that is to say, the rth left-definite operator associated

with the pair ðH ;AmÞ is the mth power of the ðmrÞth left-definite operator

associated with ðH ;AÞ.

Furthermore, let ðHmÞr ¼ ððVmÞr; ð�; �Þm;rÞ and ðAmÞr denote the rth left-

definite space and the rth left-definite operator, respectively, associated with

ðHm;AmÞ. Then

(c) ðHmÞr ¼ Hmþr.

(d) ðAmÞr ¼ Amþr with DððAmÞrÞ ¼ Vmþrþ2; in other words, the rth left-

definite operator associated with ðHm;AmÞ is the ðmþ rÞth left-definite operator

associated with ðH ;AÞ.

Proof. See Section 9. ]

In addition, we prove the following two theorems concerning the spectra
of the left-definite operators fArgr>0.

Theorem 3.6. For each r > 0, let Ar denote the rth left-definite operator

associated with the self-adjoint operator A that is bounded below by kI where

k > 0. Then

(a) The point spectra of A and Ar coincide; i.e., spðArÞ ¼ spðAÞ.

(b) The continuous spectra of A and Ar coincide; i.e., scðArÞ ¼ scðAÞ.

(c) The resolvents of A and Ar coincide; i.e., rðAÞ ¼ rðArÞ.

Proof. See Section 10. ]

Finally, the last general result in this paper is the following theorem.

Theorem 3.7. If fjng
1
n¼0 is a complete orthogonal set of eigenfunctions of

A in H , then for each r > 0; fjng
1
n¼0 is a complete set of orthogonal
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eigenfunctions of the rth left-definite operator Ar in the rth left-definite space

Hr.

Proof. See Section 10. ]

4. THE SPECTRAL THEOREM

If A is a self-adjoint operator in a Hilbert space H with inner product ð�; �Þ,
it is well known (see [43, Chaps. 12 and 13] that there exists a unique
operator-valued set functions E: B ! BðH Þ, where B is the s-algebra of
Borel subsets of R and BðH Þ is the Banach algebra of bounded linear
operators on H , called the spectral resolution of the identity, having the
following properties:

ð1Þ Eð|Þ ¼ 0 and EðRÞ ¼ I :

ð2Þ EðDÞ is idempotent; that is; ðEðDÞÞ2 ¼ EðDÞ; for all D 2 B:

ð3Þ EðDÞ is self-adjoint in H for all D 2 B:

ð4Þ EðD1 \ D2Þ ¼ EðD1ÞEðD2Þ ¼ EðD2ÞEðD1Þ for all D1;D2 2 B:

ð5Þ EðD1 [ D2Þ ¼ EðD1Þ þ EðD2Þ for all D1;D2 2 B with D1 \ D2 ¼ |:

ð6Þ For each x; y 2 H ; the mapping Ex;y : B ! C defined by Ex;yðDÞ

:¼ ðEðDÞx; yÞ is a complex; regular Borel measure:

ð4:1Þ

Since EðDÞ is a self-adjoint projection for each D 2 B, it follows that
jjEðDÞjj41.

A spectral family (see [25] or [41]) for a self-adjoint operator A is a one-
parameter family fElgl2R of bounded operators in H satisfying:

ð1Þ El is self-adjoint and idempotent for each l 2 R:

ð2Þ For l5m; Em � El is a positive operator:

ð3Þ liml!1 Elx ¼ x for each x 2 H :

ð4Þ liml!�1 Elx ¼ 0 for each x 2 H :

ð5Þ Elþ0x :¼ limm!lþ Emx ¼ Elx for each l 2 R and x 2 H :

ð4:2Þ

A connection between (4.1) and (4.2) lies in the following lemma; the proof
is straightforward.

Lemma 4.1. Suppose E is a spectral resolution of the identity in the sense of

(4.1). For l 2 R, define El ¼ Eð�1; l	. Then fElgl2R is a spectral family in

the sense of (4.2).
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As mentioned earlier, the Hilbert-space spectral theorem plays a key role
in proving the existence and uniqueness of the left-definite spaces fHrgr>0
and the left-definite operators fArgr>0 associated with the pair ðH ;AÞ,
where A is a self-adjoint operator in H that is bounded below by kI , for
some k > 0. In our development of these spaces and operators, we
use the spectral resolution of the identity E of A rather than the one-
parameter spectral family. However, properties of the spectrum sðArÞ and
the resolvent set rðArÞ of each left-definite operator Ar are more easily seen
through the spectral family rather than the spectral resolution of the
identity. Indeed, the following theorem is well known (see [25, Sect. 9.11]
and [41, Sect. 132].

Theorem 4.2. Suppose fElgl2R is a spectral family, satisfying the

conditions of (4.2), of a self-adjoint operator A. For l0 2 R, we have:

(a) l0 2 spðAÞ (the point spectrum) if and only if El0=El0�0.
(b) l0 2 scðAÞ ðthe continuous spectrum) if and only if El0 ¼ El0�0 and

fElgl2R is not constant on any neighborhood of l0 in R.
(c) l0 2 rðAÞ (the resolvent set) if and only if there exists e > 0 such that

fElgl2R is constant on ½l0 � e; l0 þ e	.

We are now in position to state the spectral theorem in a Hilbert space
(see [43, Theorems 13.24 and 13.30]).

Theorem 4.3. (The Spectral Theorem). Let A be a self-adjoint operator

(bounded or unbounded) in a Hilbert space H ¼ ðV ; ð�; �ÞÞ. Let E be the spectral

resolution of the identity associated with A. Then, for each r > 0, the self-

adjoint operator Ar has a (densely defined) domain DðArÞ given by

DðArÞ ¼ x 2 H
Z
R

l2rdEx;x51

����
� �

; ð4:3Þ

and is characterized by the identities

ðArx; yÞ ¼
Z
R

lrdEx;y ðx 2 DðArÞ; y 2 H Þ ð4:4Þ

and

jjArxjj2 ¼
Z
R

l2rdEx;x ðx 2 DðArÞÞ: ð4:5Þ

Conversely, suppose F : B ! BðH Þ is a spectral resolution of the identity. Then

there exists a unique self-adjoint operator *AA in H with (densely defined)
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domain

Dð *AAÞ ¼ x 2 H
Z
R

l2dFx;x51

����
� �

that is characterized by

ð *AAx; yÞ ¼
Z
R

ldFx;y ðx 2 Dð *AAÞ; y 2 H Þ;

and

jj *AAxjj2 ¼
Z
R

l2dFx;x ðx 2 Dð *AAÞÞ:

Moreover, in this theorem, we can replace the interval R of integration in
each of the above integrals with the spectrum of the self-adjoint operator. In
particular, for a self-adjoint operator A that is bounded below by kI for
k > 0, we can replace the interval of integration R with ½k;1Þ since, in this
case, the spectrum sðAÞ � ½k;1Þ (see [43, Theorem 12.32]).

5. TECHNICAL LEMMAS

The following results will be used extensively in Sections 6 through 10.

Lemma 5.1. Suppose A is a self-adjoint operator in a Hilbert space H ¼
ðV ; ð�; �ÞÞ and suppose E is the spectral resolution of the identity for A. Then

EEðD1Þx;yðD2Þ ¼Ex;yðD1 \ D2Þ

¼Ex;EðD2ÞyðD1Þ ¼ Ex;EðD1ÞyðD2Þ ðD1;D2 2 BÞ; ð5:1Þ

Ex;xðDÞ ¼ jjEðDÞxjj2 ðD 2 BÞ; ð5:2Þ

and Z
R

dEx;y ¼ ðEðRÞx; yÞ ¼ ðx; yÞ ðx; y 2 H Þ: ð5:3Þ

Proof. These properties follow directly from the definition of E so the
proof is omitted. ]

Lemma 5.2. Suppose A is a self-adjoint operator in a Hilbert space H ¼
ðV ; ð�; �ÞÞ that is bounded below by kI for some k > 0. Suppose E is the spectral

resolution of the identity for A. Then, for each s > 0; As and EðDÞ commute for
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all D 2 B; that is to say,

EðDÞAsx ¼ AsEðDÞx ðD 2 B; x 2 DðAsÞÞ: ð5:4Þ

Proof. Let D 2 B and x 2 DðAsÞ. Then, for any B 2 B,

EEðDÞx;EðDÞxðBÞ ¼ ðEðBÞEðDÞx;EðDÞxÞ

¼ ðEðD\ BÞx; xÞ by ð2Þ; ð3Þ; and ð4Þ of ð4:1Þ

¼ ððEðD\ BÞÞ2x; xÞ

¼ ðEðD\ BÞx;EðD\ BÞxÞ by ð2Þ and ð3Þ of ð4:1Þ

¼ jjEðD\ BÞxjj2 ¼ Ex;xðD\ BÞ by ð5:2Þ

4Ex;xðBÞ:

Hence Z
R

l2sdEEðDÞx;EðDÞx ¼
Z
½k;1Þ

l2sdEEðDÞx;EðDÞx

4
Z
½k;1Þ

l2sdEx;x ¼
Z
R

l2sdEx;x51:

Thus, from (4.3), we see that

EðDÞx 2 DðAsÞ: ð5:5Þ

Moreover, for y 2 H , we have from (5.1) that

EEðDÞx;yðBÞ ¼ Ex;EðDÞyðBÞ;

hence, from (4.4) and the self-adjointness of EðDÞ, we see that

ðAsEðDÞx; yÞ ¼
Z
R

lsdEEðDÞx;y ¼
Z
R

lsdEx;EðDÞy

¼ ðAsx;EðDÞyÞ ¼ ðEðDÞAsx; yÞ;

that is to say,

ðAsEðDÞx� EðDÞAsx; yÞ ¼ 0 ðy 2 H Þ;

from which it follows that AsEðDÞ ¼ EðDÞAs. ]

Lemma 5.3. Suppose A is a self-adjoint operator in the Hilbert space H ¼
ðV ; ð�; �ÞÞ that is bounded below by kI for some K > 0. Let E be the spectral
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resolution of the identity of A. Then, for each s > 0 and D 2 B, we have

EAsx;yðDÞ ¼
Z
D
lsdEx;y ðx 2 DðAsÞ; y 2 H Þ; ð5:6Þ

and

Ex;AsyðDÞ ¼
Z
D
lsdEx;y ðx 2 H ; y 2 DðAsÞÞ: ð5:7Þ

That is to say,

dEAsx;y ¼ lsdEx;y ðx 2 DðAsÞ; y 2 H Þ ð5:8Þ

and

dEx;Asy ¼ lsdEx;y ðx 2 H ; y 2 DðAsÞÞ: ð5:9Þ

Remark 5.1. The identities in (5.8) and (5.9) are understood to mean, in the

sense of the Radon–Nikodym theorem,Z
R

f ðlÞdEAsx;y ¼
Z
R

f ðlÞlsdEx;y ð5:10Þ

and Z
R

f ðlÞdEx;Asy ¼
Z
R

f ðlÞlsdEx;y ; ð5:11Þ

respectively, for each nonnegative Borel measurable function f : R ! ½0;1	;
see [42, pp. 121–126].

Proof of Lemma 5.3. Let s > 0; for x 2 DðAsÞ and y 2 H we see that

EAsx;yðDÞ ¼ ðEðDÞAsx; yÞ

¼ ðAsEðDÞx; yÞ by Lemma 5:2

¼
Z
R

lsdEEðDÞx;y by ð4:4Þ

¼
Z
D
lsdEx;y from ð5:1Þ ð5:12Þ

The identity in (5.7) follows in a similar fashion. ]
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6. EXISTENCE AND UNIQUENESS OF THE LEFT-DEFINITE
SPACES: PROOF OF THEOREM 3.1

Proof. Existence of the Left-Definite Spaces. Let r > 0. To show
that Hr ¼ ðVr; ð�; �ÞrÞ, defined in (3.1) and (3.2), is a left-definite space
for the pair ðH ;AÞ we need to establish the five properties listed in
Definition 2.2.

(i) Hr is a Hilbert space.
Suppose fxng � Hr is Cauchy. From (3.2), we see that

jjxn � xmjjr ¼ jjAr=2ðxn � xmÞjj;

where jj � jjr and jj � jj are the norms generated, respectively, from the inner
products ð�; �Þr and ð�; �Þ. Hence fAr=2xng is Cauchy in H so there exists y 2 H
such that

Ar=2xn ! y in H as n! 1: ð6:1Þ

Moreover, from (5.3) and Theorem 4.3, we have

kr jjxn � xmjj2 ¼ kr
Z
R

dExn�xm; xn�xm ¼ kr
Z
½k;1Þ

dExn�xm; xn�xm

4
Z
½k;1Þ

lrdExn�xm; xn�xm

¼ jjAr=2ðxn � xmÞjj
2:

Therefore, fxng is Cauchy in H . From the completeness of H , there exists
x 2 H such that

xn ! x in H as n! 1: ð6:2Þ

From (6.1) and (6.2) and the fact that Ar=2 is closed (being self-adjoint from
Theorem 4.3), we see that x 2 DðAr=2Þ ¼ Hr and Ar=2x ¼ y. In particular, Hr
is complete.

(ii) DðArÞ � Vr � H .
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Let x 2 DðArÞ. If k41, thenZ
R

lrdEx;x ¼
Z
½k;1Þ

lrdEx;x

4
Z
½k;1	

lrdEx;x þ
Z
ð1;1Þ

lrdEx;x

4
Z
½k;1	

dEx;x þ
Z
ð1;1Þ

l2rdEx;x

4
Z
R

dEx;x þ
Z
R

l2rdEx;x

¼ jjxjj2 þ jjArxjj251 by ð4:5Þ;

so that x 2 DðAr=2Þ ¼ Vr. A similar calculation shows that if k > 1, thenZ
R

lrdEx;x4jjArxjj251;

so x 2 Vr.

(iii) DðArÞ is dense in Hr.
Let x 2 Hr ¼ DðAr=2Þ. Define, for each n 2 N; xn ¼ Eð�1; n	x. From (2),

(3), and (4) of (4.1), we see that for D 2 B,

Exn;xnðDÞ ¼ ðEðDÞxn; xnÞ

¼ ðEðDÞEð�1; n	x;Eð�1; n	xÞ

¼ ðEðD\ ð�1; n	Þx; xÞ

¼Ex;xðD\ ð�1; n	Þ:

Consequently, for n5k,Z
R

l2rdExn;xn ¼
Z
ð�1;n	\½k;1Þ

l2rdEx;x

¼
Z
½k;n	

l2rdEx;x

4 n2r
Z
R

dEx;x ¼ n2r jjxjj251;

from which it follows that xn 2 DðArÞ for n5k. Moreover, from Properties
(1) and (5) of (4.1), we see that

Eðn;1Þ ¼ I � Eð�1; n	

and hence

x� xn ¼ Eðn;1Þx ðn51Þ:
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Thus

jjx� xnjj2r ¼ ðAr=2ðx� xnÞ;Ar=2ðx� xnÞÞ

¼ ðAr=2Eðn;1Þx;Ar=2Eðn;1ÞxÞ

¼ ðAr=2Eðn;1Þx;Ar=2xÞ by Lemma 5:2 and ð4Þ of ð4:1Þ

¼
Z
R

lr=2dEEðn;1Þx;Ar=2x by ð4:4Þ

¼
Z
ðn;1Þ

lr=2dEx;Ar=2x by ð5:1Þ

¼
Z
ðn;1Þ

lrdEx;x by ð5:9Þ ð6:3Þ

Define m: B ! R by mðDÞ ¼
R
D l

rdEx;x; then m is a finite, positive measure on
B. Let Dn ¼ ðn;1Þ for each n 2 N; since Dn & +, we have mðDnÞ ! 0 as
n! 1 (see [42, Theorem 1.19, Part (e)]). Consequently, from (6.3), we see
that jjx� xnjjr ! 0 as n! 1. It follows that DðArÞ is dense in Hr.

(iv) ðx; xÞr5krðx; xÞ ðx 2 VrÞ.
Let x 2 Vr. Then, from (4.5),

ðx; xÞr ¼
Z
R

lrdEx;x

¼
Z
½k;1Þ

lrdEx;x

5 kr
Z
½k;1Þ

dEx;x

¼ kr
Z
R

dEx;x

¼ krðx; xÞ:

(v) ðx; yÞr ¼ ðArx; yÞ ðx 2 DðArÞ; y 2 VrÞ.

Let x 2 DðArÞ and y 2 Hr ¼ DðAr=2Þ. By part (ii) of this proof, we see that
x 2 DðAr=2Þ. From (4.4), we have

ðx; yÞr ¼ ðAr=2x;Ar=2yÞ ¼
Z
R

l
r
2 dEx;Ar=2y

¼
Z
R

lrdEx;y by ð5:9Þ

¼ ðArx; yÞ; ð6:4Þ

as required.
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Properties (i)–(v) show that, for each r > 0; Hr ¼ ðVr; ð�; �ÞrÞ is an rth left-
definite space associated with the pair ðH ;AÞ.

Uniqueness of the Left-Definite Space. Suppose Hr ¼ ðVr; ð�; �ÞrÞ and H
0
r ¼

ðV 0
r ; ð�; �Þ

0
rÞ are left-definite spaces associated with the pair ðH ;AÞ for some

r > 0. Fix x 2 V 0
r . By Property 3 of Definition 2.2, there exists fxng � DðArÞ

such that xn ! x in H 0
r as n! 1; that is,

jjxn � xjj0r ! 0 ðn! 1Þ:

On account of Property 5 of Definition 2.2, we see that

jjxn � xmjj0r ¼ jjxn � xmjjr;

and hence that fxng is Cauchy in Hr. Consequently, there exists #xx 2 Vr such
that jjxn � #xxjjr ! 0 as n! 1. From Property 4 of 2.2, we see that

jjxn � xjj4
1

kr=2
jjxn � xjj0r

and

jjxn � #xxjj4
1

kr=2
jjxn � #xxjjr:

Hence x ¼ #xx 2 Vr. By symmetry, it follows that Vr ¼ V 0
r . Moreover, for

x; y 2 Vr ¼ V 0
r , we have

ðx; yÞ0r ¼ lim
n!1

ðxn; yÞ
0
r ¼ lim

n!1
ðArxn; yÞ ¼ lim

n!1
ðxn; yÞr ¼ ðx; yÞr:

This completes the proof of Theorem 3.1. ]

In Section 2, we remarked that each of the left-definite spaces fHrgr>0
associated with ðH ;AÞ is independent of k > 0, where A is self-adjoint and
bounded below by kI . Indeed, this follows from the above theorem. For,
suppose HrðkÞ ¼ ðVrðkÞ; ð�; �Þr;kÞ (respectively, Hrðk0Þ ¼ ðVrðk0Þ; ð�; �Þr;k0 ÞÞ is the
rth left-definite space associated with the pair ðH ;AÞ, where A is a self-
adjoint operator that is bounded below by kI (respectively, k0I). By the
above theorem,

VrðkÞ ¼ DðAr=2Þ ¼ Vrðk0Þ

and

ðx; yÞr;k ¼ ðAr=2x;Ar=2yÞ ¼ ðx; yÞr;k0 ðx; y 2 VrðkÞ ¼ Vrðk0ÞÞ:

That is to say, HrðkÞ ¼ Hrðk0Þ.
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7. PROOF OF THEOREM 3.2

Proof. Let r > 0. Define EðrÞ to be the operator-valued mapping, defined
on the Borel sets of R, by

EðrÞðDÞ ¼ EðDÞ ðD 2 BÞ; ð7:1Þ

where E is the spectral resolution of the identity associated with A. We first
show that EðrÞ is a spectral resolution of the identity in Hr. For x 2 Hr we
have, from the definition of the inner product ð�; �Þr,

jjEðrÞðDÞxjj2r ¼ ðAr=2EðDÞx;Ar=2EðDÞxÞ

¼ ðAr=2EðDÞx;Ar=2xÞ

¼
Z
R

lr=2dEEðDÞx;Ar=2x by ð4:4Þ

¼
Z
D
lr=2dEx;Ar=2x by ð5:1Þ

¼
Z
D
lrdEx;x by ð5:9Þ

4
Z
½k;1Þ

lrdEx;x

¼ jjxjj2r by ð6:4Þ;

that is to say, EðrÞðDÞ 2 BðHrÞ for all D 2 B. By the definition of EðrÞ, it is
clear that Properties (1), (2), (4), and (5) of (4.1) are satisfied. Moreover, for
x; y 2 Hr,

ðEðrÞðDÞx; yÞr ¼ ðAr=2EðDÞx;Ar=2yÞ

¼ ðEðDÞAr=2x;Ar=2yÞ by Lemma 5:2

¼ ðAr=2x;EðDÞAr=2yÞ since EðDÞ is self-adjoint

¼ ðAr=2x;Ar=2EðDÞyÞ

¼ ðx;EðrÞðDÞyÞr:

Hence EðrÞðDÞ is self-adjoint for each D 2 B. It remains to show that
Property (6) of (4.1) holds for EðrÞ. For D 2 B and x; y 2 Hr,
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EðrÞx;yðDÞ ¼ ðEðrÞðDÞx; yÞr

¼ ðAr=2EðDÞx;Ar=2yÞ

¼
Z
R

lr=2dEEðDÞx;Ar=2y

¼
Z
D
lr=2dEx;Ar=2y

¼
Z
D
lrdEx;y by ð5:9Þ:

Thus, EðrÞx;y is a complex, regular Borel measure on B; moreover, we have
the formal measure identity

dEðrÞx;y ¼ lrdEx;y : ð7:2Þ

It follows from the spectral theorem (see Theorem 4.3) that, for each
r > 0, there exists a unique self-adjoint operator Ar: DðArÞ � Hr ! Hr with
domain

DðArÞ ¼ x 2 Hr

Z
R

l2dEðrÞx;x51

����
� �

: ð7:3Þ

Furthermore, we have the identities

ðArx; yÞr ¼
Z
R

ldEðrÞx;y ðx 2 DðArÞ; y 2 HrÞ; ð7:4Þ

and

jjArxjj
2 ¼

Z
R

l2dEðrÞx;x ðx 2 DðArÞÞ: ð7:5Þ

From (7.2), we see thatZ
R

l2dEðrÞx;x ¼
Z
R

lrþ2dEx;x;

it follows from (3.1), (4.3), and (7.3) that DðArÞ ¼ Vrþ2.
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Note that, for x 2 DðArÞ,

kr
Z
R

l2dEx;x ¼ kr
Z
½k;1Þ

l2dEx;x

4
Z
½k;1Þ

lrþ2dEx;x ¼
Z
R

l2dEðrÞx;x by ð7:2Þ

51;

and hence that DðArÞ � DðAÞ. We now show that Arx ¼ Ax for x 2 DðArÞ.
To this end, fix x 2 DðArÞ and let y 2 Hr. Then, from (7.2) and (7.4),

ðArx; yÞr ¼
Z
R

ldEðrÞx;y

¼
Z
R

lrþ1dEx;y : ð7:6Þ

On the other hand, from (5.8) and (5.9),

ðAx; yÞr ¼ ðAr=2Ax;Ar=2yÞ

¼
Z
R

lr=2dEAx;Ar=2y

¼
Z
R

lrþ1dEx;y : ð7:7Þ

Comparing (7.6) and (7.7), we conclude that

Arx ¼ Ax ðx 2 DðArÞÞ: ð7:8Þ

To show that Ar is bounded below by kI in Hr, let x 2 DðArÞ � Vr ¼ DðAr=2Þ.
Then, from (7.7),

ðArx; xÞr ¼
Z
R

lrþ1dEx;x

¼
Z
R

ldEAr=2x;Ar=2x from ð5:8Þ and ð5:9Þ

¼ ðAðAr=2xÞ;Ar=2xÞ from ð4:4Þ

5 kðAr=2x;Ar=2xÞ

¼ kðx; xÞr:
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To establish uniqueness, suppose *AAr: Hr ! Hr is a self-adjoint operator such
that *AArx ¼ Ax for all x 2 Dð *AArÞ � DðAÞ. Then for x 2 Dð *AArÞ,

ð *AArx; *AArxÞr ¼ðAr=2Ax;Ar=2AxÞ

¼
Z
R

lrdEAx;Ax by ð4:5Þ

¼
Z
R

lrþ2dEx;x by ð5:8Þ and ð5:9Þ

¼
Z
R

l2dEðrÞx;x by ð7:2Þ: ð7:9Þ

However, by (7.3), we see that x 2 DðArÞ and hence, from (7.8), we have

*AArx ¼ Ax ¼ Arx:

In particular, Ar is a self-adjoint extension of the self-adjoint operator *AAr

which forces Ar ¼ *AAr. ]

8. PROOF OF THEOREM 3.4

Proof. (a) If A is bounded, then so is Ar for any r > 0; consequently, we
may take DðArÞ ¼ V for all r > 0. Hence, from Property 2 of Definition 2.2,
we see that Vr ¼ V for all r > 0. Moreover, from Properties 4 and 5 of
Definition 2.2,

krðx; xÞ4ðx; xÞr ¼ ðArx; xÞ4jjAr jjðx; xÞ ðx 2 V Þ;

so the inner products ð�; �Þ and ð�; �Þr are equivalent. This completes the proof
of Part (a).

(b) If A is unbounded, so is Ar for each r > 0. Consequently, since
Vr ¼ DðAr=2Þ, it is impossible for Vr ¼ V ; this proves (i).

To show (ii), let 05r5s and suppose x 2 Vs so
R
R
lsdEx;x51. If k > 1,

then

Z
R

lrdEx;x ¼
Z
½k;1Þ

lrdEx;x4
Z
½k;1Þ

lsdEx;x ¼
Z
R

lsdEx;x51:
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If k41, then

Z
R

lrdEx;x ¼
Z
½k;1Þ

lrdEx;x

¼
Z
½k;1	

lrdEx;x þ
Z
ð1;1Þ

lrdEx;x

4
Z
R

dEx;x þ
Z
R

lsdEx;x

¼ jjxjj2 þ
Z
R

lsdEx;x51:

In either case, we see that x 2 Vr. Suppose, for some 05r5s; Vs ¼ Vr; that is
to say, DðAs=2Þ ¼ DðAr=2Þ. Write s ¼ r þ e; then, from the identity
As=2x ¼ Ae=2ðAr=2xÞ, we see that

RðAr=2Þ � DðAe=2Þ;

where RðAr=2Þ denotes the range of Ar=2. However, since Ar=2 is bounded
below by kr=2I , we have 0 2 rðAr=2Þ. Hence, from well-known results, we
have RðAr=2Þ ¼ H , forcing DðAe=2Þ ¼ V . This implies, of course, that Ae=2 is
bounded, contradicting our hypothesis. Hence, for 05r5s; Vs is a proper
subspace of Vr.

To prove (iii), let x 2 V \Vs so

jjxjj2 ¼
Z
½k;1Þ

dEx;x51 but

Z
½k;1Þ

lsdEx;x ¼ 1:

For n 2 N; n > k, let

xn ¼ E½k; nÞx: ð8:1Þ

Clearly each xn 2 V ; moreover, since Exn;xnðDÞ ¼ Ex;xðD\ ½k; nÞÞ, we have

ðxn; xnÞs ¼
Z
½k;1Þ

lsdExn;xn

¼
Z
½k;nÞ

lsdEx;x

4 nsjjxjj251;
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so xn 2 Vs for each n > k. On the other hand, for n > k,

ðxn; xnÞs ¼
Z
½k;nÞ

lsdEx;x

!
Z
½k;1Þ

lsdEx;x ¼ 1;

while

ðxn; xnÞ ¼
Z
½k;1Þ

dExn;xn

¼
Z
½k;nÞ

dEx;x

4
Z
½k;1Þ

dEx;x

¼ jjxjj2:

Consequently, it is impossible for a positive constant c to exist such that

ðx; xÞs4cðx; xÞ ðx 2 VsÞ:

The proof of (iv) is identical to (iii) with Vr replacing V where r5s.
To show (v), we remark that, by definition, DðArÞ � DðAÞ. Suppose, in

fact, DðArÞ ¼ DðAÞ for some r > 0. Then, from Theorem 3.2 and Corollary
3.3, we have Vrþ2 ¼ V2. However, from part (ii), this implies r ¼ 0, which is
impossible.

The proof of part (vi) is similar. ]

9. PROOF OF THEOREM 3.5

Proof. From (3.1), we see that

ðV mÞr ¼ DððAmÞr=2Þ ¼ DðAmr=2Þ ¼ Vmr

and

ðx; yÞmr ¼ ðAmr=2x;Amr=2yÞ ¼ ðx; yÞmr ðx; y 2 ðV mÞr ¼ VmrÞ;

and we see that

ðHmÞr ¼ Hmr;
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establishing (a) of Theorem 3.5. To show (b), first observe from (4.3) of
Theorem 4.3 that

DððArÞ
mÞ ¼ x 2 H

Z
R

l2mdEðrÞx;x51

����
� �

¼ x 2 H
Z
R

l2mþrdEx;x51

����
� �

by ð7:2Þ

¼DðAð2mþrÞ=2Þ by ð4:3Þ

¼ V2mþr by ð3:1Þ; ð9:1Þ

where EðrÞ is the spectral resolution of the identity of Ar in Hr.
Consequently, the operator ðArÞ

m: Hr ! Hr given by

ðArÞ
mx ¼ Amx

x 2 DððArÞ
mÞ ¼ V2mþr

ð9:2Þ

is a self-adjoint restriction of Am in the rth left-definite space Hr.
On the other hand, since

ðHmÞr=m ¼ Hr

and

DððAmÞr=mÞ ¼ ðV mÞr=mþ2 ¼ V2mþr;

we see that the ðr=mÞth left-definite operator ðAmÞr=m: Hr ! Hr associated
with the pair ðH ;AmÞ is given by

ðAmÞr=mx ¼ Amx

x 2 DððAmÞr=mÞ ¼ V2mþr:
ð9:3Þ

From the uniqueness part of Theorem 3.2, we conclude from (9.2) and (9.3)
that

ðAmÞr=m ¼ ðArÞ
m;

proving the first statement in (b). The second part of (b) follows in a similar
manner.

Regarding Part (c) of the theorem, note from (3.1) and (9.1) that

ðVmÞr ¼ DððAmÞ
r=2Þ ¼ Vmþr: ð9:4Þ
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Moreover, for x; y 2 ðVmÞr ¼ Vmþr,

ðx; yÞm;r ¼ ððAmÞ
r=2x; ðAmÞ

r=2yÞm

¼ ðAr=2x;Ar=2yÞm since Am is a restriction of A

¼ ðAm=2ðAr=2xÞ;Am=2ðAr=2yÞÞ by ð3:2Þ

¼ ðAðmþrÞ=2x;AðmþrÞ=2yÞ

¼ ðx; yÞmþr by ð3:2Þ:

Consequently, we see that ðHmÞr ¼ Hmþr.
From (3.3) and (9.4), we see that

DððAmÞrÞ ¼ ðVmÞrþ2 ¼ Vmþrþ2:

Therefore, the left-definite operator ðAmÞr: Hmþr ! Hmþr is given by

ðAmÞrx ¼ Amx ¼ Ax

x 2 DððAmÞrÞ ¼ Vmþrþ2:

On the other hand, from (3.3), the left-definite operator Amþr is a self-adjoint
restriction of A in Hmþr with domain DðAmþrÞ ¼ Vmþrþ2. Thus, from the
uniqueness condition given in Theorem 3.2, we conclude that

ðAmÞr ¼ Amþr:

The proof of Theorem 3.5 is now complete. ]

Corollary 9.1. With the same conditions and notation as in Theorem

3.5, we have

ðAmÞ1 ¼ ðAmÞ
m: ð9:5Þ

That is to say, the first left-definite operator associated with ðH ;AmÞ is the mth

power of the mth left-definite operator associated with ðH ;AÞ.

We remark on an interesting application of this corollary in the last
section of this paper (see Remark 13.3).

10. PROOFS OF THEOREM 3.6 AND THEOREM 3.7

Proof of Theorem 3.6. For each r > 0, we denote the associated spectral
family (see (4.2)) of EðrÞ, the spectral resolution of the identity for Ar
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(see 7.1), to be fElðrÞgl2R; where each ElðrÞ is defined by

ElðrÞ :¼ EðrÞð�1; l	:

From (7.1), we see that

ElðrÞ ¼ El ðr > 0; l 2 RÞ:

Consequently, from Theorem 4.2, we have that spðAÞ ¼ spðArÞ;
scðAÞ ¼ scðArÞ, and rðAÞ ¼ rðArÞ, for each r > 0. However, we include a
separate proof that the point spectra of A and each Ar are equal; this proof is
important in that it shows that the eigenfunctions of A are the same as the
eigenfunctions of each Ar.

Let r > 0. Suppose m 2 spðAÞ; hence there exists a nonzero x 2 DðAÞ such
that Ax ¼ mx. Clearly, x 2 DðAnÞ so that from Theorem 4.3,Z

R

l2ndEx;x51 ðn 2 NÞ

and Anx ¼ mnx. Choose n 2 N such that r þ 252n. Then, if k41,Z
R

lrþ2dEx;x ¼
Z
½k;1Þ

lrþ2dEx;x

¼
Z
½k;1	

lrþ2dEx;x þ
Z
ð1;1Þ

lrþ2dEx;x

4
Z
½k;1	

dEx;x þ
Z
ð1;1Þ

l2ndEx;x

4 jjxjj2 þ jjAnxjj251 by ð4:5Þ and ð5:3Þ:

If k > 1; then Z
R

lrþ2dEx;x ¼
Z
½k;1Þ

lrþ2dEx;x

4
Z
½k;1Þ

l2ndEx;x

¼ jjAnxjj251:

Consequently, x 2 DðArÞ � DðAÞ; Arx ¼ Ax ¼ mx, and spðAÞ � spðArÞ.
Since Ar is a restriction of A, the inclusion spðArÞ � spðAÞ is clear. ]

To prove Theorem 3.7, we begin by first proving the following
lemma.
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Lemma 10.1. Suppose A is a self-adjoint operator in H. If Ax ¼ mx then,
for each s > 0,

Asx ¼ msx:

Proof. Let y 2 H and D 2 B. Then, from (5.12),

mEx;yðDÞ ¼ ðEðDÞmx; yÞ ¼ ðEðDÞAx; yÞ

¼
Z
D
ldEx;y : ð10:1Þ

On the other hand,

mEx;yðDÞ ¼ m
Z
D
dEx;y : ð10:2Þ

Define s: B ! C by

sðDÞ ¼
Z
D
ðl� mÞdEx;y :

From (10.1) and (10.2) we see that s is the zero measure; that is to say, if
f ðlÞ is any Borel measurable function thenZ

D
f ðlÞds ¼ 0 ðD 2 BÞ:

Choose D 2 B such that m =2 D and let f ðlÞ ¼ 1=ðl� mÞ. Then

0 ¼
Z
D
f ðlÞds ¼

Z
D
f ðlÞðl� mÞdEx;y ¼

Z
D
dEx;y :

That is to say, if m =2 D then Ex;yðDÞ ¼ 0. Hence, for y 2 H ,

ðAsx; yÞ ¼
Z
R

lsdEx;y ¼
Z
fmg

lsdEx;y

¼ ms
Z
fmg

dEx;y ¼ ms
Z
R

dEx;y

¼ ðmsx; yÞ:

It follows that Asx ¼ msx. ]

We are now in position to prove Theorem 3.7.

Proof. Suppose that fjng is a complete set of eigenfunctions of A with
Ajn ¼ lnjn ðn 2 N0Þ. From Theorem 3.6, we see that fjng � DðArÞ. To
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show that fjng is complete in Hr, it suffices to show that if f 2 Hr
satisfies

ðf ;jnÞr ¼ 0 ðn 2 N0Þ;

then f ¼ 0 in Hr. Now

0 ¼ ðf ;jnÞr ¼ ðAr=2f ;Ar=2jnÞ ¼ lr=2n ðAr=2f ;jnÞ

by Lemma 10.1. Since ln > 0, we see that ðAr=2f ;jnÞ ¼ 0 ðn 2 N0Þ and
hence, from the completeness of fjng in H , we have that Ar=2f ¼ 0.
Consequently,

jjf jj2r ¼ ðAr=2f ;Ar=2f Þ ¼ 0;

and hence f ¼ 0 in Hr. ]

11. EXAMPLE: A SELF-ADJOINT OPERATOR IN ‘2

Let ‘2 denote the usual Hilbert space of square-summable sequences of
complex numbers with inner product

ðx; yÞ ¼
X1
n¼1

xnyn

for x ¼ ðxnÞ
1
n¼1 ¼ ðx1; x2; . . . ; xn; . . .Þ and y ¼ ðynÞ

1
n¼1 ¼ ðy1; y2; . . . ;

yn; . . . ; Þ 2 ‘2.
Define A: ‘2 ! ‘2 by

Ax ¼ ðx1; 2x2; . . . ; nxn; . . .Þ;

for

x 2 DðAÞ ¼ x ¼ ðxnÞ
1
n¼1 2 ‘2

X1
n¼1

n2jxnj
251

�����
( )

:

It is not difficult to show that A is an unbounded, self-adjoint operator with
spectrum sðAÞ ¼ N. Moreover,

ðAx; xÞ ¼
X1
n¼1

njxnj
25

X1
n¼1

jxnj
2 ¼ ðx; xÞ;

so A is bounded below by 1I in ‘2.
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The spectral resolution of the identity E: B ! BðH Þ associated with A is
given by

EðBÞx ¼
X
n2N\B

xnen ðB 2 B; x ¼ ðxnÞ
1
n¼1 2 ‘2Þ;

where

en ¼ ðdn;mÞ
1
m¼1 ðn 2 NÞ ð11:1Þ

and, for each n;m 2 N; dn;m is the Kronecker delta function. Moreover,

Ex;yðBÞ ¼ ðEðBÞx; yÞ ¼
X
n2N\B

xnyn ðB 2 B; x ¼ ðxnÞ
1
n¼1; y ¼ ðynÞ

1
n¼1 2 ‘2Þ:

In particular,

Ex;yðfngÞ ¼ xnyn ðn 2 NÞ ð11:2Þ

and Z
R

l2rdEx;x ¼
X1
n¼1

Z
fng

l2rdEx;x ¼
X1
n¼1

n2r jxnj2 ðx ¼ ðxnÞ
1
n¼1 2 ‘2Þ:

Hence, for each r > 0, we see from (4.3) that

DðArÞ ¼ x ¼ ðxnÞ
1
n¼1

X1
n¼1

n2r jxnj251

�����
( )

: ð11:3Þ

For each r > 0, define

Vr ¼ x ¼ ðxnÞ
1
n¼1 2 ‘2

X1
n¼1

nrjxnj251

�����
( )

ð11:4Þ

and define ð�; �Þr: Vr � Vr ! C by

ðx; yÞr ¼
X1
n¼1

nrxnyn ðx ¼ ðxnÞ
1
n¼1; y ¼ ðynÞ

1
n¼1 2 VrÞ: ð11:5Þ

Let

Hr ¼ ðVr; ð�; �ÞrÞ: ð11:6Þ

Our first result concerning the left-definite theory associated with ð‘2;AÞ is
given in
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Theorem 11.1. For each r > 0, the inner product space Hr, defined in

(11.4), (11.5), and (11.6), is the rth left-definite Hilbert space associated with

ð‘2;AÞ.

Proof. We must show that, for each r > 0; Hr satisfies the five properties
listed in Definition 2.2.

(i) Hr is a Hilbert space.
For each n 2 N, let xn ¼ ðxn;1; xn;2; . . .Þ and suppose that fxng

1
n¼1 is Cauchy

in Hr. Let e > 0; then there exists N ¼ N ðeÞ 2 N such that for m; n5N we
have

jjxm � xnjj2r5e2:

In particular,

e2 >
X1
j¼1

jr jxm;j � xn;jj25jxm;j � xn;jj2 ðj 2 N; m; n5N Þ: ð11:7Þ

Hence, for each j 2 N; fxn;jg
1
n¼1 is Cauchy in C so there exists aj 2 C such

that

xn;j ! aj ðn! 1Þ:

Let

x ¼ ða1; a2; . . . ; aj; . . .Þ:

From (11.7), we see that, for each p 2 N,

Xp
j¼1

jrjxm;j � xn;jj
25e2 ðm; n5N Þ;

letting n! 1 in this equality yields

Xp
j¼1

jrjxm;j � ajj24e2 ðm5N Þ:

If we now let p ! 1, we see that

jjxm � xjj2r ¼
X1
j¼1

jr jxm;j � ajj24e2 ðm5N Þ:
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That is to say, xm ! x in Hr. Moreover,

jjxjjr4jjx� xN jjr þ jjxN jjr4eþ jjxN jjr51;

so x 2 Hr. Hence Hr is complete.

(ii) DðArÞ � Vr � ‘2.
Let x ¼ ðx1; x2; . . . ; xn; . . .Þ 2 DðArÞ. From (11.3) and the inequality

n2rjxnj25nr jxnj2 ðn 2 NÞ, we have from the Comparison Test for Infinite
Series that x 2 Vr.

(iii) DðArÞ is dense in Hr.
Define, for each n 2 N,

en;r ¼ en=nr=2;

where en is given in (11.1). It is well known that feng
1
n¼1 is a complete

orthonormal set in ‘2. Furthermore, it is easy to see that fen;rg
1
n¼1 is an

orthonormal set in Hr. Moreover, if x ¼ ðx1; x2; . . . ; xn; . . .Þ 2 Hr is such that

0 ¼ ðx; en;rÞr ¼ nr=2xn ðn 2 NÞ;

then x ¼ 0. Hence fen;rg
1
n¼1 is a complete orthonormal set in Hr. From well-

known Hilbert space results (see [42, Theorem 4.18]), we see that the set E of
all finite linear combinations of elements from fen;rg

1
n¼1 is dense in Hr. But

since en;r 2 DðArÞ for each n 2 N and DðArÞ is a subspace of Vr; we have
E � DðArÞ; consequently, DðArÞ is dense in Hr.

(iv) ðx; xÞr5ðx; xÞ ðx 2 VrÞ.
Let x 2 Vr. Then

ðx; xÞr ¼
X1
n¼1

nrjxnj
25

X1
n¼1

jxnj
2 ¼ ðx; xÞ:

(v) ðx; yÞr ¼ ðArx; yÞ ðx 2 DðArÞ; y 2 VrÞ.
Let x ¼ ðx1; x2; . . .Þ 2 DðArÞ and y ¼ ðy1; y2; . . .Þ 2 Vr. From (4.4) and

(11.2), we see that

ðArx; yÞ ¼
X1
n¼1

Z
fng

lrdEx;y ¼
X1
n¼1

nrxnyn ¼ ðx; yÞr:

This completes the proof of the theorem. ]

From Theorems 3.2 and 3.6, we have the following result concerning the
rth left-definite operator Ar associated with ð‘2;AÞ.
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Theorem 11.2. For each r > 0, let Ar: Hr ! Hr be defined by

Arx ¼ ðx1; 2x2; . . . ; nxn; . . .Þ ðx ¼ ðxnÞ
1
n¼1 2 DðArÞÞ;

where

DðArÞ ¼ x ¼ ðxnÞ
1
n¼1 2 ‘2

X1
n¼1

nrþ2jxnj251

�����
( )

:

Then Ar is the rth left-definite operator associated with the pair ð‘2;AÞ. In

particular, Ar is an unbounded, self-adjoint operator in Hr with sðArÞ ¼ N.

12. EXAMPLE: THE LAGUERRE DIFFERENTIAL EQUATION
AND LAGUERRE POLYNOMIALS

In this section, we determine explicitly:

(a) the sequence fHng
1
n¼1 of left-definite spaces associated with the self-

adjoint differential operator A in L2ðð0;1Þ; tae�tÞ, generated by the classical
second-order Laguerre differential expression ‘½�	 defined by

‘½y	ðtÞ :¼
1

tae�t
ð�ðtaþ1e�ty0ðtÞÞ0 þ ktae�tyðtÞÞ ðt 2 ð0;1ÞÞ; ð12:1Þ

having the Laguerre polynomials fLamðtÞg
1
m¼0 as eigenfunctions;

(b) the sequence of left-definite self-adjoint operators fAng
1
n¼1

associated with ðL2ðð0;1Þ; tae�tÞ;AÞ; and their domains fDðAnÞg
1
n¼1; and

(c) the domains DðAnÞ of each integral power An of A. In particular, we
give a new characterization of the domain DðAÞ of A that is independent of
a > �1 (see Corollary 12.9).

Even though the theory developed to this point guarantees the existence
of a continuum of left-definite spaces fHrgr>0 and left-definite operators
fArgr>0 (they are all differential operators), we can only explicitly determine
the left-definite spaces, their inner products, and the domains of the left-
definite operators when r is a positive integer. A careful explanation for why
this is the case will be given later in this section.

For the rest of this section, we fix a > �1; moreover, unless otherwise
specified, we shall assume that k is a fixed, positive constant. To simplify the
notation, we refer to certain self-adjoint operators as A;An;An; etc., instead
of Aa;k ;Ana;k ;An;a;k, etc., respectively; likewise, we suppress the dependence on
a and k when we refer to the various left-definite spaces and the Laguerre
differential expressions.
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In most textbooks on special functions it is customary to set k ¼ 0 in the
Laguerre equation. However, for spectral reasons, it is necessary that k > 0;
a specific reason for this will be given shortly.

When l ¼ m 2 N0, the equation ‘½y	ðtÞ ¼ ðlþ kÞyðtÞ, which in nonsym-
metric form can be rewritten as

ty00 þ ð1þ a� tÞy0 þ my ¼ 0;

has a polynomial solution LamðtÞ of degree m; the sequence of polynomials
fLamðtÞg

1
n¼0 is called the generalized Laguerre or Laguerre–Sonine polyno-

mials. These polynomials form a complete orthogonal set in the Hilbert
space

L2að0;1Þ :¼ L2ðð0;1Þ; tae�tÞ ð12:2Þ

of Lebesgue measurable functions f : ð0;1Þ ! C satisfying jjf jj51, where
jj � jj is the norm generated from the inner product ð�; �Þ, defined by

ðf ; gÞ :¼
Z 1

0

f ðtÞ %ggðtÞtae�tdt ðf ; g 2 L2að0;1ÞÞ: ð12:3Þ

In fact, with the mth Laguerre polynomial defined by

LamðtÞ ¼
1

Gðaþ 1Þ mþa
m

	 

 !1=2Xm

j¼0

ð�1Þj

j!

mþ a

m� j

 !
tj ðm 2 N0Þ;

it is the case that fLamðtÞg
1
m¼0 is orthonormal in L2að0;1Þ; that is,

ðLam; L
a
r Þ ¼ dm;r ðm; r 2 N0Þ; ð12:4Þ

where dm;r is the Kronecker delta function. We refer the reader to [40, Chap.
12] or [45, Chap. V] for various properties of the Laguerre polynomials. One
particular property that we will repeatedly use throughout this section is the
derivative formula

djðLamðtÞÞ
dtj

¼ Cmða; jÞL
aþj
m�jðtÞ ðm; j 2 N0Þ; ð12:5Þ

where

Cmða; jÞ ¼ ð�1Þ jðP ðm; jÞÞ1=2 ð12:6Þ

and

P ðm; jÞ ¼ mðm� 1Þ � � � ðm� jþ 1Þ ðm; j 2 N0; j4mÞ: ð12:7Þ
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From (12.5) and the orthonormality of the Laguerre polynomials, we see
that Z 1

0

djðLamðtÞÞ
dtj

djðLar ðtÞÞ
dtj

taþje�tdt ¼ P ðm; jÞdm;r ðm; r; j 2 N0Þ: ð12:8Þ

The maximal domain D of t�aet‘½�	 in L2að0;1Þ is defined to be

D ¼ ff 2 L2að0;1Þ j f ; f 0 2 AClocð0;1Þ; t�aet‘½f 	 2 L2að0;1Þg: ð12:9Þ

Define the operator A: L2að0;1Þ ! L2að0;1Þ by

Af ðtÞ ¼ ‘½f 	ðtÞ ðf 2 DðAÞ; a:e: t > 0Þ; ð12:10Þ

where the domain of A is given by

DðAÞ ¼ f 2 D lim
t!0þ

taþ1e�tf 0ðtÞ ¼ 0

����
� �

ð12:11Þ

when �15a51 and

DðAÞ ¼ D ð12:12Þ

in the case that a51. Then, as can be seen by the Glazman–Krein–Naimark
theory [33, Theorem 4, Section 18.1], A is a self-adjoint operator and has the
Laguerre polynomials fLamðtÞg

1
m¼0 as a complete set of eigenfunctions;

moreover, the spectrum of A is given by

sðAÞ ¼ fmþ k jm 2 N0g: ð12:13Þ

For further details on the spectral theory of the Laguerre equation and other
second-order classical differential equations, the reader is referred to [2,
Appendix II, Sect. 9]; [46, Chap. IV], and the account in [37].

It is also well-known (for example, see [37]) that

ðAf ; f Þ ¼
Z 1

0

½taþ1e�tjf 0ðtÞj2 þ ktae�tjf ðtÞj2	dt5kðf ; f Þ

ðf 2 DðAÞÞ: ð12:14Þ

That is, A is bounded below in L2að0;1Þ by kI . It is this inequality that
explains the importance of the positivity of k in (12.1). Consequently, we can
apply Theorems 3.1, 3.2, and 3.6. Note that ð�; �Þ1, defined by

ðf ; gÞ1 ¼
Z 1

0

½taþ1e�tf 0ðtÞ %gg0ðtÞ þ ktae�tf ðtÞ %ggðtÞ	dt ðf ; g 2 DðAÞÞ;
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is an inner product; in fact, it is the inner product for the first left-definite
space associated with the pair ðL2að0;1Þ;AÞ. Moreover, the closure ofDðAÞ in
the topology generated from this inner product is the first left-definite space
H1 associated with ðL2að0;1Þ;AÞ.

We now turn our attention to the explicit construction of the sequence of
left-definite inner products ð�; �Þn ðn 2 NÞ associated with ðL2að0;1Þ;AÞ. As we
will see, these are generated from the integral powers ‘n½�	 ðn 2 NÞ of the
Laguerre expression ‘½�	, given inductively by

‘1½y	 ¼ ‘½y	; ‘2½y	 ¼ ‘ð‘½y	Þ; . . . ; ‘n½y	 ¼ ‘ð‘n�1½y	Þ ðn 2 NÞ:

A key to the explicit determination of these powers is certain numbers
fbjðn; kÞg

n
j¼0 which we now define.

Definition 12.1. For n 2 N and j 2 f0; 1; . . . ; ng, define

bjðn; kÞ :¼
Xj
i¼0

ð�1Þiþj

j!

j

i

 !
ðk þ iÞn: ð12:15Þ

If we expand the term ðk þ iÞn in (12.15) and switch the order of
summation, we find that

bjðn; kÞ ¼
Xn
m¼0

Xj
i¼0

ð�1Þiþj

j!

j

i

 !
in�m

 !
n

m

 !
km

¼
Xn
m¼0

n

m

 !
SðjÞn�mk

m; ð12:16Þ

where

SðjÞn :¼
Xj
i¼0

ð�1Þiþj

j!

j

i

 !
in ðn; j 2 N0Þ ð12:17Þ

is the Stirling number of the second kind. By definition, SðjÞn is the number of
ways of partitioning n elements into j nonempty subsets (in particular, Sj0 ¼
0 for any j 2 N); we refer the reader to [1, pp. 824–825] for various properties
of these numbers. Consequently, we see that

b0ðn; kÞ ¼
0 if k ¼ 0

kn if k > 0;

(
ð12:18Þ
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and, for j 2 f1; 2; . . . ; ng;

bjðn; kÞ ¼

Sjn if k ¼ 0

Pn�1
m¼0

n

m

 !
SðjÞn�mk

m if k > 0:

8>><
>>: ð12:19Þ

In order to develop more properties of these numbers, we first prove the
following lemma.

Lemma 12.1. Let m; n 2 N.

(1) If m4n;
Pn

j¼m ð�1Þj
n
j

� �
j
m

� �
¼ ð�1Þndn;m.

(2) If m5n;
Pn�1

j¼m ð�1Þj
n
j

� �
j
m

� �
¼ ð�1Þn�1ðnmÞ.

Proof. The proof of (1) follows from the identity

n

m

 !
tmð1þ tÞn�m ¼

n

m

 !Xn�m
r¼0

n� m

r

 !
trþm

¼
n

m

 !Xn
j¼m

n� m

j� m

 !
tj

¼
Xn
j¼m

n

j

 !
j

m

 !
tj:

Consequently, for m5n,

0 ¼
Xn
j¼m

ð�1Þj
n

j

 !
j

m

 !
¼
Xn�1

j¼m

ð�1Þj
n

j

 !
j

m

 !
þ ð�1Þn

n

m

 !
;

this proves (2). ]

Lemma 12.2. For each n 2 N, the numbers bj ¼ bjðn; kÞ, defined in (12.15),
satisfy the following properties.

(1) For k > 0, the numbers fbjðn; kÞg
n
j¼0 are positive.
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(2) They are the unique solutions to the equations

ðmþ kÞn ¼
Xn
j¼0

P ðm; jÞbj ðm 2 N0Þ; ð12:20Þ

where P ðm; jÞ is defined in (12.7).

Proof. Property (1) follows immediately from the positivity of the Stirling
numbers of the second kind and the formulas listed in (12.18) and (12.19).

Since both sides of (12.20) are polynomials in m of degree n and since P ðm; jÞ
is a polynomial in m of degree j, it is clear that the numbers fbjg

n
j¼0 exist and

are unique. Furthermore, it is clear that, for fixed n 2 N and k > 0, each bj is
independent of m 2 N0 in (12.20). By setting m ¼ 0 in (12.20), we obtain

b0 ¼ kn;

which agrees with (12.15) when j ¼ 0.
Suppose the number bj, given in (12.15), satisfy (12.20) for

j ¼ 0; 1; . . . ; r � 15n. Then, with j ¼ r4n and m ¼ r, we see that

ðr þ kÞn ¼
Xn
j¼0

P ðr; jÞbj ¼
Xr
j¼0

P ðr; jÞbj since P ðr; jÞ ¼ 0 if j > r;

so that

r!br ¼ðr þ kÞn �
Xr�1

j¼0

P ðr; jÞbj

¼ðr þ kÞn �
Xr�1

j¼0

Xj
i¼0

ð�1Þiþj

j!
P ðr; jÞ

j

i

 !
ðk þ iÞn:

Switching the order of summation yields

br ¼
ðr þ kÞn

r!
�
Xr�1

i¼0

ð�1Þiðk þ iÞn

r!

Xr�1

j¼i

ð�1Þj
r

j

 !
j

i

 !

¼
ðr þ kÞn

r!
þ
Xr�1

i¼0

ð�1Þiþr

r!

r

i

 !
ðk þ iÞn by Lemma 12:1; Part ð2Þ

¼
Xr
i¼0

ð�1Þiþr

r!

r

i

 !
ðk þ iÞn:

This completes the proof. ]
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With P denoting the space of all (possibly complex-valued) polynomials,
we are now in a position to prove the following theorem.

Theorem 12.3. Let n 2 N and let ‘½�	 denote the Laguerre differential

expression defined in (12.1). Then

Z 1

0

‘n½p	ðtÞ %qqðtÞtae�tdt

¼
Xn
j¼0

bjðn; kÞ
Z 1

0

pðjÞðtÞ %qqðjÞðtÞtaþje�tdt ðp; q 2 PÞ: ð12:21Þ

Furthermore, ‘n½�	 is Lagrangian symmetrizable with the symmetry factor

wðtÞ ¼ tae�t, and the Lagrangian symmetric form of tae�t‘n½�	 is given by

tae�t‘n½y	ðtÞ ¼
Xn
j¼0

ð�1Þjðbjðn; kÞtaþje�tyðjÞðtÞÞ
ðjÞ; ð12:22Þ

where fbjðn; kÞg
n
j¼0 are the numbers defined in (12.15) or (12.18) and (12.19).

Proof. Since the Laguerre polynomials fLamðtÞg
1
m¼0 form a basis for P, it

suffices to show that (12.21) is valid for p ¼ LamðtÞ and q ¼ Lar ðtÞ, where
m; r 2 N0 are arbitrary. From the identity

‘n½Lam	ðtÞ ¼ ðmþ kÞnLamðtÞ ðm 2 N0Þ ð12:23Þ

it follows, with this particular choice of p and q, that the left-hand side of
(12.21) reduces to ðmþ kÞndm;r. On the other hand, from (12.8), the right-
hand side of (12.21) becomes

Xn
j¼0

P ðm; jÞbjðn; kÞdm;r:

From Lemma 12.2, Part (2), we conclude that (12.21) is true for our choice
of polynomials p and q.

To prove (12.22), define the differential expression

m½y	ðtÞ :¼
1

tae�t
Xn
j¼0

ð�1Þjðbjðn; kÞtaþje�tyðjÞðtÞÞ
ðjÞ: ð12:24Þ
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For p; q 2 P and ½a; b	 � ð0;1Þ, we apply integration by parts to
obtain Z b

a
m½p	ðtÞ %qqðtÞtae�tdt

¼
Xn
j¼0

ð�1Þjbjðn; kÞ
Xj
r¼1

ð�1Þrþ1ðpðjÞðtÞtaþje�tÞðj�rÞ %qqðr�1ÞðtÞjba

þ
Xn
j¼0

bjðn; kÞ
Z b

a
pðjÞðtÞ %qqðjÞðtÞtaþje�tdt:

Now, for any p 2 P, ðpðjÞðtÞtaþje�tÞðj�rÞ ¼ tpj;rðtÞtae�t for some pj;r 2 P.
Consequently, as a! 0þ and b! 1, we see that

Z 1

0

m½p	ðtÞ %qqðtÞtae�tdt

¼
Xn
j¼0

bjðn; kÞ
Z 1

0

pðjÞðtÞ %qqðjÞðtÞtaþje�tdt ðp; q 2 PÞ: ð12:25Þ

Hence, from (12.21) and (12.25), we see that for all polynomials p and q, we
have

ð‘n½p	 � m½p	; qÞ ¼ 0:

From the density of polynomials in L2að0;1Þ, it follows that

‘n½p	ðtÞ ¼ m½p	ðtÞ ðt > 0Þ ð12:26Þ

for all polynomials p. This latter identity implies that the expression ‘n½�	 has
the form given in (12.22). ]

For example, we see from this theorem that

tae�t‘2½y	ðtÞ ¼ ðtaþ2e�ty00Þ00 � ðð2k þ 1Þtaþ1e�ty0Þ0 þ k2tae�ty

and

tae�t‘3½y	ðtÞ ¼ � ðtaþ3e�ty000Þ000 þ ðð3k þ 3Þtaþ2e�ty00Þ00

� ðð3k2 þ 3k þ 1Þtaþ1e�ty0Þ0 þ k3tae�ty:

The following corollary lists some additional properties of ‘n½�	.
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Corollary 12.4. Let n 2 N. Then

(1) the nth power of the classical Laguerre differential expression,

L½y	ðtÞ :¼ �ty00ðtÞ þ ðt � 1� aÞy0ðtÞ;

is symmetrizable with symmetry factor wðtÞ ¼ tae�t and has the Lagrangian

symmetric form

tae�tLn½y	ðtÞ :¼
Xn
j¼1

ð�1ÞjðSðjÞn t
aþje�tyðjÞðtÞÞðjÞ;

where SðjÞn is the Stirling number of the second kind defined in (12.17);

(2) the bilinear form ð�; �Þn defined on P�P by

ðp; qÞn :¼
Xn
j¼0

bjðn; kÞ
Z 1

0

pðjÞðtÞ %qqðjÞðtÞtaþje�tdt ðp; q 2 PÞ ð12:27Þ

is an inner product when k > 0 and satisfies

ð‘n½p	; qÞ ¼ ðp; qÞn ðp; q 2 PÞ; ð12:28Þ

(3) the Laguerre polynomials fLamðtÞg
1
m¼0 are orthogonal with respect to

the inner product ð�; �Þn, and in fact,

ðLam; L
a
r Þn ¼

Xn
j¼0

bjðn; kÞ
Z 1

0

djLamðtÞ
dtj

djLar ðtÞ
dtj

taþje�tdt ¼ ðmþ kÞndm;r: ð12:29Þ

Proof. The proof of (1) follows immediately from Theorem 12.3 and the
identities (12.18) and (12.19). The proof of (2) is clear since the numbers
fbjðn; kÞg

n
j¼0 are positive when k > 0. The identity in (12.28) follows from

(12.25) and (12.26). Lastly, (12.29) is a special case of (12.28), using (12.4)
and (12.23). ]

For results that follow in this section, it is convenient to introduce the
following notation. For n 2 N, let

ACðn�1Þ
loc ð0;1Þ :¼ ff : ð0;1Þ ! C j f ; f 0; . . . ; f ðn�1Þ 2 AClocð0;1Þg:
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Also, for a > �1 and j 2 N0, let L2aþjð0;1Þ be the Hilbert space defined by

L2aþjð0;1Þ :¼ f : ð0;1Þ ! C j f is Lebesgue measurable andfZ 1

0

jf j2taþje�tdt51
�
; ð12:30Þ

with inner product
R1
0 f ðtÞ %ggðtÞtaþje�tdt ðf ; g 2 L2aþjð0;1ÞÞ.

Definition 12.2. For each n 2 N, define

Vn :¼ ff : ð0;1Þ ! C j f 2 ACðn�1Þ
loc ð0;1Þ;

f ðjÞ 2 L2aþjð0;1Þ ðj ¼ 0; 1; . . . ; nÞg; ð12:31Þ

where each L2aþjð0;1Þ is defined in (12.30), and let ð�; �Þn and jj � jjn denote,
respectively, the inner product

ðf ; gÞn ¼
Xn
j¼0

bjðn; kÞ
Z 1

0

f ðjÞðtÞ %ggðjÞðtÞtaþje�tdt ðf ; g 2 VnÞ; ð12:32Þ

(see (12.27) and (12.28)) and the norm jjf jjn ¼ ðf ; f Þ1=2n , where the numbers

bjðn; kÞ are defined in (12.15).

The inner product ð�; �Þn, defined in (12.32), is a Sobolev inner product
and is more commonly called the Dirichlet inner product associated
with the symmetric differential expression (12.22). We remark that, for
each r > 0, the spectral theorem abstractly gives the rth left-definite inner
product to be

ðf ; gÞr ¼
Z
R

lrdEf ;g ðf ; g 2 VrÞ;

where E is the spectral resolution of the identity for A. However, unlike in
the previous example, we are able to determine this inner product in terms of
the differential expression ‘r½�	 only when r 2 N.

We aim to show (see Theorem 12.8) that

Hn ¼ ðVn; ð�; �ÞnÞ

is the nth left-definite space associated with the pair ðL2að0;1Þ;AÞ, where A is
defined in (12.10), (12.11), and (12.12). We begin by showing that Hn is a
complete inner product space.

Theorem 12.5. For each n 2 N, Hn is a Hilbert space.
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Proof. Suppose ffmg
1
m¼1 is Cauchy in Hn. Since each of the numbers

bjðn; kÞ is positive, we have in particular that ff ðnÞ
m g1m¼1 is Cauchy in

L2aþnð0;1Þ and hence there exists gnþ1 2 L2aþnð0;1Þ such that

f ðnÞ
m ! gnþ1 in L2aþnð0;1Þ:

Fix t, t0 > 0 (t0 will be chosen shortly) and assume t04t. From H .oolder’s
inequality,Z t

t0

jf ðnÞ
m ðuÞ � gnþ1ðuÞjdu

¼
Z t

t0

jf ðnÞ
m ðuÞ � gnþ1ðuÞju

aþn
2 e�u=2u

�a�n
2 eu=2du

4
Z t

t0

jf ðnÞ
m ðuÞ � gnþ1ðuÞj

2uaþne�udu
� �1=2

�
Z t

t0

u�a�neudu
� �1=2

¼ Mðt0; tÞ
Z t

t0

jf ðnÞ
m ðuÞ � gnþ1ðuÞj

2uaþne�udu
� �1=2

! 0 as m! 1:

Consequently, since f ðn�1Þ
m 2 AClocð0;1Þ, we see that

f ðn�1Þ
m ðtÞ � f ðn�1Þ

m ðt0Þ ¼
Z t

t0

f ðnÞ
m ðuÞdu!

Z t

t0

gnþ1ðuÞdu; ð12:33Þ

and, in particular, gnþ1 2 L1locð0;1Þ. Furthermore, from the definition of
ð�; �Þn, we have see that the sequence ff ðn�1Þ

m g1m¼0 is also Cauchy in
L2aþn�1ð0;1Þ; hence there exists a function gn 2 L2aþn�1ð0;1Þ such that

f ðn�1Þ
m ! gn in L2aþn�1ð0;1Þ:

Repeating the above argument, we see that gn 2 L1locð0;1Þ and, for any
t; t1 > 0,

f ðn�2Þ
m ðtÞ � f ðn�2Þ

m ðt1Þ ¼
Z t

t1

f ðn�1Þ
m ðuÞdu!

Z t

t1

gnðuÞdu: ð12:34Þ

Moreover, there exists a subsequence ff ðn�1Þ
mk;n�1

g of ff ðn�1Þ
m g1m¼1 such that

f ðn�1Þ
mk;n�1

ðtÞ ! gnðtÞ a:e: t > 0:

Choose t0 > 0 in (12.33) such that f ðn�1Þ
mk;n�1

ðt0Þ ! gnðt0Þ and then pass through
this subsequence in (12.33) to obtain

gnðtÞ � gnðt0Þ ¼
Z t

t0

gnþ1ðuÞdu ða:e: t > 0Þ:
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That is to say,

gn 2 AClocð0;1Þ and g0nðtÞ ¼ gnþ1ðtÞ a:e: t > 0: ð12:35Þ

Next, we see that ff ðn�2Þ
m g1m¼1 is Cauchy in L2aþn�2ð0;1Þ so there exists gn�1 2

L2aþn�2ð0;1Þ such that

f ðn�2Þ
m ! gn�1 in L2aþn�2ð0;1Þ:

As above, we find that gn�1 2 L1locð0;1Þ; moreover, for any t; t2 > 0

f ðn�3Þ
m ðtÞ � f ðn�3Þ

m ðt2Þ ¼
Z t

t2

f ðn�2Þ
m ðuÞdu!

Z t

t2

gn�1ðuÞdu;

and there exists a subsequence ff ðn�2Þ
mk;n�2

g of ff ðn�2Þ
m g such that

f ðn�2Þ
mk;n�2

ðtÞ ! gn�1ðtÞ a:e: t > 0:

In (12.34), choose t1 > 0 such that f ðn�2Þ
mk;n�2

ðt1Þ ! gn�1ðt1Þ and pass through the
subsequence ff ðn�2Þ

mk;n�2
g in (12.34) to obtain

gn�1ðtÞ � gn�1ðt1Þ ¼
Z t

t1

gnðuÞdu ða:e: t > 0Þ:

Consequently, gn�1 2 AC
ð1Þ
locð0;1Þ and g00n�1ðtÞ ¼ g0nðtÞ ¼ gnþ1ðtÞ a:e: t > 0.

Continuing in this fashion, we obtain nþ 1 functions gnþ1�j2
L2aþn�jð0;1Þ \ L1locð0;1Þ ðj ¼ 0; 1; . . . ; nÞ such that

(i) f ðn�kÞ
m ! gn�kþ1 in L2aþn�kð0;1Þ ðk ¼ 0; 1; . . . ; nÞ,

(ii) g1 2 AC
ðn�1Þ
loc ð0;1Þ; g2 2 AC

ðn�2Þ
loc ð0;1Þ; . . . ; gn 2 AClocð0;1Þ,

(iii) g0n�kðtÞ ¼ gn�kþ1ðtÞ a.e. t > 0 ðk ¼ 0; 1; . . . ; n� 1Þ,

(iv) gðjÞ1 ¼ gjþ1 ðj ¼ 0; 1; . . . ; nÞ.

In particular, we see that f ðjÞ
m ! gðjÞ1 in L2aþjð0;1Þ for j ¼ 0; 1; . . . ; n and

g1 2 Vn. Hence, we see that

jjfm � g1jj
2
n ¼

Xn
j¼0

bjðn; kÞ
Z 1

0

jf ðjÞ
m ðuÞ � gðjÞ1 ðuÞj2uaþje�udu

! 0 as m! 1:

Hence Hn is complete.
We now show that P is dense in Hn; consequently, fLamðtÞg

1
m¼0 is a

complete orthogonal set in Hn. We remark that we cannot appeal to
Theorem 3.7 to conclude that the Laguerre polynomials are complete in Hn.
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Indeed, we do not know at this point that Hn is the nth left-definite space
associated with ðL2að0;1Þ;AÞ.

Theorem 12.6. The Laguerre polynomials fLamðtÞg
1
m¼0 form a complete

orthogonal set in the space Hn. In particular, the space P of polynomials is

dense in Hn.

Proof. Let f 2 Hn; in particular, f ðnÞ 2 L2aþnð0;1Þ. Consequently, from the
completeness and orthonormality of fLaþnm ðtÞg1m¼0 in L

2
aþnð0;1Þ, it follows that

Xr
m¼0

cm;nLaþnm ! f ðnÞ as r ! 1 in L2aþnð0;1Þ;

where the numbers fcm;ng
1
m¼0 � ‘2 are the Fourier coefficients of f ðnÞ defined by

cm;n ¼
Z 1

0

f ðnÞðtÞLaþnm ðtÞtaþne�tdt ðm 2 N0Þ:

For r5n, define the polynomials

prðtÞ ¼
Xr
m¼n

cm�n;n
Cmða; nÞ

LamðtÞ;

where the numbers fCmða; nÞgm5n are defined in (12.6). Then, using the
derivative formula (12.5) for the Laguerre polynomials, we see that

pðjÞ
r ðtÞ ¼

Xr
m¼n

cm�n;nCmða; jÞ
Cmða; nÞ

Laþjm�jðtÞ ðj ¼ 1; 2; . . .Þ; ð12:36Þ

and, in particular, as r ! 1,

pðnÞ
r ¼

Xr
m¼n

cm�n;nLaþnm�n ! f ðnÞ in L2aþnð0;1Þ:

Furthermore, from [42, Theorem 3.12], there exists a subsequence fpðnÞ
rj g of

fpðnÞ
r g such that

pðnÞ
rj ðtÞ ! f ðnÞðtÞ as j! 1 ða:e: t > 0Þ: ð12:37Þ

Returning to (12.36), observe that since Cmða; jÞ=Cmða; nÞ ! 0 as m! 1 for
j ¼ 0; 1; . . . ; n� 1, we see that

cm�n;nCmða; jÞ
Cmða; nÞ

� �1

m¼n

is a square-summable sequence. Consequently, from the completeness of
fLaþjm ðtÞg1m¼0 in L2aþjð0;1Þ and the Riesz–Fischer theorem (see [42, Chap. 4,
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Theorem 4.17], there exists gj 2 L2aþjð0;1Þ such that

pðjÞ
r ! gj in L2aþjð0;1Þ as r ! 1 ðj ¼ 0; 1; . . . ; n� 1Þ: ð12:38Þ

Since, for a.e. a; t > 0,

pðn�1Þ
rj ðtÞ � pðn�1Þ

rj ðaÞ ¼
Z t

a
pðnÞ
rj ðuÞdu!

Z t

a
f ðnÞðuÞdu

¼ f ðn�1ÞðtÞ � f ðn�1ÞðaÞ ðj! 1Þ;

we see that, as j! 1,

pðn�1Þ
rj ðtÞ ! f ðn�1ÞðtÞ þ c1 a:e: t > 0; ð12:39Þ

where c1 is some constant. From (12.38), with j ¼ n� 1, we deduce that

gn�1ðtÞ ¼ f ðn�1ÞðtÞ þ c1 a:e: t > 0:

Next, from (12.39) and one integration, we obtain

pðn�2Þ
rj ðtÞ ! f ðn�2ÞðtÞ þ c1t þ c2 ðj! 1Þ;

for some constant c2 and hence, from (12.38),

gn�2ðtÞ ¼ f ðn�2ÞðtÞ þ c1t þ c2:

We continue this process to see that, as r ! 1,

pðjÞ
r ! f ðjÞ þ qn�j�1 in L2aþjð0;1Þ ðj ¼ 1; 2; . . . ; nÞ;

where qn�j�1 is a polynomial of degree 4n� j� 1 ðq�1 ¼ 0Þ satisfying

q0n�j�1ðtÞ ¼ qn�j�2ðtÞ:

For each r5n, define the polynomials

prðtÞ :¼ prðtÞ � qn�1ðtÞ

and observe that

pðjÞr ¼pðjÞ
r � qðjÞn�1

¼pðjÞ
r � qn�j�1

! f ðjÞ in L2aþjð0;1Þ:
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Hence,

jjf � pr jj2n ¼
Xn
j¼0

bjðn; kÞ
Z 1

0

jf ðjÞðuÞ � pðjÞr j2uaþje�udu

! 0 as r ! 1: ]

The next result, which gives a simpler characterization of the function space Vn,
follows from ideas in the above proof of Theorem 12.6.

Theorem 12.7. For each n 2 N,

Vn ¼ ff : ð0;1Þ ! C j f 2 ACðn�1Þ
loc ð0;1Þ; f ðnÞ 2 L2aþnð0;1Þg; ð12:40Þ

where L2aþnð0;1Þ is defined in (12.30).

Proof. Define

V 0
n ¼ ff : ð0;1Þ ! C j f 2 ACðn�1Þ

loc ð0;1Þ; f ðnÞ 2 L2aþnð0;1Þg;

it is clear, from the definition of Vn in (12.31), that Vn � V 0
n . Conversely,

suppose f 2 V 0
n so f ðnÞ 2 L2aþnð0;1Þ and f 2 ACðn�1Þ

loc ð0;1Þ. From the proof
of Theorem 12.6, we see that there are polynomials fprg � L2aþjð0;1Þ such
that

pðjÞr ! f ðjÞ in L2aþjð0;1Þ ðj ¼ 0; 1; . . . ; n� 1Þ:

That is, f ðjÞ 2 L2aþjð0;1Þ for j ¼ 0; 1; . . . ; n� 1, so f 2 Vn. ]

We are now in position to prove the main result of this section.

Theorem 12.8. (a) For a > �1 and k > 0, let A: DðAÞ � L2að0;1Þ ! L2a �
ð0;1Þ denote the self-adjoint operator, defined in (12.10), (12.11), and (12.12),
having the Laguerre polynomials fLamðtÞg

1
m¼0 as a complete set of eigenfunc-

tions. For each n 2 N , let Vn be given as in (12.31) or (12.40) and let ð�; �Þn
denote the inner product defined in (12.27). Then Hn ¼ ðVn; ð�; �ÞnÞ is the nth

left-definite space associated with the pair ðL2að0;1Þ;AÞ. Moreover, the

Laguerre polynomials fLamðtÞg
1
m¼0 form a complete orthogonal set in Hn,

satisfying the orthogonality relation (12.29).

(b) Define

An: DðAnÞ � Hn ! Hn
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by

Anf ðtÞ ¼ ‘½f 	ðtÞ ða:e: t 2 ð0;1ÞÞ

for

f 2 DðAnÞ :¼ ff : ð0;1Þ ! C j f 2 ACðnþ1Þ
loc ð0;1Þ; f ðnþ2Þ 2 L2aþnþ2ð0;1Þg;

ð12:41Þ

where ‘½�	 is the Laguerre differential expression defined in (12.1). Then An is

the nth left-definite self-adjoint operator associated with the pair ðL2að0;1Þ;AÞ.
Furthermore, the Laguerre polynomials fLamðtÞg

1
m¼0 are eigenfunctions of An

and the spectrum of An is explicitly given by

sðAnÞ ¼ fmþ k jm 2 N0g:

Proof. To show thatHn is the nth left-definite space for the pair ðL2að0;1Þ;AÞ,
we must show that the five conditions in Definition 2.2 are satisfied.

(i) Hn is complete.

The proof of this condition is given in Theorems 12.5 and 12.7.
(ii) DðAnÞ � Hn � L2að0;1Þ.

Let f 2 DðAnÞ. Since the Laguerre polynomials fLamðtÞg
1
m¼0 form a

complete orthonormal set in L2að0;1Þ, we see that

pj ! f in L2að0;1Þ; ð12:42Þ

where

pjðtÞ ¼
Xj
m¼0

cmLamðtÞ;

and fcmg
1
m¼0 are the Fourier coefficients of f in L2að0;1Þ defined by

cm ¼ ðf ;LamÞ ¼
Z 1

0

f ðtÞLamðtÞt
ae�tdt ðm 2 N0Þ:

Since Anf 2 L2að0;1Þ, we see that

Xj
m¼0

dmLam ! Anf in L2að0;1Þ;

where

dm ¼ ðAnf ;LamÞ ¼ ðf ;AnLamÞ ¼ ðmþ kÞnðf ; LamÞ ¼ ðmþ kÞncm;
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that is to say,

Anpj ! Anf in L2að0;1Þ:

Moreover, from (12.28), we see that

jjpj � pr jj2n ¼ ðAnðpj � prÞ;pj � prÞ

! 0 as j; r ! 1:

That is to say, fpjg
1
j¼0 is Cauchy in Hn. From Theorem 12.5, we see that

there exists g 2 Hn � L2að0;1Þ such that

pj ! g in Hn:

Furthermore, by the definition of ð�; �Þn and the fact that b0ðn; kÞ ¼ kn for
k > 0, we see that

ðpj � g;pj � gÞn5knðpj � g;pj � gÞ;

hence

pj ! g in L2að0;1Þ: ð12:43Þ

Comparing (12.42) and (12.43), we see that f ¼ g 2 Hn; this completes the
proof of (ii).

(iii) DðAnÞ is dense in Hn.
Since polynomials are contained in DðAnÞ and are dense in Hn (see

Theorem 12.6), it is clear that (iii) is valid. Furthermore, from Theorem 12.6,
we see that fLamðtÞg

1
m¼0 forms a complete orthogonal set in Hn; see also

(12.29).

(iv) ðf ; f Þn5knðf ; f Þ ðf 2 VnÞ.
This is clear from the definition of ð�; �Þn, the positivity of the coefficients

bjðn; kÞ, and the fact that b0ðn; kÞ ¼ kn.

(v) ðf ; gÞn ¼ ðAnf ; gÞ ðf 2 DðAnÞ; g 2 VnÞ.

Observe that this identity is true for any f ; g 2 P; indeed, this is seen in
(12.28). Let f 2 DðAnÞ � Hn and g 2 Hn; since polynomials are dense in both
Hn and L2að0;1Þ and convergence in Hn implies convergence in L2að0;1Þ,
there exist sequences of polynomials fpjg

1
j¼0 and fqjg

1
j¼0 such that

pj ! f in Hn; Anpj ! Anf in L2að0;1Þ ðsee the proof of part ðiiÞÞ;

and

qj ! g in Hn and L2að0;1Þ:
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Hence, from (12.28),

ðAnf ; gÞ ¼ lim
j!1

ðAnpj; qjÞ ¼ lim
j!1

ðpj; qjÞn ¼ ðf ; gÞn:

This proves (v). The rest of the proof follows immediately from Theorems
3.2 and 3.6 upon noting that DðAnÞ, as defined in (12.41), is Vnþ2, where
Vn ðn 2 N0Þ is as given in (12.40). ]

The following corollary follows immediately from this theorem.
Remarkably, it characterizes the domain of each of the integral powers of
A. In particular, the characterization given below of the domain DðAÞ of the
classical Laguerre differential operator A having the Laguerre polynomials
as eigenfunctions seems to be new.

Corollary 12.9. For each n 2 N, the domain DðAnÞ of the nth power An

of the classical self-adjoint operator A, defined in (12.10), (12.11), and (12.12),
is given by

DðAnÞ ¼ V2n ¼ ff : ð0;1Þ ! C j f 2 ACð2n�1Þ
loc ð0;1Þ; f ð2nÞ 2 L2aþ2nð0;1Þg:

In particular,

DðAÞ ¼ V2 ¼ ff : ð0;1Þ ! C j f 2 ACð1Þ
locð0;1Þ; tf 00 2 L2að0;1Þg:

13. FURTHER EXAMPLES AND CONCLUDING REMARKS

In this last section, we connect – through several remarks – results of this
paper to previous work on left-definite theory and the theory of orthogonal
polynomials. In addition, we consider some difficult open questions that are
related to our work.

Remark 13.1. If B is a densely defined symmetric operator in a Hilbert
space H ¼ ðV ; ð�; �ÞÞ having equal deficiency indices and satisfying

ðBx; xÞ5kðx; xÞ ðx 2 DðBÞÞ

for some constant k > 0, then it is known (see [41, pp. 330–335]) that B has a
unique self-adjoint extension A in H defined by

Ax ¼ B* x;

x 2 DðAÞ ¼ H1 \DðB* Þ;
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and satisfying

ðAx; xÞ5kðx; xÞ ðx 2 DðAÞÞ:

This operator A is called the Friedrich extension of B. Here, B* is the adjoint
of B and H1 is the completion of DðBÞ in the topology generated from the
inner product ðx; yÞ1 ¼ ðBx; yÞ. Consequently, the left-definite theory
developed in this paper can be applied to A.

Remark 13.2. In [11] (see also [48]), the authors discuss the right-
definite and first left-definite theory for the fourth-order Legendre-type

differential equation

M ½y	ðtÞ ¼ lyðtÞ ðt 2 ð�1; 1ÞÞ; ð13:1Þ

where

M ½y	ðtÞ ¼ ðð1� t2Þ2y00ðtÞÞ00 � ðð8þ 4Að1� t2ÞÞy0ðtÞÞ0 þ kyðtÞ;

Here A and k are fixed, positive constants. For each n 2 N0 and
l ¼ ln ¼ nðnþ 1Þðn2 þ nþ 4A� 2Þ þ k, Eq. (13.1) has a polynomial solu-
tion y ¼ PAn ðtÞ of degree n; the sequence fPAn ðtÞg

1
n¼0 is called the Legendre-

type polynomials. They form a complete orthogonal set in the Hilbert space
L2m½�1; 1	 with inner product

ðf ; gÞm ¼
Z
½�1;1	

f ðtÞ %ggðtÞ dm :¼
Z 1

�1

f ðtÞ %ggðtÞdt þ
1

A
f ð�1Þ %ggð�1Þ

þ
1

A
f ð1Þ %ggð1Þ ðf ; g 2 L2m½�1; 1	Þ:

As shown in [8] and [11], the operator A: L2m½�1; 1	 ! L2m½�1; 1	, defined by

ðAf ÞðtÞ ¼

�8Af 0ð�1Þ þ kf ð�1Þ if t ¼ �1

M ½f 	ðtÞ if � 15t51

8Af 0ð1Þ þ kf ð1Þ if t ¼ 1

8><
>:

with domain

DðAÞ ¼ ff : ð�1; 1Þ ! C j f ðjÞ 2 AClocð�1; 1Þ ðj ¼ 0; 1; 2; 3Þ;

f ; M ½f 	 2 L2ð�1; 1Þg;

is self-adjoint and satisfies

ðAf ; f Þm5kðf ; f Þm ðf 2 DðAÞÞ:
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That is to say, A is bounded below by kI in L2m½�1; 1	. (We remark that if
f 2 DðAÞ, the authors in [11] show that f ; f 0 2 AC½�1; 1	.) In [11], they
define

V ¼ ff : ½�1; 1	 ! C j f 2 AC½�1; 1	;

f 0 2 AClocð�1; 1Þ; f 0; ð1� t2Þf 00 2 L2ð�1; 1Þg

and

ðf ; gÞ1 ¼
A
2

Z 1

�1

fð1� t2Þ2f 00ðtÞ %gg00ðtÞ þ ð8þ 4Að1� t2ÞÞf 0ðtÞ %gg0ðtÞgdt

þ kðf ; gÞm ðf ; g 2 V Þ:

Combining results from [8] and [11], the authors show that H ¼ ðV ; ð�; �Þ1Þ is
the first left-definite space associated with ðL2m½�1; 1	;AÞ. Furthermore, in
[11], they construct the first left-definite operator A1 in the manner described
in the Introduction. Although the domain of A1 was not specified in [11], we
now see that DðA1Þ ¼ DðA3=2Þ, where A is defined above. At the time of this
writing, the other left-definite spaces Hr and left-definite operators Ar ðr >
0; r=1Þ associated with ðL2m½�1; 1	;AÞ are not explicitly known.

We note that the first left-definite theory associated with the Laguerre-

type polynomials, which also satisfy a fourth-order Lagrangian symmetriz-
able differential equation, is also known; see [9], where the first left-definite
space, its associated inner product, and the first left-definite operator are
explicitly determined. Wellman [49] followed this work by analyzing, for
each n 2 N0, the right-definite and first left-definite properties for the self-
adjoint operator A ¼ AðnÞ, generated by the Laguerre-type differential
equation of order 2nþ 4 (see [29]), having the generalized Laguerre-type

polynomials as eigenfunctions. Similarly, the right-definite and first left-
definite theory associated with the Krall polynomials, which satisfy a sixth-
order Lagrangian symmetric equation, was developed and studied by
Loveland in [30].

Remark 13.3. The left-definite theory developed in the preceding
sections is also applicable to the nonclassical ða ¼ �2Þ Laguerre differential
expression

‘�2½y	ðtÞ ¼ �ty00 þ ðt þ 1Þy0 þ ky ðk > 0Þ: ð13:2Þ

For each n 2 N0, y ¼ L�2
n ðtÞ (the nth degree Laguerre polynomial) is a

solution of

‘�2½y	ðtÞ ¼ ðnþ kÞyðtÞ:
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Expression (13.2) is made formally symmetric when multiplied by the weight
function wðtÞ ¼ t�2e�t. The classical Glazman–Krein–Naimark theory of
self-adjoint extensions of symmetric differential expressions [33] shows that
‘�2½�	 has a unique self-adjoint representation A in the Hilbert space
L2ðð0;1Þ;wðtÞÞ; in fact, A is bounded below by kI > 0. Moreover, the ‘‘tail-
end’’ sequence of Laguerre polynomials fL�2

n ðtÞg1n¼2 forms a complete set of
orthogonal eigenfunctions of A in L2ðð0;1Þ;wðtÞÞ. This raises the question:
Is there a self-adjoint operator S, generated by ‘�2½�	, in some Hilbert space
W having the entire sequence fL�2

n ðtÞg1n¼0 of Laguerre polynomials as
eigenfunctions? In [14], [26] and [27] the authors show that fL�2

n ðtÞg1n¼0 forms
a complete orthogonal sequence in the Hilbert space W ¼ ðV ; ð�; �ÞÞ, where

V ¼ ff : ½0;1Þ ! C j f ; f 0 2 ACloc½0;1Þ; f 00 2 L2ðð0;1Þ; e�tÞg

and

ðf ; gÞ ¼ f ð0Þ %ggð0Þ � f 0ð0Þ %ggð0Þ � f ð0Þ %gg0ð0Þ � 2f 0ð0Þ %gg0ð0Þ

þ
Z 1

0

jf 00ðtÞ %gg00ðtÞe�tdt ðf ; g 2 V Þ:

Applying the results of this paper, it is the case that S: DðSÞ � W ! W is
explicitly given by

Sf ¼ ‘�2½f 	;

f 2 DðSÞ ¼ f 2 W j f 2 ACð3Þ
loc½0;1Þ;

Z 1

0

jf ð4ÞðtÞj2t2e�tdt51
� �

:

The key to this result is the decomposition W ¼ W1 � W2 into two
orthogonal subspaces W1 and W2, where W1 is finite dimensional and W2 is
isometrically isomorphic to H2, the second left-definite space associated with
the pair ðL2ðð0;1Þ;wðtÞÞ;AÞ. Moreover, it is the second left-definite operator
A2 associated with the pair ðL2ðð0;1Þ;wðtÞÞ;AÞ that generates S. A complete
discussion of the spectral theory for the Laguerre expression (12.1), when a
is a negative integer, is forthcoming in a paper by Everitt et al. [12].

In [14], the authors construct a fourth-order self-adjoint differential
operator T : DðT Þ � W ! W , generated by ð‘�2Þ

2, that has the polynomials
fL�2

n g1n¼0 as eigenfunctions. This operator T is partly generated by the
square ðA2Þ

2 of the second left-definite operator associated with the pair
ðL2ðð0;1Þ;wðtÞÞ;AÞ. In view of Corollary 9.1, we can now say that T is
partially generated by the first left-definite operator ðA2Þ1 associated with the
pair ðL2ðð0;1Þ;wðtÞÞ;A2Þ.
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Remark 13.4. The results of this paper have a significant impact on
some important unsolved problems in the classification of ordinary
differential equations having a sequence of orthogonal polynomial
solutions. Suppose fpng

1
n¼0 is a sequence of polynomial solutions to the

differential equation

LN ½y	ðtÞ :¼
XN
j¼1

ajðtÞyðjÞðtÞ ¼ lyðtÞ

and that fpng
1
n¼0 is orthogonal with respect to some inner product ð�; �Þ (see

[29] where, for each N 2 N and M 2 N0, the BKSðN ;MÞ classification
problems are discussed). Is there a self-adjoint operator A, generated from
LN ½�	, in some Hilbert space ðH ; ð�; �ÞÞ having these polynomials as
eigenfunctions? If so, is A bounded below in H? This last question, in all
likelihood, is tantamount to showing that LN ½�	 is Lagrangian symmetriz-
able; i.e., N ¼ 2m and LN ½�	 has the form

LN ½y	ðtÞ ¼ w�1ðtÞ
Xm
j¼1

ð�1ÞjðbjðtÞyðjÞðtÞÞ
ðjÞ;

where wðtÞ and each bjðtÞ are positive on some interval I of the real line.
Along this line, we note that a result of Krall [24] shows that if the
polynomials are orthogonal with respect to a bilinear form of the typeZ

R

f ðtÞ %ggðtÞ dm;

where m is a (possibly signed) Borel measure, then N is indeed even.
Moreover, a result of Kwon and Yoon [28] shows, in this case, that LN ½�	 is
symmetrizable. It is not clear from their result, however, when the
coefficients bj are positive. Of course, if we can determine when these
coefficients are positive, then the results of this paper would apply and we
would obtain a continuum of left-definite spaces fHrgr>0 and left-definite
operators fArgr>0 in Hr associated with ðH ;AÞ. Moreover, from Theorem 3.7,
the polynomial solutions would be orthogonal with respect to each of the
left-definite inner products ð�; �Þr.

Remark 13.5. The left-definite theory presented in this paper has some
connections to the concepts of positive and negative spaces presented by
Berezanski&ıı in his research monograph [5]. Indeed, in our notation,
Berezanski&ıı begins with two Hilbert spaces H1 ¼ ðV1; ð�; �Þ1Þ and
H2 ¼ ðV2; ð�; �Þ2Þ, with V2 being a dense subspace of H1 and ðx; xÞ25ðx; xÞ1
for all x 2 V2. Using the Riesz representation theorem, Beresanski&ıı constructs
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a bounded, invertible self-adjoint operator R1: H1 ! H2 such that
ðR1x; yÞ2 ¼ ðx; yÞ1. Using analysis similar to that in the Introduction of this
paper, Berezanski&ıı finds an (unbounded) self-adjoint operator A1: DðAÞ �
H1 ! H1 such that ðA1x; yÞ1 ¼ ðx; yÞ2 for all x 2 DðAÞ and y 2 V2. From this,
Berezanski&ıı constructs what we have called the right-definite space H and
right-definite operator A. He goes on to show that H1 and H2 are the first
and second left-definite spaces associated with ðH ;AÞ, as given in our
Definition 2.1. It is not difficult to show that, in fact, the operator A1 is what
we have called the first left-definite operator associated with ðH ;AÞ.
Consequently, Berezanski&ii’s work may be seen as a converse of the theory
presented in this paper. Berezanski&ıı goes on to produce a doubly infinite
sequence of Hilbert spaces that, in general, are different than the sequence of
left-definite spaces presented in this paper.

Remark 13.6. Given a self-adjoint differential operator A: DðAÞ �
H ! H generated by a quasi-differential expression ‘½�	, it follows from the
left-definite theory presented in this paper that if A is a positive operator,
then ‘½�	 generates self-adjoint operators in uncountably many different

Hilbert spaces. We remark that M .ooller and Zettl [31] show that if ‘½�	 is a
regular quasi-differential expression with positive leading coefficient, then
the minimal operator generated by ‘½�	 is bounded below; hence the theory
developed in this paper applies to their work.

Remark 13.7. The underlying reason why we were able to explicitly
determine the left-definite Hilbert spaces and left-definite operators
associated with the Laguerre operator in Section 11 is, undoubtedly, due
to the extraordinary properties of the Laguerre polynomials fLamðxÞg

1
m¼0

(most importantly, the orthogonality of their derivatives as seen in (12.5) as
well as their completeness in the Hilbert space L2að0;1Þ). In general,
however, characterizing the left-definite spaces and left-definite operators
associated with a positive self-adjoint operator – and, in particular, those
that are generated from quasi-differential expressions ‘½�	 – appears to be a
very formidable and difficult problem. A key paper in the determination of
integral powers of general quasi-differential expressions ‘½�	 is the contribu-
tion by Everitt and Zettl [15].
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